1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670
|
//=- X86ScheduleZnver3.td - X86 Znver3 Scheduling ------------*- tablegen -*-=//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines the machine model for Znver3 to support instruction
// scheduling and other instruction cost heuristics.
// Based on:
// * AMD Software Optimization Guide for AMD Family 19h Processors.
// https://www.amd.com/system/files/TechDocs/56665.zip
// * The microarchitecture of Intel, AMD and VIA CPUs, By Agner Fog
// http://www.agner.org/optimize/microarchitecture.pdf
// * AMD Zen 3 Ryzen Deep Dive Review
// https://www.anandtech.com/show/16214/
//===----------------------------------------------------------------------===//
def Znver3Model : SchedMachineModel {
// AMD SOG 19h, 2.9.6 Dispatch
// The processor may dispatch up to 6 macro ops per cycle
// into the execution engine.
let IssueWidth = 6;
// AMD SOG 19h, 2.10.3
// The retire control unit (RCU) tracks the completion status of all
// outstanding operations (integer, load/store, and floating-point) and is
// the final arbiter for exception processing and recovery.
// The unit can receive up to 6 macro ops dispatched per cycle and track up
// to 256 macro ops in-flight in non-SMT mode or 128 per thread in SMT mode.
let MicroOpBufferSize = 256;
// AMD SOG 19h, 2.9.1 Op Cache
// The op cache is organized as an associative cache with 64 sets and 8 ways.
// At each set-way intersection is an entry containing up to 8 macro ops.
// The maximum capacity of the op cache is 4K ops.
// Agner, 22.5 µop cache
// The size of the µop cache is big enough for holding most critical loops.
// FIXME: PR50584: MachineScheduler/PostRAScheduler have quadradic complexity,
// with large values here the compilation of certain loops
// ends up taking way too long.
// let LoopMicroOpBufferSize = 4096;
let LoopMicroOpBufferSize = 512;
// AMD SOG 19h, 2.6.2 L1 Data Cache
// The L1 data cache has a 4- or 5- cycle integer load-to-use latency.
// AMD SOG 19h, 2.12 L1 Data Cache
// The AGU and LS pipelines are optimized for simple address generation modes.
// <...> and can achieve 4-cycle load-to-use integer load latency.
let LoadLatency = 4;
// AMD SOG 19h, 2.12 L1 Data Cache
// The AGU and LS pipelines are optimized for simple address generation modes.
// <...> and can achieve <...> 7-cycle load-to-use FP load latency.
int VecLoadLatency = 7;
// Latency of a simple store operation.
int StoreLatency = 1;
// FIXME
let HighLatency = 25; // FIXME: any better choice?
// AMD SOG 19h, 2.8 Optimizing Branching
// The branch misprediction penalty is in the range from 11 to 18 cycles,
// <...>. The common case penalty is 13 cycles.
let MispredictPenalty = 13;
let PostRAScheduler = 1; // Enable Post RegAlloc Scheduler pass.
let CompleteModel = 1;
}
let SchedModel = Znver3Model in {
//===----------------------------------------------------------------------===//
// RCU
//===----------------------------------------------------------------------===//
// AMD SOG 19h, 2.10.3 Retire Control Unit
// The unit can receive up to 6 macro ops dispatched per cycle and track up to
// 256 macro ops in-flight in non-SMT mode or 128 per thread in SMT mode. <...>
// The retire unit handles in-order commit of up to eight macro ops per cycle.
def Zn3RCU : RetireControlUnit<Znver3Model.MicroOpBufferSize, 8>;
//===----------------------------------------------------------------------===//
// Units
//===----------------------------------------------------------------------===//
// There are total of three Units, each one with it's own schedulers.
//===----------------------------------------------------------------------===//
// Integer Execution Unit
//
// AMD SOG 19h, 2.4 Superscalar Organization
// The processor uses four decoupled independent integer scheduler queues,
// each one servicing one ALU pipeline and one or two other pipelines
//
// Execution pipes
//===----------------------------------------------------------------------===//
// AMD SOG 19h, 2.10.2 Execution Units
// The processor contains 4 general purpose integer execution pipes.
// Each pipe has an ALU capable of general purpose integer operations.
def Zn3ALU0 : ProcResource<1>;
def Zn3ALU1 : ProcResource<1>;
def Zn3ALU2 : ProcResource<1>;
def Zn3ALU3 : ProcResource<1>;
// AMD SOG 19h, 2.10.2 Execution Units
// There is also a separate branch execution unit.
def Zn3BRU1 : ProcResource<1>;
// AMD SOG 19h, 2.10.2 Execution Units
// There are three Address Generation Units (AGUs) for all load and store
// address generation. There are also 3 store data movement units
// associated with the same schedulers as the AGUs.
def Zn3AGU0 : ProcResource<1>;
def Zn3AGU1 : ProcResource<1>;
def Zn3AGU2 : ProcResource<1>;
//
// Execution Units
//===----------------------------------------------------------------------===//
// AMD SOG 19h, 2.10.2 Execution Units
// ALU0 additionally has divide <...> execution capability.
