1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880
|
//===-- M68kInstrArithmetic.td - Integer Arith Instrs ------*- tablegen -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
///
/// \file
/// This file describes the integer arithmetic instructions in the M68k
/// architecture. Here is the current status of the file:
///
/// Machine:
///
/// ADD [~] ADDA [~] ADDI [~] ADDQ [ ] ADDX [~]
/// CLR [ ] CMP [~] CMPA [~] CMPI [~] CMPM [ ]
/// CMP2 [ ] DIVS/DIVU [~] DIVSL/DIVUL [ ] EXT [~] EXTB [ ]
/// MULS/MULU [~] NEG [~] NEGX [~] SUB [~] SUBA [~]
/// SUBI [~] SUBQ [ ] SUBX [~]
///
/// Map:
///
/// [ ] - was not touched at all
/// [!] - requires extarnal stuff implemented
/// [~] - functional implementation
/// [X] - complete implementation
///
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// Encoding
//===----------------------------------------------------------------------===//
/// Encoding for Normal forms
/// ----------------------------------------------------
/// F E D C | B A 9 | 8 7 6 | 5 4 3 | 2 1 0
/// ----------------------------------------------------
/// | | | EFFECTIVE ADDRESS
/// x x x x | REG | OP MODE | MODE | REG
/// ----------------------------------------------------
class MxArithEncoding<MxBead4Bits CMD, MxEncOpMode OPMODE, MxBead REG,
MxEncEA EA, MxEncExt EXT>
: MxEncoding<EA.Reg, EA.DA, EA.Mode, OPMODE.B0, OPMODE.B1, OPMODE.B2, REG,
CMD,EXT.Imm, EXT.B8, EXT.Scale, EXT.WL, EXT.DAReg>;
/// Encoding for Extended forms
/// ------------------------------------------------------
/// F E D C | B A 9 | 8 | 7 6 | 5 4 | 3 | 2 1 0
/// ------------------------------------------------------
/// x x x x | REG Rx | 1 | SIZE | 0 0 | M | REG Ry
/// ------------------------------------------------------
/// Rx - destination
/// Ry - source
/// M - address mode switch
class MxArithXEncoding<MxBead4Bits CMD, MxEncSize SIZE, MxBead1Bit MODE,
MxBeadDReg SRC, MxBeadDReg DST>
: MxEncoding<SRC, MODE, MxBead2Bits<0b00>, SIZE, MxBead1Bit<0b1>, DST, CMD>;
/// Encoding for Immediate forms
/// ---------------------------------------------------
/// F E D C B A 9 8 | 7 6 | 5 4 3 | 2 1 0
/// ---------------------------------------------------
/// | | EFFECTIVE ADDRESS
/// x x x x x x x x | SIZE | MODE | REG
/// ---------------------------------------------------
/// 16-BIT WORD DATA | 8-BIT BYTE DATA
/// ---------------------------------------------------
/// 32-BIT LONG DATA
/// ---------------------------------------------------
/// NOTE It is used to store an immediate to memory, imm-to-reg are handled with
/// normal version
class MxArithImmEncoding<MxBead4Bits CMD, MxEncSize SIZE,
MxEncEA DST_EA, MxEncExt DST_EXT, MxEncExt SRC_EXT>
: MxEncoding<DST_EA.Reg, DST_EA.DA, DST_EA.Mode, SIZE, CMD, MxBead4Bits<0>,
// Source
SRC_EXT.Imm, SRC_EXT.B8, SRC_EXT.Scale,
SRC_EXT.WL, SRC_EXT.DAReg,
// Destination
DST_EXT.Imm, DST_EXT.B8, DST_EXT.Scale,
DST_EXT.WL, DST_EXT.DAReg>;
//===----------------------------------------------------------------------===//
// Add/Sub
//===----------------------------------------------------------------------===//
let Defs = [CCR] in {
let Constraints = "$src = $dst" in {
// $reg, $ccr <- $reg op $reg
class MxBiArOp_RFRR_xEA<string MN, SDNode NODE, MxType TYPE, bits<4> CMD, MxBead REG>
: MxInst<(outs TYPE.ROp:$dst), (ins TYPE.ROp:$src, TYPE.ROp:$opd),
MN#"."#TYPE.Prefix#"\t$opd, $dst",
[(set TYPE.VT:$dst, CCR, (NODE TYPE.VT:$src, TYPE.VT:$opd))],
MxArithEncoding<MxBead4Bits<CMD>,
!cast<MxEncOpMode>("MxOpMode"#TYPE.Size#TYPE.RLet#"EA"),
REG,
!cast<MxEncEA>("MxEncEA"#TYPE.RLet#"_2"),
MxExtEmpty>>;
/// This Op is similar to the one above except it uses reversed opmode, some
/// commands(e.g. eor) do not support dEA or rEA modes and require EAd for
/// register only operations.
/// NOTE when using dd commands it is irrelevant which opmode to use(as it seems)
/// but some opcodes support address register and some do not which creates this
/// mess.
class MxBiArOp_RFRR_EAd<string MN, SDNode NODE, MxType TYPE, bits<4> CMD>
: MxInst<(outs TYPE.ROp:$dst), (ins TYPE.ROp:$src, TYPE.ROp:$opd),
MN#"."#TYPE.Prefix#"\t$opd, $dst",
[(set TYPE.VT:$dst, CCR, (NODE TYPE.VT:$src, TYPE.VT:$opd))],
MxArithEncoding<MxBead4Bits<CMD>,
!cast<MxEncOpMode>("MxOpMode"#TYPE.Size#"EAd"),
MxBeadDReg<2>, MxEncEAd_0, MxExtEmpty>>;
// $reg <- $reg op $imm
class MxBiArOp_RFRI_xEA<string MN, SDNode NODE, MxType TYPE, bits<4> CMD>
: MxInst<(outs TYPE.ROp:$dst), (ins TYPE.ROp:$src, TYPE.IOp:$opd),
MN#"."#TYPE.Prefix#"\t$opd, $dst",
[(set TYPE.VT:$dst, CCR, (NODE TYPE.VT:$src, TYPE.IPat:$opd))],
MxArithEncoding<MxBead4Bits<CMD>,
!cast<MxEncOpMode>("MxOpMode"#TYPE.Size#TYPE.RLet#"EA"),
MxBeadDReg<0>, MxEncEAi,
!cast<MxEncExt>("MxExtI"#TYPE.Size#"_2")>>;
// Again, there are two ways to write an immediate to Dn register either dEA
// opmode or using *I encoding, and again some instrucitons also support address
// registers some do not.
