1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
|
//===- RISCVMatInt.cpp - Immediate materialisation -------------*- C++ -*--===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "RISCVMatInt.h"
#include "MCTargetDesc/RISCVMCTargetDesc.h"
#include "llvm/ADT/APInt.h"
#include "llvm/Support/MathExtras.h"
using namespace llvm;
static int getInstSeqCost(RISCVMatInt::InstSeq &Res, bool HasRVC) {
if (!HasRVC)
return Res.size();
int Cost = 0;
for (auto Instr : Res) {
bool Compressed;
switch (Instr.Opc) {
default: llvm_unreachable("Unexpected opcode");
case RISCV::SLLI:
case RISCV::SRLI:
Compressed = true;
break;
case RISCV::ADDI:
case RISCV::ADDIW:
case RISCV::LUI:
Compressed = isInt<6>(Instr.Imm);
break;
case RISCV::ADDUW:
Compressed = false;
break;
}
// Two RVC instructions take the same space as one RVI instruction, but
// can take longer to execute than the single RVI instruction. Thus, we
// consider that two RVC instruction are slightly more costly than one
// RVI instruction. For longer sequences of RVC instructions the space
// savings can be worth it, though. The costs below try to model that.
if (!Compressed)
Cost += 100; // Baseline cost of one RVI instruction: 100%.
else
Cost += 70; // 70% cost of baseline.
}
return Cost;
}
// Recursively generate a sequence for materializing an integer.
static void generateInstSeqImpl(int64_t Val,
const FeatureBitset &ActiveFeatures,
RISCVMatInt::InstSeq &Res) {
bool IsRV64 = ActiveFeatures[RISCV::Feature64Bit];
if (isInt<32>(Val)) {
// Depending on the active bits in the immediate Value v, the following
// instruction sequences are emitted:
//
// v == 0 : ADDI
// v[0,12) != 0 && v[12,32) == 0 : ADDI
// v[0,12) == 0 && v[12,32) != 0 : LUI
// v[0,32) != 0 : LUI+ADDI(W)
int64_t Hi20 = ((Val + 0x800) >> 12) & 0xFFFFF;
int64_t Lo12 = SignExtend64<12>(Val);
if (Hi20)
Res.push_back(RISCVMatInt::Inst(RISCV::LUI, Hi20));
if (Lo12 || Hi20 == 0) {
unsigned AddiOpc = (IsRV64 && Hi20) ? RISCV::ADDIW : RISCV::ADDI;
Res.push_back(RISCVMatInt::Inst(AddiOpc, Lo12));
}
return;
}
assert(IsRV64 && "Can't emit >32-bit imm for non-RV64 target");
// In the worst case, for a full 64-bit constant, a sequence of 8 instructions
// (i.e., LUI+ADDIW+SLLI+ADDI+SLLI+ADDI+SLLI+ADDI) has to be emmitted. Note
// that the first two instructions (LUI+ADDIW) can contribute up to 32 bits
// while the following ADDI instructions contribute up to 12 bits each.
//
// On the first glance, implementing this seems to be possible by simply
// emitting the most significant 32 bits (LUI+ADDIW) followed by as many left
// shift (SLLI) and immediate additions (ADDI) as needed. However, due to the
// fact that ADDI performs a sign extended addition, doing it like that would
// only be possible when at most 11 bits of the ADDI instructions are used.
// Using all 12 bits of the ADDI instructions, like done by GAS, actually
// requires that the constant is processed starting with the least significant
// bit.
//
// In the following, constants are processed from LSB to MSB but instruction
// emission is performed from MSB to LSB by recursively calling
// generateInstSeq. In each recursion, first the lowest 12 bits are removed
// from the constant and the optimal shift amount, which can be greater than
// 12 bits if the constant is sparse, is determined. Then, the shifted
// remaining constant is processed recursively and gets emitted as soon as it
// fits into 32 bits. The emission of the shifts and additions is subsequently
// performed when the recursion returns.
int64_t Lo12 = SignExtend64<12>(Val);
int64_t Hi52 = ((uint64_t)Val + 0x800ull) >> 12;
int ShiftAmount = 12 + findFirstSet((uint64_t)Hi52);
Hi52 = SignExtend64(Hi52 >> (ShiftAmount - 12), 64 - ShiftAmount);
// If the remaining bits don't fit in 12 bits, we might be able to reduce the
// shift amount in order to use LUI which will zero the lower 12 bits.
if (ShiftAmount > 12 && !isInt<12>(Hi52) && isInt<32>((uint64_t)Hi52 << 12)) {
// Reduce the shift amount and add zeros to the LSBs so it will match LUI.