defvar Zn3Divider = Zn3ALU0;
// AMD SOG 19h, 2.10.2 Execution Units
// ALU0 additionally has <...> branch execution capability.
defvar Zn3BRU0 = Zn3ALU0;
// Integer Multiplication issued on ALU1.
defvar Zn3Multiplier = Zn3ALU1;
// Execution pipeline grouping
//===----------------------------------------------------------------------===//
// General ALU operations
def Zn3ALU0123 : ProcResGroup<[Zn3ALU0, Zn3ALU1, Zn3ALU2, Zn3ALU3]>;
// General AGU operations
def Zn3AGU012 : ProcResGroup<[Zn3AGU0, Zn3AGU1, Zn3AGU2]>;
// Control flow: jumps, calls
def Zn3BRU01 : ProcResGroup<[Zn3BRU0, Zn3BRU1]>;
// Everything that isn't control flow, but still needs to access CC register,
// namely: conditional moves, SETcc.
def Zn3ALU03 : ProcResGroup<[Zn3ALU0, Zn3ALU3]>;
// Zn3ALU1 handles complex bit twiddling: CRC/PDEP/PEXT
// Simple bit twiddling: bit test, shift/rotate, bit extraction
def Zn3ALU12 : ProcResGroup<[Zn3ALU1, Zn3ALU2]>;
//
// Scheduling
//===----------------------------------------------------------------------===//
// AMD SOG 19h, 2.10.3 Retire Control Unit
// The integer physical register file (PRF) consists of 192 registers.
def Zn3IntegerPRF : RegisterFile<192, [GR64, CCR], [1, 1], [1, 0],
6, // Max moves that can be eliminated per cycle.
0>; // Restrict move elimination to zero regs.
// anandtech, The integer scheduler has a 4*24 entry macro op capacity.
// AMD SOG 19h, 2.10.1 Schedulers
// The schedulers can receive up to six macro ops per cycle, with a limit of
// two per scheduler. Each scheduler can issue one micro op per cycle into
// each of its associated pipelines
// FIXME: these are 4 separate schedulers, not a single big one.
def Zn3Int : ProcResGroup<[Zn3ALU0, Zn3AGU0, Zn3BRU0, // scheduler 0
Zn3ALU1, Zn3AGU1, // scheduler 1
Zn3ALU2, Zn3AGU2, // scheduler 2
Zn3ALU3, Zn3BRU1 // scheduler 3
]> {
let BufferSize = !mul(4, 24);
}
//===----------------------------------------------------------------------===//
// Floating-Point Unit
//
// AMD SOG 19h, 2.4 Superscalar Organization
// The processor uses <...> two decoupled independent floating point schedulers
// each servicing two FP pipelines and one store or FP-to-integer pipeline.
//
// Execution pipes
//===----------------------------------------------------------------------===//
// AMD SOG 19h, 2.10.1 Schedulers
// <...>, and six FPU pipes.
// Agner, 22.10 Floating point execution pipes
// There are six floating point/vector execution pipes,
def Zn3FPP0 : ProcResource<1>;
def Zn3FPP1 : ProcResource<1>;
def Zn3FPP2 : ProcResource<1>;
def Zn3FPP3 : ProcResource<1>;
def Zn3FPP45 : ProcResource<2>;
//
// Execution Units
//===----------------------------------------------------------------------===//
// AMD SOG 19h, 2.11.1 Floating Point Execution Resources
// (v)FMUL*, (v)FMA*, Floating Point Compares, Blendv(DQ)
defvar Zn3FPFMul0 = Zn3FPP0;
defvar Zn3FPFMul1 = Zn3FPP1;
// (v)FADD*
defvar Zn3FPFAdd0 = Zn3FPP2;
defvar Zn3FPFAdd1 = Zn3FPP3;
// All convert operations except pack/unpack
defvar Zn3FPFCvt0 = Zn3FPP2;
defvar Zn3FPFCvt1 = Zn3FPP3;
// All Divide and Square Root except Reciprocal Approximation
// AMD SOG 19h, 2.11.1 Floating Point Execution Resources
// FDIV unit can support 2 simultaneous operations in flight
// even though it occupies a single pipe.
// FIXME: BufferSize=2 ?
defvar Zn3FPFDiv = Zn3FPP1;
// Moves and Logical operations on Floating Point Data Types
defvar Zn3FPFMisc0 = Zn3FPP0;
defvar Zn3FPFMisc1 = Zn3FPP1;
defvar Zn3FPFMisc2 = Zn3FPP2;
defvar Zn3FPFMisc3 = Zn3FPP3;
// Integer Adds, Subtracts, and Compares
// Some complex VADD operations are not available in all pipes.
defvar Zn3FPVAdd0 = Zn3FPP0;
defvar Zn3FPVAdd1 = Zn3FPP1;
defvar Zn3FPVAdd2 = Zn3FPP2;
defvar Zn3FPVAdd3 = Zn3FPP3;
// Integer Multiplies, SAD, Blendvb
defvar Zn3FPVMul0 = Zn3FPP0;
defvar Zn3FPVMul1 = Zn3FPP3;
// Data Shuffles, Packs, Unpacks, Permute
// Some complex shuffle operations are only available in pipe1.