class MxBiArOp_RFRI<string MN, SDNode NODE, MxType TYPE, bits<4> CMD>
: MxInst<(outs TYPE.ROp:$dst), (ins TYPE.ROp:$src, TYPE.IOp:$opd),
MN#"i."#TYPE.Prefix#"\t$opd, $dst",
[(set TYPE.VT:$dst, CCR, (NODE TYPE.VT:$src, TYPE.IPat:$opd))],
MxArithImmEncoding<MxBead4Bits<CMD>, !cast<MxEncSize>("MxEncSize"#TYPE.Size),
!cast<MxEncEA>("MxEncEA"#TYPE.RLet#"_0"), MxExtEmpty,
!cast<MxEncExt>("MxExtI"#TYPE.Size#"_2")>>;
let mayLoad = 1 in
class MxBiArOp_RFRM<string MN, SDNode NODE, MxType TYPE, MxOperand OPD, ComplexPattern PAT,
bits<4> CMD, MxEncEA EA, MxEncExt EXT>
: MxInst<(outs TYPE.ROp:$dst), (ins TYPE.ROp:$src, OPD:$opd),
MN#"."#TYPE.Prefix#"\t$opd, $dst",
[(set TYPE.VT:$dst, CCR, (NODE TYPE.VT:$src, (TYPE.Load PAT:$opd)))],
MxArithEncoding<MxBead4Bits<CMD>,
!cast<MxEncOpMode>("MxOpMode"#TYPE.Size#TYPE.RLet#"EA"),
MxBeadDReg<0>, EA, EXT>>;
} // Constraints
let mayLoad = 1, mayStore = 1 in {
// FIXME MxBiArOp_FMR/FMI cannot consume CCR from MxAdd/MxSub which leads for
// MxAdd to survive the match and subsequent mismatch.
class MxBiArOp_FMR<string MN, SDNode NODE, MxType TYPE,
MxOperand MEMOpd, ComplexPattern MEMPat,
bits<4> CMD, MxEncEA EA, MxEncExt EXT>
: MxInst<(outs), (ins MEMOpd:$dst, TYPE.ROp:$opd),
MN#"."#TYPE.Prefix#"\t$opd, $dst",
[],
MxArithEncoding<MxBead4Bits<CMD>,
!cast<MxEncOpMode>("MxOpMode"#TYPE.Size#"EA"#TYPE.RLet),
MxBeadDReg<1>, EA, EXT>>;
class MxBiArOp_FMI<string MN, SDNode NODE, MxType TYPE,
MxOperand MEMOpd, ComplexPattern MEMPat,
bits<4> CMD, MxEncEA MEMEA, MxEncExt MEMExt>
: MxInst<(outs), (ins MEMOpd:$dst, TYPE.IOp:$opd),
MN#"."#TYPE.Prefix#"\t$opd, $dst",
[],
MxArithImmEncoding<MxBead4Bits<CMD>,
!cast<MxEncSize>("MxEncSize"#TYPE.Size),
MEMEA, MEMExt,
!cast<MxEncExt>("MxExtI"#TYPE.Size#"_1")>>;
} // mayLoad, mayStore
} // Defs = [CCR]
multiclass MxBiArOp_DF<string MN, SDNode NODE, bit isComm,
bits<4> CMD, bits<4> CMDI> {
// op $mem, $reg
def NAME#"8dk" : MxBiArOp_RFRM<MN, NODE, MxType8d, MxType8.KOp, MxType8.KPat,
CMD, MxEncEAk, MxExtBrief_2>;
def NAME#"16dk" : MxBiArOp_RFRM<MN, NODE, MxType16d, MxType16.KOp, MxType16.KPat,
CMD, MxEncEAk, MxExtBrief_2>;
def NAME#"32dk" : MxBiArOp_RFRM<MN, NODE, MxType32d, MxType32.KOp, MxType32.KPat,
CMD, MxEncEAk, MxExtBrief_2>;
def NAME#"8dq" : MxBiArOp_RFRM<MN, NODE, MxType8d, MxType8.QOp, MxType8.QPat,
CMD, MxEncEAq, MxExtI16_2>;
def NAME#"16dq" : MxBiArOp_RFRM<MN, NODE, MxType16d, MxType16.QOp, MxType16.QPat,
CMD, MxEncEAq, MxExtI16_2>;
def NAME#"32dq" : MxBiArOp_RFRM<MN, NODE, MxType32d, MxType32.QOp, MxType32.QPat,
CMD, MxEncEAq, MxExtI16_2>;
def NAME#"8dp" : MxBiArOp_RFRM<MN, NODE, MxType8d, MxType8.POp, MxType8.PPat,
CMD, MxEncEAp_2, MxExtI16_2>;
def NAME#"16dp" : MxBiArOp_RFRM<MN, NODE, MxType16d, MxType16.POp, MxType16.PPat,
CMD, MxEncEAp_2, MxExtI16_2>;
def NAME#"32dp" : MxBiArOp_RFRM<MN, NODE, MxType32d, MxType32.POp, MxType32.PPat,
CMD, MxEncEAp_2, MxExtI16_2>;
def NAME#"8df" : MxBiArOp_RFRM<MN, NODE, MxType8d, MxType8.FOp, MxType8.FPat,
CMD, MxEncEAf_2, MxExtBrief_2>;
def NAME#"16df" : MxBiArOp_RFRM<MN, NODE, MxType16d, MxType16.FOp, MxType16.FPat,
CMD, MxEncEAf_2, MxExtBrief_2>;
def NAME#"32df" : MxBiArOp_RFRM<MN, NODE, MxType32d, MxType32.FOp, MxType32.FPat,
CMD, MxEncEAf_2, MxExtBrief_2>;
def NAME#"8dj" : MxBiArOp_RFRM<MN, NODE, MxType8d, MxType8.JOp, MxType8.JPat,
CMD, MxEncEAj_2, MxExtEmpty>;
def NAME#"16dj" : MxBiArOp_RFRM<MN, NODE, MxType16d, MxType16.JOp, MxType16.JPat,
CMD, MxEncEAj_2, MxExtEmpty>;
def NAME#"32dj" : MxBiArOp_RFRM<MN, NODE, MxType32d, MxType32.JOp, MxType32.JPat,
CMD, MxEncEAj_2, MxExtEmpty>;
// op $imm, $reg
def NAME#"8di" : MxBiArOp_RFRI_xEA<MN, NODE, MxType8d, CMD>;
def NAME#"16di" : MxBiArOp_RFRI_xEA<MN, NODE, MxType16d, CMD>;
def NAME#"32di" : MxBiArOp_RFRI_xEA<MN, NODE, MxType32d, CMD>;
// op $reg, $mem
def NAME#"8pd" : MxBiArOp_FMR<MN, NODE, MxType8d, MxType8.POp, MxType8.PPat,
CMD, MxEncEAp_0, MxExtI16_0>;
