1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
|
//===- MipsRegisterBankInfo.h -----------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
/// \file
/// This file declares the targeting of the RegisterBankInfo class for Mips.
/// \todo This should be generated by TableGen.
//===----------------------------------------------------------------------===//
#ifndef LLVM_LIB_TARGET_MIPS_MIPSREGISTERBANKINFO_H
#define LLVM_LIB_TARGET_MIPS_MIPSREGISTERBANKINFO_H
#include "llvm/CodeGen/GlobalISel/RegisterBankInfo.h"
#define GET_REGBANK_DECLARATIONS
#include "MipsGenRegisterBank.inc"
namespace llvm {
class TargetRegisterInfo;
class MipsGenRegisterBankInfo : public RegisterBankInfo {
#define GET_TARGET_REGBANK_CLASS
#include "MipsGenRegisterBank.inc"
};
/// This class provides the information for the target register banks.
class MipsRegisterBankInfo final : public MipsGenRegisterBankInfo {
public:
MipsRegisterBankInfo(const TargetRegisterInfo &TRI);
const RegisterBank &getRegBankFromRegClass(const TargetRegisterClass &RC,
LLT) const override;
const InstructionMapping &
getInstrMapping(const MachineInstr &MI) const override;
/// Here we have to narrowScalar s64 operands to s32, combine away G_MERGE or
/// G_UNMERGE and erase instructions that became dead in the process. We
/// manually assign bank to def operand of all new instructions that were
/// created in the process since they will not end up in RegBankSelect loop.
void applyMappingImpl(const OperandsMapper &OpdMapper) const override;
/// RegBankSelect determined that s64 operand is better to be split into two
/// s32 operands in gprb. Here we manually set register banks of def operands
/// of newly created instructions since they will not get regbankselected.
void setRegBank(MachineInstr &MI, MachineRegisterInfo &MRI) const;
private:
/// Some instructions are used with both floating point and integer operands.
/// We assign InstType to such instructions as it helps us to avoid cross bank
/// copies. InstType deppends on context.
enum InstType {
/// Temporary type, when visit(..., nullptr) finishes will convert to one of
/// the remaining types: Integer, FloatingPoint or Ambiguous.
NotDetermined,
/// Connected with instruction that interprets 'bags of bits' as integers.
/// Select gprb to avoid cross bank copies.
Integer,
/// Connected with instruction that interprets 'bags of bits' as floating
/// point numbers. Select fprb to avoid cross bank copies.
FloatingPoint,
/// Represents moving 'bags of bits' around. Select same bank for entire
/// chain to avoid cross bank copies. Currently we select fprb for s64 and
/// gprb for s32 Ambiguous operands.
Ambiguous,
/// Only used for s64. Unlike Ambiguous s64, AmbiguousWithMergeOrUnmerge s64
/// is mapped to gprb (legalized using narrow scalar to s32).
AmbiguousWithMergeOrUnmerge
};
bool isAmbiguous_64(InstType InstTy, unsigned OpSize) const {
if (InstTy == InstType::Ambiguous && OpSize == 64)
return true;
return false;
}
bool isAmbiguous_32(InstType InstTy, unsigned OpSize) const {
if (InstTy == InstType::Ambiguous && OpSize == 32)
return true;
return false;
}
bool isAmbiguous_32or64(InstType InstTy, unsigned OpSize) const {
if (InstTy == InstType::Ambiguous && (OpSize == 32 || OpSize == 64))
return true;
return false;
}
bool isAmbiguousWithMergeOrUnmerge_64(InstType InstTy,
unsigned OpSize) const {
if (InstTy == InstType::AmbiguousWithMergeOrUnmerge && OpSize == 64)
return true;
return false;
}
bool isFloatingPoint_32or64(InstType InstTy, unsigned OpSize) const {
if (InstTy == InstType::FloatingPoint && (OpSize == 32 || OpSize == 64))
return true;
return false;
}
bool isFloatingPoint_64(InstType InstTy, unsigned OpSize) const {
if (InstTy == InstType::FloatingPoint && OpSize == 64)
return true;
return false;
}
bool isInteger_32(InstType InstTy, unsigned OpSize) const {
if (InstTy == InstType::Integer && OpSize == 32)
return true;
return false;
}
/// Some generic instructions have operands that can be mapped to either fprb
/// or gprb e.g. for G_LOAD we consider only operand 0 as ambiguous, operand 1
/// is always gprb since it is a pointer.
/// This class provides containers for MI's ambiguous:
/// DefUses : MachineInstrs that use one of MI's ambiguous def operands.