defvar Zn3FPVShuf = Zn3FPP1;
defvar Zn3FPVShufAux = Zn3FPP2;
// Bit Shift Left/Right operations
defvar Zn3FPVShift0 = Zn3FPP1;
defvar Zn3FPVShift1 = Zn3FPP2;
// Moves and Logical operations on Packed Integer Data Types
defvar Zn3FPVMisc0 = Zn3FPP0;
defvar Zn3FPVMisc1 = Zn3FPP1;
defvar Zn3FPVMisc2 = Zn3FPP2;
defvar Zn3FPVMisc3 = Zn3FPP3;
// *AES*
defvar Zn3FPAES0 = Zn3FPP0;
defvar Zn3FPAES1 = Zn3FPP1;
// *CLM*
defvar Zn3FPCLM0 = Zn3FPP0;
defvar Zn3FPCLM1 = Zn3FPP1;
// Execution pipeline grouping
//===----------------------------------------------------------------------===//
// AMD SOG 19h, 2.11 Floating-Point Unit
// Stores and floating point to general purpose register transfer
// have 2 dedicated pipelines (pipe 5 and 6).
def Zn3FPU0123 : ProcResGroup<[Zn3FPP0, Zn3FPP1, Zn3FPP2, Zn3FPP3]>;
// (v)FMUL*, (v)FMA*, Floating Point Compares, Blendv(DQ)
def Zn3FPFMul01 : ProcResGroup<[Zn3FPFMul0, Zn3FPFMul1]>;
// (v)FADD*
// Some complex VADD operations are not available in all pipes.
def Zn3FPFAdd01 : ProcResGroup<[Zn3FPFAdd0, Zn3FPFAdd1]>;
// All convert operations except pack/unpack
def Zn3FPFCvt01 : ProcResGroup<[Zn3FPFCvt0, Zn3FPFCvt1]>;
// All Divide and Square Root except Reciprocal Approximation
// def Zn3FPFDiv : ProcResGroup<[Zn3FPFDiv]>;
// Moves and Logical operations on Floating Point Data Types
def Zn3FPFMisc0123 : ProcResGroup<[Zn3FPFMisc0, Zn3FPFMisc1, Zn3FPFMisc2, Zn3FPFMisc3]>;
def Zn3FPFMisc12 : ProcResGroup<[Zn3FPFMisc1, Zn3FPFMisc2]>;
// Loads, Stores and Move to General Register (EX) Operations
// AMD SOG 19h, 2.11 Floating-Point Unit
// Stores and floating point to general purpose register transfer
// have 2 dedicated pipelines (pipe 5 and 6).
defvar Zn3FPLd01 = Zn3FPP45;
// AMD SOG 19h, 2.11 Floating-Point Unit
// Note that FP stores are supported on two pipelines,
// but throughput is limited to one per cycle.
let Super = Zn3FPP45 in
def Zn3FPSt : ProcResource<1>;
// Integer Adds, Subtracts, and Compares
// Some complex VADD operations are not available in all pipes.
def Zn3FPVAdd0123 : ProcResGroup<[Zn3FPVAdd0, Zn3FPVAdd1, Zn3FPVAdd2, Zn3FPVAdd3]>;
def Zn3FPVAdd01: ProcResGroup<[Zn3FPVAdd0, Zn3FPVAdd1]>;
def Zn3FPVAdd12: ProcResGroup<[Zn3FPVAdd1, Zn3FPVAdd2]>;
// Integer Multiplies, SAD, Blendvb
def Zn3FPVMul01 : ProcResGroup<[Zn3FPVMul0, Zn3FPVMul1]>;
// Data Shuffles, Packs, Unpacks, Permute
// Some complex shuffle operations are only available in pipe1.
def Zn3FPVShuf01 : ProcResGroup<[Zn3FPVShuf, Zn3FPVShufAux]>;
// Bit Shift Left/Right operations
def Zn3FPVShift01 : ProcResGroup<[Zn3FPVShift0, Zn3FPVShift1]>;
// Moves and Logical operations on Packed Integer Data Types
def Zn3FPVMisc0123 : ProcResGroup<[Zn3FPVMisc0, Zn3FPVMisc1, Zn3FPVMisc2, Zn3FPVMisc3]>;
// *AES*
def Zn3FPAES01 : ProcResGroup<[Zn3FPAES0, Zn3FPAES1]>;
// *CLM*
def Zn3FPCLM01 : ProcResGroup<[Zn3FPCLM0, Zn3FPCLM1]>;
//
// Scheduling
//===----------------------------------------------------------------------===//
// Agner, 21.8 Register renaming and out-of-order schedulers
// The floating point register file has 160 vector registers
// of 128 bits each in Zen 1 and 256 bits each in Zen 2.
// anandtech also confirms this.
def Zn3FpPRF : RegisterFile<160, [VR64, VR128, VR256], [1, 1, 1], [0, 1, 1],
6, // Max moves that can be eliminated per cycle.