def NAME#"16pd" : MxBiArOp_FMR<MN, NODE, MxType16d, MxType16.POp, MxType16.PPat,
CMD, MxEncEAp_0, MxExtI16_0>;
def NAME#"32pd" : MxBiArOp_FMR<MN, NODE, MxType32d, MxType32.POp, MxType32.PPat,
CMD, MxEncEAp_0, MxExtI16_0>;
def NAME#"8fd" : MxBiArOp_FMR<MN, NODE, MxType8d, MxType8.FOp, MxType8.FPat,
CMD, MxEncEAf_0, MxExtBrief_0>;
def NAME#"16fd" : MxBiArOp_FMR<MN, NODE, MxType16d, MxType16.FOp, MxType16.FPat,
CMD, MxEncEAf_0, MxExtBrief_0>;
def NAME#"32fd" : MxBiArOp_FMR<MN, NODE, MxType32d, MxType32.FOp, MxType32.FPat,
CMD, MxEncEAf_0, MxExtBrief_0>;
def NAME#"8jd" : MxBiArOp_FMR<MN, NODE, MxType8d, MxType8.JOp, MxType8.JPat,
CMD, MxEncEAj_0, MxExtEmpty>;
def NAME#"16jd" : MxBiArOp_FMR<MN, NODE, MxType16d, MxType16.JOp, MxType16.JPat,
CMD, MxEncEAj_0, MxExtEmpty>;
def NAME#"32jd" : MxBiArOp_FMR<MN, NODE, MxType32d, MxType32.JOp, MxType32.JPat,
CMD, MxEncEAj_0, MxExtEmpty>;
// op $imm, $mem
def NAME#"8pi" : MxBiArOp_FMI<MN, NODE, MxType8, MxType8.POp, MxType8.PPat,
CMDI, MxEncEAp_0, MxExtI16_0>;
def NAME#"16pi" : MxBiArOp_FMI<MN, NODE, MxType16, MxType16.POp, MxType16.PPat,
CMDI, MxEncEAp_0, MxExtI16_0>;
def NAME#"32pi" : MxBiArOp_FMI<MN, NODE, MxType32, MxType32.POp, MxType32.PPat,
CMDI, MxEncEAp_0, MxExtI16_0>;
def NAME#"8fi" : MxBiArOp_FMI<MN, NODE, MxType8, MxType8.FOp, MxType8.FPat,
CMDI, MxEncEAf_0, MxExtBrief_0>;
def NAME#"16fi" : MxBiArOp_FMI<MN, NODE, MxType16, MxType16.FOp, MxType16.FPat,
CMDI, MxEncEAf_0, MxExtBrief_0>;
def NAME#"32fi" : MxBiArOp_FMI<MN, NODE, MxType32, MxType32.FOp, MxType32.FPat,
CMDI, MxEncEAf_0, MxExtBrief_0>;
def NAME#"8ji" : MxBiArOp_FMI<MN, NODE, MxType8, MxType8.JOp, MxType8.JPat,
CMDI, MxEncEAj_0, MxExtEmpty>;
def NAME#"16ji" : MxBiArOp_FMI<MN, NODE, MxType16, MxType16.JOp, MxType16.JPat,
CMDI, MxEncEAj_0, MxExtEmpty>;
def NAME#"32ji" : MxBiArOp_FMI<MN, NODE, MxType32, MxType32.JOp, MxType32.JPat,
CMDI, MxEncEAj_0, MxExtEmpty>;
let isCommutable = isComm in {
def NAME#"8dd" : MxBiArOp_RFRR_xEA<MN, NODE, MxType8d, CMD, MxBeadDReg<0>>;
def NAME#"16dd" : MxBiArOp_RFRR_xEA<MN, NODE, MxType16d, CMD, MxBeadDReg<0>>;
def NAME#"32dd" : MxBiArOp_RFRR_xEA<MN, NODE, MxType32d, CMD, MxBeadDReg<0>>;
} // isComm
} // MxBiArOp_DF
// These special snowflakes allowed to match address registers but since *A
// operations do not produce CCR we should not match them against Mx nodes that
// produce it.
let Pattern = [(null_frag)] in
multiclass MxBiArOp_AF<string MN, SDNode NODE, bit isComm,
bits<4> CMD, bits<4> CMDI> {
def NAME#"32rk" : MxBiArOp_RFRM<MN, NODE, MxType32r, MxType32.KOp, MxType32.KPat,
CMD, MxEncEAk, MxExtBrief_2>;
def NAME#"32rq" : MxBiArOp_RFRM<MN, NODE, MxType32r, MxType32.QOp, MxType32.QPat,
CMD, MxEncEAq, MxExtI16_2>;
def NAME#"32rf" : MxBiArOp_RFRM<MN, NODE, MxType32r, MxType32.FOp, MxType32.FPat,
CMD, MxEncEAf_2, MxExtBrief_2>;
def NAME#"32rp" : MxBiArOp_RFRM<MN, NODE, MxType32r, MxType32.POp, MxType32.PPat,
CMD, MxEncEAp_2, MxExtI16_2>;
def NAME#"32rj" : MxBiArOp_RFRM<MN, NODE, MxType32r, MxType32.JOp, MxType32.JPat,
CMD, MxEncEAj_2, MxExtEmpty>;
def NAME#"32ri" : MxBiArOp_RFRI_xEA<MN, NODE, MxType32r, CMD>;
let isCommutable = isComm in
def NAME#"32rr" : MxBiArOp_RFRR_xEA<MN, NODE, MxType32r, CMD, MxBeadReg<0>>;
} // MxBiArOp_AF
// NOTE These naturally produce CCR
defm ADD : MxBiArOp_DF<"add", MxAdd, 1, 0xD, 0x6>;
defm ADD : MxBiArOp_AF<"add", MxAdd, 1, 0xD, 0x6>;
defm SUB : MxBiArOp_DF<"sub", MxSub, 0, 0x9, 0x4>;
defm SUB : MxBiArOp_AF<"sub", MxSub, 0, 0x9, 0x4>;
let Uses = [CCR], Defs = [CCR] in {
let Constraints = "$src = $dst" in {
// $reg, ccr <- $reg op $reg op ccr
class MxBiArOp_RFRRF<string MN, SDNode NODE, MxType TYPE, bits<4> CMD>
: MxInst<(outs TYPE.ROp:$dst), (ins TYPE.ROp:$src, TYPE.ROp:$opd),
MN#"."#TYPE.Prefix#"\t$opd, $dst",
[(set TYPE.VT:$dst, CCR, (NODE TYPE.VT:$src, TYPE.VT:$opd, CCR))],
MxArithXEncoding<MxBead4Bits<CMD>,
!cast<MxEncSize>("MxEncSize"#TYPE.Size),
MxBead1Bit<0>, MxBeadDReg<2>, MxBeadDReg<0>>>;