/// UseDefs : MachineInstrs that define MI's ambiguous use operands.
class AmbiguousRegDefUseContainer {
SmallVector<MachineInstr *, 2> DefUses;
SmallVector<MachineInstr *, 2> UseDefs;
void addDefUses(Register Reg, const MachineRegisterInfo &MRI);
void addUseDef(Register Reg, const MachineRegisterInfo &MRI);
/// Skip copy instructions until we get to a non-copy instruction or to a
/// copy with phys register as def. Used during search for DefUses.
/// MI : %5 = COPY %4
/// %6 = COPY %5
/// $v0 = COPY %6 <- we want this one.
MachineInstr *skipCopiesOutgoing(MachineInstr *MI) const;
/// Skip copy instructions until we get to a non-copy instruction or to a
/// copy with phys register as use. Used during search for UseDefs.
/// %1 = COPY $a1 <- we want this one.
/// %2 = COPY %1
/// MI = %3 = COPY %2
MachineInstr *skipCopiesIncoming(MachineInstr *MI) const;
public:
AmbiguousRegDefUseContainer(const MachineInstr *MI);
SmallVectorImpl<MachineInstr *> &getDefUses() { return DefUses; }
SmallVectorImpl<MachineInstr *> &getUseDefs() { return UseDefs; }
};
class TypeInfoForMF {
/// MachineFunction name is used to recognise when MF changes.
std::string MFName;
/// <key, value> : value is vector of all MachineInstrs that are waiting for
/// key to figure out type of some of its ambiguous operands.
DenseMap<const MachineInstr *, SmallVector<const MachineInstr *, 2>>
WaitingQueues;
/// Recorded InstTypes for visited instructions.
DenseMap<const MachineInstr *, InstType> Types;
/// Recursively visit MI's adjacent instructions and find MI's InstType.
bool visit(const MachineInstr *MI, const MachineInstr *WaitingForTypeOfMI,
InstType &AmbiguousTy);
/// Visit MI's adjacent UseDefs or DefUses.
bool visitAdjacentInstrs(const MachineInstr *MI,
SmallVectorImpl<MachineInstr *> &AdjacentInstrs,
bool isDefUse, InstType &AmbiguousTy);
/// Set type for MI, and recursively for all instructions that are
/// waiting for MI's type.
void setTypes(const MachineInstr *MI, InstType ITy);
/// InstType for MI is determined, set it to InstType that corresponds to
/// physical regisiter that is operand number Op in CopyInst.
void setTypesAccordingToPhysicalRegister(const MachineInstr *MI,
const MachineInstr *CopyInst,
unsigned Op);
/// Set default values for MI in order to start visit.
void startVisit(const MachineInstr *MI) {
Types.try_emplace(MI, InstType::NotDetermined);
WaitingQueues.try_emplace(MI);
}
/// Returns true if instruction was already visited. Type might not be
/// determined at this point but will be when visit(..., nullptr) finishes.
bool wasVisited(const MachineInstr *MI) const { return Types.count(MI); };
/// Returns recorded type for instruction.
const InstType &getRecordedTypeForInstr(const MachineInstr *MI) const {
assert(wasVisited(MI) && "Instruction was not visited!");
return Types.find(MI)->getSecond();
};
/// Change recorded type for instruction.
void changeRecordedTypeForInstr(const MachineInstr *MI, InstType InstTy) {
assert(wasVisited(MI) && "Instruction was not visited!");
Types.find(MI)->getSecond() = InstTy;
};
/// Returns WaitingQueue for instruction.
const SmallVectorImpl<const MachineInstr *> &
getWaitingQueueFor(const MachineInstr *MI) const {
assert(WaitingQueues.count(MI) && "Instruction was not visited!");
return WaitingQueues.find(MI)->getSecond();
};
/// Add WaitingForMI to MI's WaitingQueue.
void addToWaitingQueue(const MachineInstr *MI,
const MachineInstr *WaitingForMI) {
assert(WaitingQueues.count(MI) && "Instruction was not visited!");
WaitingQueues.find(MI)->getSecond().push_back(WaitingForMI);
};
public:
InstType determineInstType(const MachineInstr *MI);
void cleanupIfNewFunction(llvm::StringRef FunctionName);
/// MI is about to get destroyed (using narrow scalar). Internal data is
/// saved based on MI's address, clear it since it is no longer valid.
void clearTypeInfoData(const MachineInstr *MI) {
Types.erase(MI);
WaitingQueues.erase(MI);
};
};
};
} // end namespace llvm
#endif
|