0>; // Restrict move elimination to zero regs.
// AMD SOG 19h, 2.11 Floating-Point Unit
// The floating-point scheduler has a 2*32 entry macro op capacity.
// AMD SOG 19h, 2.11 Floating-Point Unit
// <...> the scheduler can issue 1 micro op per cycle for each pipe.
// FIXME: those are two separate schedulers, not a single big one.
def Zn3FP : ProcResGroup<[Zn3FPP0, Zn3FPP2, /*Zn3FPP4,*/ // scheduler 0
Zn3FPP1, Zn3FPP3, Zn3FPP45 /*Zn3FPP5*/ // scheduler 1
]> {
let BufferSize = !mul(2, 32);
}
// AMD SOG 19h, 2.11 Floating-Point Unit
// Macro ops can be dispatched to the 64 entry Non Scheduling Queue (NSQ)
// even if floating-point scheduler is full.
// FIXME: how to model this properly?
//===----------------------------------------------------------------------===//
// Load-Store Unit
//
// AMD SOG 19h, 2.12 Load-Store Unit
// The LS unit contains three largely independent pipe-lines
// enabling the execution of three 256-bit memory operations per cycle.
def Zn3LSU : ProcResource<3>;
// AMD SOG 19h, 2.12 Load-Store Unit
// All three memory operations can be loads.
let Super = Zn3LSU in
def Zn3Load : ProcResource<3> {
// AMD SOG 19h, 2.12 Load-Store Unit
// The LS unit can process up to 72 out-of-order loads.
let BufferSize = 72;
}
def Zn3LoadQueue : LoadQueue<Zn3Load>;
// AMD SOG 19h, 2.12 Load-Store Unit
// A maximum of two of the memory operations can be stores.
let Super = Zn3LSU in
def Zn3Store : ProcResource<2> {
// AMD SOG 19h, 2.12 Load-Store Unit
// The LS unit utilizes a 64-entry store queue (STQ).
let BufferSize = 64;
}
def Zn3StoreQueue : StoreQueue<Zn3Store>;
//===----------------------------------------------------------------------===//
// Basic helper classes.
//===----------------------------------------------------------------------===//
// Many SchedWrites are defined in pairs with and without a folded load.
// Instructions with folded loads are usually micro-fused, so they only appear
// as two micro-ops when dispatched by the schedulers.
// This multiclass defines the resource usage for variants with and without
// folded loads.
multiclass __zn3WriteRes<SchedWrite SchedRW, list<ProcResourceKind> ExePorts,
int Lat = 1, list<int> Res = [], int UOps = 1> {
def : WriteRes<SchedRW, ExePorts> {
let Latency = Lat;
let ResourceCycles = Res;
let NumMicroOps = UOps;
}
}
multiclass __zn3WriteResPair<X86FoldableSchedWrite SchedRW,
list<ProcResourceKind> ExePorts, int Lat,
list<int> Res, int UOps, int LoadLat, int LoadUOps,
ProcResourceKind AGU, int LoadRes> {
defm : __zn3WriteRes<SchedRW, ExePorts, Lat, Res, UOps>;
defm : __zn3WriteRes<SchedRW.Folded,
!listconcat([AGU, Zn3Load], ExePorts),
!add(Lat, LoadLat),
!if(!and(!empty(Res), !eq(LoadRes, 1)),
[],
!listconcat([1, LoadRes],
!if(!empty(Res),
!listsplat(1, !size(ExePorts)),
Res))),
!add(UOps, LoadUOps)>;
}
// For classes without folded loads.
multiclass Zn3WriteResInt<SchedWrite SchedRW,
list<ProcResourceKind> ExePorts, int Lat = 1,
list<int> Res = [], int UOps = 1> {
defm : __zn3WriteRes<SchedRW, ExePorts, Lat, Res, UOps>;
}
multiclass Zn3WriteResXMM<SchedWrite SchedRW,
list<ProcResourceKind> ExePorts, int Lat = 1,
list<int> Res = [], int UOps = 1> {
defm : __zn3WriteRes<SchedRW, ExePorts, Lat, Res, UOps>;
}
multiclass Zn3WriteResYMM<SchedWrite SchedRW,
list<ProcResourceKind> ExePorts, int Lat = 1,
list<int> Res = [], int UOps = 1> {
defm : __zn3WriteRes<SchedRW, ExePorts, Lat, Res, UOps>;
}
// For classes with folded loads.