} // Constraints
} // Uses, Defs
multiclass MxBiArOp_RFF<string MN, SDNode NODE, bit isComm, bits<4> CMD> {
let isCommutable = isComm in {
def NAME#"8dd" : MxBiArOp_RFRRF<MN, NODE, MxType8d, CMD>;
def NAME#"16dd" : MxBiArOp_RFRRF<MN, NODE, MxType16d, CMD>;
def NAME#"32dd" : MxBiArOp_RFRRF<MN, NODE, MxType32d, CMD>;
} // isComm
} // MxBiArOp_RFF
// NOTE These consume and produce CCR
defm ADDX : MxBiArOp_RFF<"addx", MxAddX, 1, 0xD>;
defm SUBX : MxBiArOp_RFF<"subx", MxSubX, 0, 0x9>;
//===----------------------------------------------------------------------===//
// And/Xor/Or
//===----------------------------------------------------------------------===//
defm AND : MxBiArOp_DF<"and", MxAnd, 1, 0xC, 0x2>;
defm OR : MxBiArOp_DF<"or", MxOr, 1, 0x8, 0x0>;
multiclass MxBiArOp_DF_EAd<string MN, SDNode NODE, bits<4> CMD, bits<4> CMDI> {
let isCommutable = 1 in {
def NAME#"8dd" : MxBiArOp_RFRR_EAd<MN, NODE, MxType8d, CMD>;
def NAME#"16dd" : MxBiArOp_RFRR_EAd<MN, NODE, MxType16d, CMD>;
def NAME#"32dd" : MxBiArOp_RFRR_EAd<MN, NODE, MxType32d, CMD>;
} // isCommutable = 1
def NAME#"8di" : MxBiArOp_RFRI<MN, NODE, MxType8d, CMDI>;
def NAME#"16di" : MxBiArOp_RFRI<MN, NODE, MxType16d, CMDI>;
def NAME#"32di" : MxBiArOp_RFRI<MN, NODE, MxType32d, CMDI>;
} // MxBiArOp_DF_EAd
defm XOR : MxBiArOp_DF_EAd<"eor", MxXor, 0xB, 0xA>;
//===----------------------------------------------------------------------===//
// CMP
//===----------------------------------------------------------------------===//
let Defs = [CCR] in {
class MxCmp_RR<MxType TYPE>
: MxInst<(outs), (ins TYPE.ROp:$lhs, TYPE.ROp:$rhs),
"cmp."#TYPE.Prefix#"\t$lhs, $rhs",
[(set CCR, (MxCmp TYPE.VT:$lhs, TYPE.VT:$rhs))],
MxArithEncoding<MxBead4Bits<0xB>,
!cast<MxEncOpMode>("MxOpMode"#TYPE.Size#"dEA"),
MxBeadDReg<1>, MxEncEAd_0, MxExtEmpty>>;
class MxCmp_RI<MxType TYPE>
: MxInst<(outs), (ins TYPE.IOp:$imm, TYPE.ROp:$reg),
"cmpi."#TYPE.Prefix#"\t$imm, $reg",
[(set CCR, (MxCmp TYPE.IPat:$imm, TYPE.VT:$reg))],
MxArithImmEncoding<MxBead4Bits<0xC>,
!cast<MxEncSize>("MxEncSize"#TYPE.Size),
MxEncEAd_1, MxExtEmpty,
!cast<MxEncExt>("MxExtI"#TYPE.Size#"_0")>>;
let mayLoad = 1 in {
class MxCmp_MI<MxType TYPE, MxOperand MEMOpd, ComplexPattern MEMPat,
MxEncEA EA, MxEncExt EXT>
: MxInst<(outs), (ins TYPE.IOp:$imm, MEMOpd:$mem),
"cmpi."#TYPE.Prefix#"\t$imm, $mem",
[(set CCR, (MxCmp TYPE.IPat:$imm, (load MEMPat:$mem)))],
MxArithImmEncoding<MxBead4Bits<0xC>,
!cast<MxEncSize>("MxEncSize"#TYPE.Size),
EA, EXT,
!cast<MxEncExt>("MxExtI"#TYPE.Size#"_0")>>;
class MxCmp_BI<MxType TYPE>
: MxInst<(outs), (ins TYPE.IOp:$imm, MxAL32:$abs),
"cmpi."#TYPE.Prefix#"\t$imm, $abs",
[(set CCR, (MxCmp TYPE.IPat:$imm,
(load (i32 (MxWrapper tglobaladdr:$abs)))))],
MxArithImmEncoding<MxBead4Bits<0xC>,
!cast<MxEncSize>("MxEncSize"#TYPE.Size),
MxEncEAb, MxExtI32_1,
!cast<MxEncExt>("MxExtI"#TYPE.Size#"_0")>>;
class MxCmp_RM<MxType TYPE, MxOperand MEMOpd, ComplexPattern MEMPat,
MxEncEA EA, MxEncExt EXT>
: MxInst<(outs), (ins TYPE.ROp:$reg, MEMOpd:$mem),
"cmp."#TYPE.Prefix#"\t$mem, $reg",
[(set CCR, (MxCmp (load MEMPat:$mem), TYPE.ROp:$reg))],
MxArithEncoding<MxBead4Bits<0xB>,
!cast<MxEncOpMode>("MxOpMode"#TYPE.Size#"dEA"),
MxBeadDReg<0>, EA, EXT>>;
} // let mayLoad = 1
} // let Defs = [CCR]
multiclass MMxCmp_RM<MxType TYPE> {
def NAME#TYPE.KOp.Letter : MxCmp_RM<TYPE, TYPE.KOp, TYPE.KPat, MxEncEAk,
MxExtBrief_1>;
def NAME#TYPE.QOp.Letter : MxCmp_RM<TYPE, TYPE.QOp, TYPE.QPat, MxEncEAq,
MxExtI16_1>;
def NAME#TYPE.POp.Letter : MxCmp_RM<TYPE, TYPE.POp, TYPE.PPat, MxEncEAp_1,
MxExtI16_1>;
def NAME#TYPE.FOp.Letter : MxCmp_RM<TYPE, TYPE.FOp, TYPE.FPat, MxEncEAf_1,
MxExtBrief_1>;
def NAME#TYPE.JOp.Letter : MxCmp_RM<TYPE, TYPE.JOp, TYPE.JPat, MxEncEAj_1,
MxExtEmpty>;
}
multiclass MMxCmp_MI<MxType TYPE> {
def NAME#TYPE.KOp.Letter#"i" : MxCmp_MI<TYPE, TYPE.KOp, TYPE.KPat, MxEncEAk,
MxExtBrief_1>;
def NAME#TYPE.QOp.Letter#"i" : MxCmp_MI<TYPE, TYPE.QOp, TYPE.QPat, MxEncEAq,