ShiftAmount -= 12;
Hi52 = (uint64_t)Hi52 << 12;
}
generateInstSeqImpl(Hi52, ActiveFeatures, Res);
Res.push_back(RISCVMatInt::Inst(RISCV::SLLI, ShiftAmount));
if (Lo12)
Res.push_back(RISCVMatInt::Inst(RISCV::ADDI, Lo12));
}
namespace llvm {
namespace RISCVMatInt {
InstSeq generateInstSeq(int64_t Val, const FeatureBitset &ActiveFeatures) {
RISCVMatInt::InstSeq Res;
generateInstSeqImpl(Val, ActiveFeatures, Res);
// If the constant is positive we might be able to generate a shifted constant
// with no leading zeros and use a final SRLI to restore them.
if (Val > 0 && Res.size() > 2) {
assert(ActiveFeatures[RISCV::Feature64Bit] &&
"Expected RV32 to only need 2 instructions");
unsigned LeadingZeros = countLeadingZeros((uint64_t)Val);
uint64_t ShiftedVal = (uint64_t)Val << LeadingZeros;
// Fill in the bits that will be shifted out with 1s. An example where this
// helps is trailing one masks with 32 or more ones. This will generate
// ADDI -1 and an SRLI.
ShiftedVal |= maskTrailingOnes<uint64_t>(LeadingZeros);
RISCVMatInt::InstSeq TmpSeq;
generateInstSeqImpl(ShiftedVal, ActiveFeatures, TmpSeq);
TmpSeq.push_back(RISCVMatInt::Inst(RISCV::SRLI, LeadingZeros));
// Keep the new sequence if it is an improvement.
if (TmpSeq.size() < Res.size()) {
Res = TmpSeq;
// A 2 instruction sequence is the best we can do.
if (Res.size() <= 2)
return Res;
}
// Some cases can benefit from filling the lower bits with zeros instead.
ShiftedVal &= maskTrailingZeros<uint64_t>(LeadingZeros);
TmpSeq.clear();
generateInstSeqImpl(ShiftedVal, ActiveFeatures, TmpSeq);
TmpSeq.push_back(RISCVMatInt::Inst(RISCV::SRLI, LeadingZeros));
// Keep the new sequence if it is an improvement.
if (TmpSeq.size() < Res.size()) {
Res = TmpSeq;
// A 2 instruction sequence is the best we can do.
if (Res.size() <= 2)
return Res;
}
// If we have exactly 32 leading zeros and Zba, we can try using zext.w at
// the end of the sequence.
if (LeadingZeros == 32 && ActiveFeatures[RISCV::FeatureExtZba]) {
// Try replacing upper bits with 1.
uint64_t LeadingOnesVal = Val | maskLeadingOnes<uint64_t>(LeadingZeros);
TmpSeq.clear();
generateInstSeqImpl(LeadingOnesVal, ActiveFeatures, TmpSeq);
TmpSeq.push_back(RISCVMatInt::Inst(RISCV::ADDUW, 0));
// Keep the new sequence if it is an improvement.
if (TmpSeq.size() < Res.size()) {
Res = TmpSeq;
// A 2 instruction sequence is the best we can do.
if (Res.size() <= 2)
return Res;
}
}
}
return Res;
}
int getIntMatCost(const APInt &Val, unsigned Size,
const FeatureBitset &ActiveFeatures,
bool CompressionCost) {
bool IsRV64 = ActiveFeatures[RISCV::Feature64Bit];
bool HasRVC = CompressionCost && ActiveFeatures[RISCV::FeatureStdExtC];
int PlatRegSize = IsRV64 ? 64 : 32;
// Split the constant into platform register sized chunks, and calculate cost
// of each chunk.
int Cost = 0;
for (unsigned ShiftVal = 0; ShiftVal < Size; ShiftVal += PlatRegSize) {
APInt Chunk = Val.ashr(ShiftVal).sextOrTrunc(PlatRegSize);
InstSeq MatSeq = generateInstSeq(Chunk.getSExtValue(), ActiveFeatures);
Cost += getInstSeqCost(MatSeq, HasRVC);
}
return std::max(1, Cost);
}
} // namespace RISCVMatInt
} // namespace llvm
|