multiclass Zn3WriteResIntPair<X86FoldableSchedWrite SchedRW,
list<ProcResourceKind> ExePorts, int Lat = 1,
list<int> Res = [], int UOps = 1,
int LoadUOps = 0, int LoadRes = 1> {
defm : __zn3WriteResPair<SchedRW, ExePorts, Lat, Res, UOps,
Znver3Model.LoadLatency,
LoadUOps, Zn3AGU012, LoadRes>;
}
multiclass Zn3WriteResXMMPair<X86FoldableSchedWrite SchedRW,
list<ProcResourceKind> ExePorts, int Lat = 1,
list<int> Res = [], int UOps = 1,
int LoadUOps = 0, int LoadRes = 1> {
defm : __zn3WriteResPair<SchedRW, ExePorts, Lat, Res, UOps,
Znver3Model.VecLoadLatency,
LoadUOps, Zn3FPLd01, LoadRes>;
}
multiclass Zn3WriteResYMMPair<X86FoldableSchedWrite SchedRW,
list<ProcResourceKind> ExePorts, int Lat = 1,
list<int> Res = [], int UOps = 1,
int LoadUOps = 0, int LoadRes = 1> {
defm : __zn3WriteResPair<SchedRW, ExePorts, Lat, Res, UOps,
Znver3Model.VecLoadLatency,
LoadUOps, Zn3FPLd01, LoadRes>;
}
//===----------------------------------------------------------------------===//
// Here be dragons.
//===----------------------------------------------------------------------===//
def : ReadAdvance<ReadAfterLd, Znver3Model.LoadLatency>;
def : ReadAdvance<ReadAfterVecLd, Znver3Model.VecLoadLatency>;
def : ReadAdvance<ReadAfterVecXLd, Znver3Model.VecLoadLatency>;
def : ReadAdvance<ReadAfterVecYLd, Znver3Model.VecLoadLatency>;
// AMD SOG 19h, 2.11 Floating-Point Unit
// There is 1 cycle of added latency for a result to cross
// from F to I or I to F domain.
def : ReadAdvance<ReadInt2Fpu, -1>;
// Instructions with both a load and a store folded are modeled as a folded
// load + WriteRMW.
defm : Zn3WriteResInt<WriteRMW, [Zn3AGU012, Zn3Store], Znver3Model.StoreLatency, [1, 1], 0>;
// Loads, stores, and moves, not folded with other operations.
defm : Zn3WriteResInt<WriteLoad, [Zn3AGU012, Zn3Load], !add(Znver3Model.LoadLatency, 1), [1, 1], 1>;
// Model the effect of clobbering the read-write mask operand of the GATHER operation.
// Does not cost anything by itself, only has latency, matching that of the WriteLoad,
defm : Zn3WriteResInt<WriteVecMaskedGatherWriteback, [], !add(Znver3Model.LoadLatency, 1), [], 0>;
def Zn3WriteMOVSlow : SchedWriteRes<[Zn3AGU012, Zn3Load]> {
let Latency = !add(Znver3Model.LoadLatency, 1);
let ResourceCycles = [3, 1];
let NumMicroOps = 1;
}
def : InstRW<[Zn3WriteMOVSlow], (instrs MOV8rm, MOV8rm_NOREX, MOV16rm, MOVSX16rm16, MOVSX16rm32, MOVZX16rm16, MOVSX16rm8, MOVZX16rm8)>;
defm : Zn3WriteResInt<WriteStore, [Zn3AGU012, Zn3Store], Znver3Model.StoreLatency, [1, 2], 1>;
defm : Zn3WriteResInt<WriteStoreNT, [Zn3AGU012, Zn3Store], Znver3Model.StoreLatency, [1, 2], 1>;
defm : Zn3WriteResInt<WriteMove, [Zn3ALU0123], 1, [4], 1>;
// Treat misc copies as a move.
def : InstRW<[WriteMove], (instrs COPY)>;
def Zn3WriteMOVBE16rm : SchedWriteRes<[Zn3AGU012, Zn3Load, Zn3ALU0123]> {
let Latency = Znver3Model.LoadLatency;
let ResourceCycles = [1, 1, 4];
let NumMicroOps = 1;
}
def : InstRW<[Zn3WriteMOVBE16rm], (instrs MOVBE16rm)>;
def Zn3WriteMOVBEmr : SchedWriteRes<[Zn3ALU0123, Zn3AGU012, Zn3Store]> {
let Latency = Znver3Model.StoreLatency;
let ResourceCycles = [4, 1, 1];
let NumMicroOps = 2;
}
def : InstRW<[Zn3WriteMOVBEmr], (instrs MOVBE16mr, MOVBE32mr, MOVBE64mr)>;
// Arithmetic.
defm : Zn3WriteResIntPair<WriteALU, [Zn3ALU0123], 1, [1], 1>; // Simple integer ALU op.