MxExtI16_1>;
def NAME#TYPE.POp.Letter#"i" : MxCmp_MI<TYPE, TYPE.POp, TYPE.PPat, MxEncEAp_1,
MxExtI16_1>;
def NAME#TYPE.FOp.Letter#"i" : MxCmp_MI<TYPE, TYPE.FOp, TYPE.FPat, MxEncEAf_1,
MxExtBrief_1>;
def NAME#TYPE.JOp.Letter#"i" : MxCmp_MI<TYPE, TYPE.JOp, TYPE.JPat, MxEncEAj_1,
MxExtEmpty>;
}
foreach S = [8, 16, 32] in {
def CMP#S#dd : MxCmp_RR<!cast<MxType>("MxType"#S#"d")>;
def CMP#S#di : MxCmp_RI<!cast<MxType>("MxType"#S#"d")>;
def CMP#S#bi : MxCmp_BI<!cast<MxType>("MxType"#S#"d")>;
} // foreach
// cmp mem, Dn
defm CMP8d : MMxCmp_RM<MxType8d>;
defm CMP16d : MMxCmp_RM<MxType16d>;
defm CMP32d : MMxCmp_RM<MxType32d>;
// cmp #imm, mem
defm CMP8 : MMxCmp_MI<MxType8d>;
defm CMP16 : MMxCmp_MI<MxType16d>;
defm CMP32 : MMxCmp_MI<MxType32d>;
//===----------------------------------------------------------------------===//
// EXT
//===----------------------------------------------------------------------===//
def MxExtOpmode_wb : MxBead3Bits<0b010>;
def MxExtOpmode_lw : MxBead3Bits<0b011>;
def MxExtOpmode_lb : MxBead3Bits<0b111>;
/// ---------------------------------------------------
/// F E D C B A 9 | 8 7 6 | 5 4 3 | 2 1 0
/// ---------------------------------------------------
/// 0 1 0 0 1 0 0 | OPMODE | 0 0 0 | REG
/// ---------------------------------------------------
class MxExtEncoding<MxBead3Bits OPMODE>
: MxEncoding<MxBeadDReg<0>, MxBead3Bits<0b000>, OPMODE,
MxBead3Bits<0b100>, MxBead4Bits<0b0100>>;
let Defs = [CCR] in
let Constraints = "$src = $dst" in
class MxExt<MxType TO, MxType FROM>
: MxInst<(outs TO.ROp:$dst), (ins TO.ROp:$src),
"ext."#TO.Prefix#"\t$src", [],
MxExtEncoding<!cast<MxBead3Bits>("MxExtOpmode_"#TO.Prefix#FROM.Prefix)>>;
def EXT16 : MxExt<MxType16d, MxType8d>;
def EXT32 : MxExt<MxType32d, MxType16d>;
def : Pat<(sext_inreg i16:$src, i8), (EXT16 $src)>;
def : Pat<(sext_inreg i32:$src, i16), (EXT32 $src)>;
def : Pat<(sext_inreg i32:$src, i8),
(EXT32 (MOVXd32d16 (EXT16 (EXTRACT_SUBREG $src, MxSubRegIndex16Lo))))>;
//===----------------------------------------------------------------------===//
// DIV/MUL
//===----------------------------------------------------------------------===//
def MxSDiMuOpmode : MxBead3Bits<0b111>;
def MxUDiMuOpmode : MxBead3Bits<0b011>;
/// Word operation:
/// ----------------------------------------------------
/// F E D C | B A 9 | 8 7 6 | 5 4 3 | 2 1 0
/// ----------------------------------------------------
/// | | | EFFECTIVE ADDRESS
/// x x x x | REG | OP MODE | MODE | REG
/// ----------------------------------------------------
class MxDiMuEncoding<MxBead4Bits CMD, MxBead3Bits OPMODE, MxEncEA EA, MxEncExt EXT>
: MxEncoding<EA.Reg, EA.DA, EA.Mode, OPMODE, MxBeadDReg<0>, CMD,
EXT.Imm, EXT.B8, EXT.Scale, EXT.WL, EXT.DAReg>;
let Defs = [CCR] in {
let Constraints = "$src = $dst" in {
// $reg <- $reg op $reg
class MxDiMuOp_DD<string MN, bits<4> CMD, MxBead3Bits OPMODE,
MxOperand DST, MxOperand OPD>
: MxInst<(outs DST:$dst), (ins DST:$src, OPD:$opd), MN#"\t$opd, $dst", [],
MxDiMuEncoding<MxBead4Bits<CMD>, OPMODE, MxEncEAd_2, MxExtEmpty>>;
// $reg <- $reg op $imm
class MxDiMuOp_DI<string MN, bits<4> CMD, MxBead3Bits OPMODE,
MxOperand DST, MxOperand OPD>
: MxInst<(outs DST:$dst), (ins DST:$src, OPD:$opd), MN#"\t$opd, $dst", [],
MxDiMuEncoding<MxBead4Bits<CMD>, OPMODE, MxEncEAi, MxExtI16_2>>;
} // let Constraints
} // Defs = [CCR]
multiclass MxDiMuOp<string MN, bits<4> CMD, bit isComm = 0> {
let isCommutable = isComm in {
def "S"#NAME#"d32d16" : MxDiMuOp_DD<MN#"s", CMD, MxSDiMuOpmode, MxDRD32,
MxDRD16>;
def "U"#NAME#"d32d16" : MxDiMuOp_DD<MN#"u", CMD, MxUDiMuOpmode, MxDRD32,
MxDRD16>;
}
def "S"#NAME#"d32i16" : MxDiMuOp_DI<MN#"s", CMD, MxSDiMuOpmode, MxDRD32,
Mxi16imm>;
def "U"#NAME#"d32i16" : MxDiMuOp_DI<MN#"u", CMD, MxUDiMuOpmode, MxDRD32,
Mxi16imm>;
}
defm DIV : MxDiMuOp<"div", 0x8>;
// This is used to cast immediates to 16-bits for operations which don't
// support smaller immediate sizes.
def as_i16imm : SDNodeXForm<imm, [{
return CurDAG->getTargetConstant(N->getSExtValue(), SDLoc(N), MVT::i16);
}]>;
// RR i8
def : Pat<(sdiv i8:$dst, i8:$opd),
(EXTRACT_SUBREG
(SDIVd32d16 (MOVSXd32d8 $dst), (MOVSXd16d8 $opd)),
MxSubRegIndex8Lo)>;
def : Pat<(udiv i8:$dst, i8:$opd),
(EXTRACT_SUBREG
(UDIVd32d16 (MOVZXd32d8 $dst), (MOVZXd16d8 $opd)),
MxSubRegIndex8Lo)>;
def : Pat<(srem i8:$dst, i8:$opd),
(EXTRACT_SUBREG
(ASR32di (ASR32di (SDIVd32d16 (MOVSXd32d8 $dst), (MOVSXd16d8 $opd)), 8), 8),
MxSubRegIndex8Lo)>;
def : Pat<(urem i8:$dst, i8:$opd),
(EXTRACT_SUBREG
(LSR32di (LSR32di (UDIVd32d16 (MOVZXd32d8 $dst), (MOVZXd16d8 $opd)), 8), 8),
MxSubRegIndex8Lo)>;
// RR i16
def : Pat<(sdiv i16:$dst, i16:$opd),
(EXTRACT_SUBREG
(SDIVd32d16 (MOVSXd32d16 $dst), $opd),
MxSubRegIndex16Lo)>;
def : Pat<(udiv i16:$dst, i16:$opd),
(EXTRACT_SUBREG
(UDIVd32d16 (MOVZXd32d16 $dst), $opd),
MxSubRegIndex16Lo)>;
def : Pat<(srem i16:$dst, i16:$opd),
(EXTRACT_SUBREG
(ASR32di (ASR32di (SDIVd32d16 (MOVSXd32d16 $dst), $opd), 8), 8),
MxSubRegIndex16Lo)>;
def : Pat<(urem i16:$dst, i16:$opd),
(EXTRACT_SUBREG
(LSR32di (LSR32di (UDIVd32d16 (MOVZXd32d16 $dst), $opd), 8), 8),
MxSubRegIndex16Lo)>;
// RI i8
def : Pat<(sdiv i8:$dst, MximmSExt8:$opd),
(EXTRACT_SUBREG
(SDIVd32i16 (MOVSXd32d8 $dst), (as_i16imm $opd)),
MxSubRegIndex8Lo)>;
def : Pat<(udiv i8:$dst, MximmSExt8:$opd),
(EXTRACT_SUBREG
(UDIVd32i16 (MOVZXd32d8 $dst), (as_i16imm $opd)),
MxSubRegIndex8Lo)>;
def : Pat<(srem i8:$dst, MximmSExt8:$opd),
(EXTRACT_SUBREG
(ASR32di (ASR32di (SDIVd32i16 (MOVSXd32d8 $dst), (as_i16imm $opd)), 8), 8),
MxSubRegIndex8Lo)>;
def : Pat<(urem i8:$dst, MximmSExt8:$opd),
(EXTRACT_SUBREG
(LSR32di (LSR32di (UDIVd32i16 (MOVZXd32d8 $dst), (as_i16imm $opd)), 8), 8),
MxSubRegIndex8Lo)>;
// RI i16
def : Pat<(sdiv i16:$dst, MximmSExt16:$opd),
(EXTRACT_SUBREG
(SDIVd32i16 (MOVSXd32d16 $dst), imm:$opd),
MxSubRegIndex16Lo)>;
def : Pat<(udiv i16:$dst, MximmSExt16:$opd),
(EXTRACT_SUBREG
(UDIVd32i16 (MOVZXd32d16 $dst), imm:$opd),
MxSubRegIndex16Lo)>;
def : Pat<(srem i16:$dst, MximmSExt16:$opd),
(EXTRACT_SUBREG
(ASR32di (ASR32di (SDIVd32i16 (MOVSXd32d16 $dst), imm:$opd), 8), 8),
MxSubRegIndex16Lo)>;
def : Pat<(urem i16:$dst, MximmSExt16:$opd),
(EXTRACT_SUBREG
(LSR32di (LSR32di (UDIVd32i16 (MOVZXd32d16 $dst), imm:$opd), 8), 8),
MxSubRegIndex16Lo)>;
defm MUL : MxDiMuOp<"mul", 0xC, 1>;
// RR
def : Pat<(mul i16:$dst, i16:$opd),
(EXTRACT_SUBREG
(SMULd32d16 (MOVXd32d16 $dst), $opd),
MxSubRegIndex16Lo)>;
def : Pat<(mulhs i16:$dst, i16:$opd),
(EXTRACT_SUBREG
(ASR32di (ASR32di (SMULd32d16 (MOVXd32d16 $dst), $opd), 8), 8),
MxSubRegIndex16Lo)>;
def : Pat<(mulhu i16:$dst, i16:$opd),
(EXTRACT_SUBREG
(LSR32di (LSR32di (UMULd32d16 (MOVXd32d16 $dst), $opd), 8), 8),
MxSubRegIndex16Lo)>;
// RI
def : Pat<(mul i16:$dst, MximmSExt16:$opd),
(EXTRACT_SUBREG
(SMULd32i16 (MOVXd32d16 $dst), imm:$opd),
MxSubRegIndex16Lo)>;
def : Pat<(mulhs i16:$dst, MximmSExt16:$opd),
(EXTRACT_SUBREG
(ASR32di (ASR32di (SMULd32i16 (MOVXd32d16 $dst), imm:$opd), 8), 8),
MxSubRegIndex16Lo)>;
def : Pat<(mulhu i16:$dst, MximmSExt16:$opd),
(EXTRACT_SUBREG
(LSR32di (LSR32di (UMULd32i16 (MOVXd32d16 $dst), imm:$opd), 8), 8),
MxSubRegIndex16Lo)>;
//===----------------------------------------------------------------------===//
// NEG/NEGX
//===----------------------------------------------------------------------===//
/// ------------+------------+------+---------+---------
/// F E D C | B A 9 8 | 7 6 | 5 4 3 | 2 1 0
/// ------------+------------+------+-------------------
/// | | | EFFECTIVE ADDRESS
/// 0 1 0 0 | x x x x | SIZE | MODE | REG
/// ------------+------------+------+---------+---------
class MxNEGEncoding<MxBead4Bits CMD, MxEncSize SIZE, MxEncEA EA, MxEncExt EXT>
: MxEncoding<EA.Reg, EA.DA, EA.Mode, SIZE, CMD, MxBead4Bits<0b0100>,