def Zn3WriteALUSlow : SchedWriteRes<[Zn3ALU0123]> {
let Latency = 1;
let ResourceCycles = [4];
let NumMicroOps = 1;
}
def : InstRW<[Zn3WriteALUSlow], (instrs ADD8i8, ADD16i16, ADD32i32, ADD64i32,
AND8i8, AND16i16, AND32i32, AND64i32,
OR8i8, OR16i16, OR32i32, OR64i32,
SUB8i8, SUB16i16, SUB32i32, SUB64i32,
XOR8i8, XOR16i16, XOR32i32, XOR64i32)>;
def Zn3WriteMoveExtend : SchedWriteRes<[Zn3ALU0123]> {
let Latency = 1;
let ResourceCycles = [4];
let NumMicroOps = 1;
}
def : InstRW<[Zn3WriteMoveExtend], (instrs MOVSX16rr16, MOVSX16rr32, MOVZX16rr16, MOVSX16rr8, MOVZX16rr8)>;
def Zn3WriteMaterialize32bitImm: SchedWriteRes<[Zn3ALU0123]> {
let Latency = 1;
let ResourceCycles = [2];
let NumMicroOps = 1;
}
def : InstRW<[Zn3WriteMaterialize32bitImm], (instrs MOV32ri, MOV32ri_alt, MOV64ri32)>;
def Zn3WritePDEP_PEXT : SchedWriteRes<[Zn3ALU1]> {
let Latency = 3;
let ResourceCycles = [1];
let NumMicroOps = 1;
}
def : InstRW<[Zn3WritePDEP_PEXT], (instrs PDEP32rr, PDEP64rr,
PEXT32rr, PEXT64rr)>;
defm : Zn3WriteResIntPair<WriteADC, [Zn3ALU0123], 1, [4], 1>; // Integer ALU + flags op.
def Zn3WriteADC8mr_SBB8mr : SchedWriteRes<[Zn3AGU012, Zn3Load, Zn3ALU0123, Zn3Store]> {
let Latency = 1;
let ResourceCycles = [1, 1, 7, 1];
let NumMicroOps = 1;
}
def : InstRW<[Zn3WriteADC8mr_SBB8mr], (instrs ADC8mr, SBB8mr)>;
// This is for simple LEAs with one or two input operands.
defm : Zn3WriteResInt<WriteLEA, [Zn3AGU012], 1, [1], 1>; // LEA instructions can't fold loads.
// This write is used for slow LEA instructions.
def Zn3Write3OpsLEA : SchedWriteRes<[Zn3ALU0123]> {
let Latency = 2;
let ResourceCycles = [1];
let NumMicroOps = 2;
}
// On Znver3, a slow LEA is either a 3Ops LEA (base, index, offset),
// or an LEA with a `Scale` value different than 1.
def Zn3SlowLEAPredicate : MCSchedPredicate<
CheckAny<[
// A 3-operand LEA (base, index, offset).
IsThreeOperandsLEAFn,
// An LEA with a "Scale" different than 1.
CheckAll<[
CheckIsImmOperand<2>,
CheckNot<CheckImmOperand<2, 1>>
]>
]>
>;
def Zn3WriteLEA : SchedWriteVariant<[
SchedVar<Zn3SlowLEAPredicate, [Zn3Write3OpsLEA]>,
SchedVar<NoSchedPred, [WriteLEA]>
]>;
def : InstRW<[Zn3WriteLEA], (instrs LEA32r, LEA64r, LEA64_32r)>;
def Zn3SlowLEA16r : SchedWriteRes<[Zn3ALU0123]> {
let Latency = 2; // FIXME: not from llvm-exegesis
let ResourceCycles = [4];
let NumMicroOps = 2;
}
def : InstRW<[Zn3SlowLEA16r], (instrs LEA16r)>;
// Integer multiplication
defm : Zn3WriteResIntPair<WriteIMul8, [Zn3Multiplier], 3, [3], 1>; // Integer 8-bit multiplication.
defm : Zn3WriteResIntPair<WriteIMul16, [Zn3Multiplier], 3, [3], 3, /*LoadUOps=*/1>; // Integer 16-bit multiplication.
defm : Zn3WriteResIntPair<WriteIMul16Imm, [Zn3Multiplier], 4, [4], 2>; // Integer 16-bit multiplication by immediate.
defm : Zn3WriteResIntPair<WriteIMul16Reg, [Zn3Multiplier], 3, [1], 1>; // Integer 16-bit multiplication by register.
defm : Zn3WriteResIntPair<WriteIMul32, [Zn3Multiplier], 3, [3], 2>; // Integer 32-bit multiplication.
def Zn3MULX32rr : SchedWriteRes<[Zn3Multiplier]> {
let Latency = 4;
let ResourceCycles = [1];
let NumMicroOps = 2;
}
def : InstRW<[Zn3MULX32rr, WriteIMulH], (instrs MULX32rr)>;
def Zn3MULX32rm : SchedWriteRes<[Zn3AGU012, Zn3Load, Zn3Multiplier]> {
let Latency = !add(Znver3Model.LoadLatency, Zn3MULX32rr.Latency);
let ResourceCycles = [1, 1, 2];
let NumMicroOps = Zn3MULX32rr.NumMicroOps;
}
def : InstRW<[Zn3MULX32rm, WriteIMulH], (instrs MULX32rm)>;
defm : Zn3WriteResIntPair<WriteIMul32Imm, [Zn3Multiplier], 3, [1], 1>; // Integer 32-bit multiplication by immediate.
defm : Zn3WriteResIntPair<WriteIMul32Reg, [Zn3Multiplier], 3, [1], 1>; // Integer 32-bit multiplication by register.
defm : Zn3WriteResIntPair<WriteIMul64, [Zn3Multiplier], 3, [3], 2>; // Integer 64-bit multiplication.
def Zn3MULX64rr : SchedWriteRes<[Zn3Multiplier]> {
let Latency = 4;
let ResourceCycles = [1];
let NumMicroOps = 2;
}
def : InstRW<[Zn3MULX64rr, WriteIMulH], (instrs MULX64rr)>;
def Zn3MULX64rm : SchedWriteRes<[Zn3AGU012, Zn3Load, Zn3Multiplier]> {
let Latency = !add(Znver3Model.LoadLatency, Zn3MULX64rr.Latency);
let ResourceCycles = [1, 1, 2];
let NumMicroOps = Zn3MULX64rr.NumMicroOps;
}
def : InstRW<[Zn3MULX64rm, WriteIMulH], (instrs MULX64rm)>;
defm : Zn3WriteResIntPair<WriteIMul64Imm, [Zn3Multiplier], 3, [1], 1>; // Integer 64-bit multiplication by immediate.
defm : Zn3WriteResIntPair<WriteIMul64Reg, [Zn3Multiplier], 3, [1], 1>; // Integer 64-bit multiplication by register.
defm : Zn3WriteResInt<WriteIMulH, [], 4, [], 0>; // Integer multiplication, high part.
defm : Zn3WriteResInt<WriteBSWAP32, [Zn3ALU0123], 1, [1], 1>; // Byte Order (Endianness) 32-bit Swap.
defm : Zn3WriteResInt<WriteBSWAP64, [Zn3ALU0123], 1, [1], 1>; // Byte Order (Endianness) 64-bit Swap.
defm : Zn3WriteResIntPair<WriteCMPXCHG, [Zn3ALU0123], 3, [12], 5>; // Compare and set, compare and swap.
def Zn3WriteCMPXCHG8rr : SchedWriteRes<[Zn3ALU0123]> {
let Latency = 3;
let ResourceCycles = [12];
let NumMicroOps = 3;
}
def : InstRW<[Zn3WriteCMPXCHG8rr], (instrs CMPXCHG8rr)>;
defm : Zn3WriteResInt<WriteCMPXCHGRMW, [Zn3ALU0123], 3, [12], 6>; // Compare and set, compare and swap.
def Zn3WriteCMPXCHG8rm_LCMPXCHG8 : SchedWriteRes<[Zn3AGU012, Zn3Load, Zn3ALU0123]> {
let Latency = !add(Znver3Model.LoadLatency, Zn3WriteCMPXCHG8rr.Latency);
let ResourceCycles = [1, 1, 12];
let NumMicroOps = !add(Zn3WriteCMPXCHG8rr.NumMicroOps, 2);
}
def : InstRW<[Zn3WriteCMPXCHG8rm_LCMPXCHG8], (instrs CMPXCHG8rm, LCMPXCHG8)>;
def Zn3WriteCMPXCHG8B : SchedWriteRes<[Zn3ALU0123]> {
let Latency = 3; // FIXME: not from llvm-exegesis
let ResourceCycles = [24];
let NumMicroOps = 19;
}
def : InstRW<[Zn3WriteCMPXCHG8B], (instrs CMPXCHG8B)>;
def Zn3WriteCMPXCHG16B_LCMPXCHG16B : SchedWriteRes<[Zn3ALU0123]> {
let Latency = 4; // FIXME: not from llvm-exegesis
let ResourceCycles = [59];
let NumMicroOps = 28;
}
def : InstRW<[Zn3WriteCMPXCHG16B_LCMPXCHG16B], (instrs CMPXCHG16B, LCMPXCHG16B)>;
def Zn3WriteWriteXCHGUnrenameable : SchedWriteRes<[Zn3ALU0123]> {
let Latency = 1;
let ResourceCycles = [2];
let NumMicroOps = 2;
}
def : InstRW<[Zn3WriteWriteXCHGUnrenameable], (instrs XCHG8rr, XCHG16rr, XCHG16ar)>;
def Zn3WriteXCHG8rm_XCHG16rm : SchedWriteRes<[Zn3AGU012, Zn3Load, Zn3ALU0123]> {
let Latency = !add(Znver3Model.LoadLatency, 3); // FIXME: not from llvm-exegesis
let ResourceCycles = [1, 1, 2];
let NumMicroOps = 5;
}
def : InstRW<[Zn3WriteXCHG8rm_XCHG16rm], (instrs XCHG8rm, XCHG16rm)>;
def Zn3WriteXCHG32rm_XCHG64rm : SchedWriteRes<[Zn3AGU012, Zn3Load, Zn3ALU0123]> {
let Latency = !add(Znver3Model.LoadLatency, 2); // FIXME: not from llvm-exegesis
let ResourceCycles = [1, 1, 2];
let NumMicroOps = 2;
}
def : InstRW<[Zn3WriteXCHG32rm_XCHG64rm], (instrs XCHG32rm, XCHG64rm)>;
// Integer division.
// FIXME: uops for 8-bit division measures as 2. for others it's a guess.