EXT.Imm, EXT.B8, EXT.Scale, EXT.WL, EXT.DAReg>;
let Defs = [CCR] in {
let Constraints = "$src = $dst" in {
class MxNeg_D<MxType TYPE>
: MxInst<(outs TYPE.ROp:$dst), (ins TYPE.ROp:$src),
"neg."#TYPE.Prefix#"\t$dst",
[(set TYPE.VT:$dst, (ineg TYPE.VT:$src))],
MxNEGEncoding<MxBead4Bits<0x4>,
!cast<MxEncSize>("MxEncSize"#TYPE.Size),
MxEncEAd_0, MxExtEmpty>>;
let Uses = [CCR] in {
class MxNegX_D<MxType TYPE>
: MxInst<(outs TYPE.ROp:$dst), (ins TYPE.ROp:$src),
"negx."#TYPE.Prefix#"\t$dst",
[(set TYPE.VT:$dst, (MxSubX 0, TYPE.VT:$src, CCR))],
MxNEGEncoding<MxBead4Bits<0x0>,
!cast<MxEncSize>("MxEncSize"#TYPE.Size),
MxEncEAd_0, MxExtEmpty>>;
}
} // let Constraints
} // let Defs = [CCR]
foreach S = [8, 16, 32] in {
def NEG#S#d : MxNeg_D<!cast<MxType>("MxType"#S#"d")>;
def NEGX#S#d : MxNegX_D<!cast<MxType>("MxType"#S#"d")>;
}
def : Pat<(MxSub 0, i8 :$src), (NEG8d MxDRD8 :$src)>;
def : Pat<(MxSub 0, i16:$src), (NEG16d MxDRD16:$src)>;
def : Pat<(MxSub 0, i32:$src), (NEG32d MxDRD32:$src)>;
//===----------------------------------------------------------------------===//
// no-CCR Patterns
//===----------------------------------------------------------------------===//
/// Basically the reason for this stuff is that add and addc share the same
/// operand types constraints for whatever reasons and I had to define a common
/// MxAdd and MxSub instructions that produce CCR and then pattern-map add and addc
/// to it.
/// NOTE On the other hand I see no reason why I cannot just drop explicit CCR
/// result. Anyway works for now, hopefully I will better understand how this stuff
/// is designed later
foreach N = ["add", "addc"] in {
// add reg, reg
def : Pat<(!cast<SDNode>(N) i8 :$src, i8 :$opd),
(ADD8dd MxDRD8 :$src, MxDRD8 :$opd)>;
def : Pat<(!cast<SDNode>(N) i16:$src, i16:$opd),
(ADD16dd MxDRD16:$src, MxDRD16:$opd)>;
def : Pat<(!cast<SDNode>(N) i32:$src, i32:$opd),
(ADD32rr MxXRD32:$src, MxXRD32:$opd)>;
// add (An), reg
def : Pat<(!cast<SDNode>(N) MxType8.VT:$src, (Mxloadi8 MxType8.JPat:$opd)),
(ADD8dj MxDRD8:$src, MxType8.JOp:$opd)>;
def : Pat<(!cast<SDNode>(N) MxType16.VT:$src, (Mxloadi16 MxType16.JPat:$opd)),
(ADD16dj MxDRD16:$src, MxType16.JOp:$opd)>;
def : Pat<(!cast<SDNode>(N) MxType32.VT:$src, (Mxloadi32 MxType32.JPat:$opd)),
(ADD32rj MxXRD32:$src, MxType32.JOp:$opd)>;
// add (i,An), reg
def : Pat<(!cast<SDNode>(N) MxType8.VT:$src, (Mxloadi8 MxType8.PPat:$opd)),
(ADD8dp MxDRD8:$src, MxType8.POp:$opd)>;
def : Pat<(!cast<SDNode>(N) MxType16.VT:$src, (Mxloadi16 MxType16.PPat:$opd)),
(ADD16dp MxDRD16:$src, MxType16.POp:$opd)>;
def : Pat<(!cast<SDNode>(N) MxType32.VT:$src, (Mxloadi32 MxType32.PPat:$opd)),
(ADD32rp MxXRD32:$src, MxType32.POp:$opd)>;
// add (i,An,Xn), reg
def : Pat<(!cast<SDNode>(N) MxType8.VT:$src, (Mxloadi8 MxType8.FPat:$opd)),
(ADD8df MxDRD8:$src, MxType8.FOp:$opd)>;
def : Pat<(!cast<SDNode>(N) MxType16.VT:$src, (Mxloadi16 MxType16.FPat:$opd)),
(ADD16df MxDRD16:$src, MxType16.FOp:$opd)>;
def : Pat<(!cast<SDNode>(N) MxType32.VT:$src, (Mxloadi32 MxType32.FPat:$opd)),
(ADD32rf MxXRD32:$src, MxType32.FOp:$opd)>;
// add reg, imm
def : Pat<(!cast<SDNode>(N) i8: $src, MximmSExt8:$opd),
(ADD8di MxDRD8 :$src, imm:$opd)>;
def : Pat<(!cast<SDNode>(N) i16:$src, MximmSExt16:$opd),
(ADD16di MxDRD16:$src, imm:$opd)>;
// LEAp is more complex and thus will be selected over normal ADD32ri but it cannot
// be used with data registers, here by adding complexity to a simple ADD32ri insts
// we make sure it will be selected over LEAp
let AddedComplexity = 15 in {
def : Pat<(!cast<SDNode>(N) i32:$src, MximmSExt32:$opd),
(ADD32ri MxXRD32:$src, imm:$opd)>;
} // AddedComplexity = 15
// add imm, (An)
def : Pat<(store (!cast<SDNode>(N) (load MxType8.JPat:$dst), MxType8.IPat:$opd),
MxType8.JPat:$dst),
(ADD8ji MxType8.JOp:$dst, imm:$opd)>;
def : Pat<(store (!cast<SDNode>(N) (load MxType16.JPat:$dst), MxType16.IPat:$opd),
MxType16.JPat:$dst),
(ADD16ji MxType16.JOp:$dst, imm:$opd)>;
def : Pat<(store (!cast<SDNode>(N) (load MxType32.JPat:$dst), MxType32.IPat:$opd),
MxType32.JPat:$dst),
(ADD32ji MxType32.JOp:$dst, imm:$opd)>;
} // foreach add, addc
def : Pat<(adde i8 :$src, i8 :$opd), (ADDX8dd MxDRD8 :$src, MxDRD8 :$opd)>;
def : Pat<(adde i16:$src, i16:$opd), (ADDX16dd MxDRD16:$src, MxDRD16:$opd)>;
def : Pat<(adde i32:$src, i32:$opd), (ADDX32dd MxDRD32:$src, MxDRD32:$opd)>;
foreach N = ["sub", "subc"] in {
// sub reg, reg
def : Pat<(!cast<SDNode>(N) i8 :$src, i8 :$opd),
(SUB8dd MxDRD8 :$src, MxDRD8 :$opd)>;
def : Pat<(!cast<SDNode>(N) i16:$src, i16:$opd),
(SUB16dd MxDRD16:$src, MxDRD16:$opd)>;
def : Pat<(!cast<SDNode>(N) i32:$src, i32:$opd),
(SUB32rr MxXRD32:$src, MxXRD32:$opd)>;
// sub (An), reg
def : Pat<(!cast<SDNode>(N) MxType8.VT:$src, (Mxloadi8 MxType8.JPat:$opd)),
(SUB8dj MxDRD8:$src, MxType8.JOp:$opd)>;
def : Pat<(!cast<SDNode>(N) MxType16.VT:$src, (Mxloadi16 MxType16.JPat:$opd)),
(SUB16dj MxDRD16:$src, MxType16.JOp:$opd)>;
def : Pat<(!cast<SDNode>(N) MxType32.VT:$src, (Mxloadi32 MxType32.JPat:$opd)),
(SUB32rj MxXRD32:$src, MxType32.JOp:$opd)>;
// sub (i,An), reg
def : Pat<(!cast<SDNode>(N) MxType8.VT:$src, (Mxloadi8 MxType8.PPat:$opd)),
(SUB8dp MxDRD8:$src, MxType8.POp:$opd)>;
def : Pat<(!cast<SDNode>(N) MxType16.VT:$src, (Mxloadi16 MxType16.PPat:$opd)),
(SUB16dp MxDRD16:$src, MxType16.POp:$opd)>;
def : Pat<(!cast<SDNode>(N) MxType32.VT:$src, (Mxloadi32 MxType32.PPat:$opd)),
(SUB32rp MxXRD32:$src, MxType32.POp:$opd)>;
// sub (i,An,Xn), reg
def : Pat<(!cast<SDNode>(N) MxType8.VT:$src, (Mxloadi8 MxType8.FPat:$opd)),
(SUB8df MxDRD8:$src, MxType8.FOp:$opd)>;
def : Pat<(!cast<SDNode>(N) MxType16.VT:$src, (Mxloadi16 MxType16.FPat:$opd)),
(SUB16df MxDRD16:$src, MxType16.FOp:$opd)>;
def : Pat<(!cast<SDNode>(N) MxType32.VT:$src, (Mxloadi32 MxType32.FPat:$opd)),
(SUB32rf MxXRD32:$src, MxType32.FOp:$opd)>;
// sub reg, imm
def : Pat<(!cast<SDNode>(N) i8 :$src, MximmSExt8 :$opd),
(SUB8di MxDRD8 :$src, imm:$opd)>;
def : Pat<(!cast<SDNode>(N) i16:$src, MximmSExt16:$opd),
(SUB16di MxDRD16:$src, imm:$opd)>;
def : Pat<(!cast<SDNode>(N) i32:$src, MximmSExt32:$opd),
(SUB32ri MxXRD32:$src, imm:$opd)>;
// sub imm, (An)
def : Pat<(store (!cast<SDNode>(N) (load MxType8.JPat:$dst), MxType8.IPat:$opd),
MxType8.JPat:$dst),
(SUB8ji MxType8.JOp:$dst, imm:$opd)>;
def : Pat<(store (!cast<SDNode>(N) (load MxType16.JPat:$dst), MxType16.IPat:$opd),
MxType16.JPat:$dst),
(SUB16ji MxType16.JOp:$dst, imm:$opd)>;
def : Pat<(store (!cast<SDNode>(N) (load MxType32.JPat:$dst), MxType32.IPat:$opd),
MxType32.JPat:$dst),
(SUB32ji MxType32.JOp:$dst, imm:$opd)>;
} // foreach sub, subx
def : Pat<(sube i8 :$src, i8 :$opd), (SUBX8dd MxDRD8 :$src, MxDRD8 :$opd)>;
def : Pat<(sube i16:$src, i16:$opd), (SUBX16dd MxDRD16:$src, MxDRD16:$opd)>;
def : Pat<(sube i32:$src, i32:$opd), (SUBX32dd MxDRD32:$src, MxDRD32:$opd)>;
multiclass BitwisePat<string INST, SDNode OP> {
// op reg, reg
def : Pat<(OP i8 :$src, i8 :$opd),
(!cast<MxInst>(INST#"8dd") MxDRD8 :$src, MxDRD8 :$opd)>;
def : Pat<(OP i16:$src, i16:$opd),
(!cast<MxInst>(INST#"16dd") MxDRD16:$src, MxDRD16:$opd)>;
def : Pat<(OP i32:$src, i32:$opd),
(!cast<MxInst>(INST#"32dd") MxDRD32:$src, MxDRD32:$opd)>;
// op reg, imm
def : Pat<(OP i8: $src, MximmSExt8 :$opd),
(!cast<MxInst>(INST#"8di") MxDRD8 :$src, imm:$opd)>;
def : Pat<(OP i16:$src, MximmSExt16:$opd),
(!cast<MxInst>(INST#"16di") MxDRD16:$src, imm:$opd)>;
def : Pat<(OP i32:$src, MximmSExt32:$opd),
(!cast<MxInst>(INST#"32di") MxDRD32:$src, imm:$opd)>;
}
defm : BitwisePat<"AND", and>;
defm : BitwisePat<"OR", or>;
defm : BitwisePat<"XOR", xor>;
|