// FIXME: latency for 8-bit division measures as 10. for others it's a guess.
defm : Zn3WriteResIntPair<WriteDiv8, [Zn3Divider], 10, [10], 2>;
defm : Zn3WriteResIntPair<WriteDiv16, [Zn3Divider], 11, [11], 2>;
defm : Zn3WriteResIntPair<WriteDiv32, [Zn3Divider], 13, [13], 2>;
defm : Zn3WriteResIntPair<WriteDiv64, [Zn3Divider], 17, [17], 2>;
defm : Zn3WriteResIntPair<WriteIDiv8, [Zn3Divider], 10, [10], 2>;
defm : Zn3WriteResIntPair<WriteIDiv16, [Zn3Divider], 11, [11], 2>;
defm : Zn3WriteResIntPair<WriteIDiv32, [Zn3Divider], 13, [13], 2>;
defm : Zn3WriteResIntPair<WriteIDiv64, [Zn3Divider], 17, [17], 2>;
defm : Zn3WriteResIntPair<WriteBSF, [Zn3ALU1], 3, [3], 6, /*LoadUOps=*/2>; // Bit scan forward.
defm : Zn3WriteResIntPair<WriteBSR, [Zn3ALU1], 4, [4], 6, /*LoadUOps=*/2>; // Bit scan reverse.
defm : Zn3WriteResIntPair<WritePOPCNT, [Zn3ALU0123], 1, [1], 1>; // Bit population count.
def Zn3WritePOPCNT16rr : SchedWriteRes<[Zn3ALU0123]> {
let Latency = 1;
let ResourceCycles = [4];
let NumMicroOps = 1;
}
def : InstRW<[Zn3WritePOPCNT16rr], (instrs POPCNT16rr)>;
defm : Zn3WriteResIntPair<WriteLZCNT, [Zn3ALU0123], 1, [1], 1>; // Leading zero count.
def Zn3WriteLZCNT16rr : SchedWriteRes<[Zn3ALU0123]> {
let Latency = 1;
let ResourceCycles = [4];
let NumMicroOps = 1;
}
def : InstRW<[Zn3WriteLZCNT16rr], (instrs LZCNT16rr)>;
defm : Zn3WriteResIntPair<WriteTZCNT, [Zn3ALU12], 2, [1], 2>; // Trailing zero count.
def Zn3WriteTZCNT16rr : SchedWriteRes<[Zn3ALU0123]> {
let Latency = 2;
let ResourceCycles = [4];
let NumMicroOps = 2;
}
def : InstRW<[Zn3WriteTZCNT16rr], (instrs TZCNT16rr)>;
defm : Zn3WriteResIntPair<WriteCMOV, [Zn3ALU03], 1, [1], 1>; // Conditional move.
defm : Zn3WriteResInt<WriteFCMOV, [Zn3ALU0123], 7, [28], 7>; // FIXME: not from llvm-exegesis // X87 conditional move.
defm : Zn3WriteResInt<WriteSETCC, [Zn3ALU03], 1, [2], 1>; // Set register based on condition code.
defm : Zn3WriteResInt<WriteSETCCStore, [Zn3ALU03, Zn3AGU012, Zn3Store], 2, [2, 1, 1], 2>; // FIXME: latency not from llvm-exegesis
defm : Zn3WriteResInt<WriteLAHFSAHF, [Zn3ALU3], 1, [1], 1>; // Load/Store flags in AH.
defm : Zn3WriteResInt<WriteBitTest, [Zn3ALU12], 1, [1], 1>; // Bit Test
defm : Zn3WriteResInt<WriteBitTestImmLd, [Zn3AGU012, Zn3Load, Zn3ALU12], !add(Znver3Model.LoadLatency, 1), [1, 1, 1], 2>;
defm : Zn3WriteResInt<WriteBitTestRegLd, [Zn3AGU012, Zn3Load, Zn3ALU12], !add(Znver3Model.LoadLatency, 1), [1, 1, 1], 7>;
defm : Zn3WriteResInt<WriteBitTestSet, [Zn3ALU12], 2, [2], 2>; // Bit Test + Set
defm : Zn3WriteResInt<WriteBitTestSetImmLd, [Zn3AGU012, Zn3Load, Zn3ALU12], !add(Znver3Model.LoadLatency, 2), [1, 1, 1], 4>;
defm : Zn3WriteResInt<WriteBitTestSetRegLd, [Zn3AGU012, Zn3Load, Zn3ALU12], !add(Znver3Model.LoadLatency, 2), [1, 1, 1], 9>;
// Integer shifts and rotates.
defm : Zn3WriteResIntPair<WriteShift, [Zn3ALU12], 1, [1], 1, /*LoadUOps=*/1>;
defm : Zn3WriteResIntPair<WriteShiftCL, [Zn3ALU12], 1, [1], 1, /*LoadUOps=*/1>;
defm : Zn3WriteResIntPair<WriteRotate, [Zn3ALU12], 1, [1], 1, /*LoadUOps=*/1>;
def Zn3WriteRotateR1 : SchedWriteRes<[Zn3ALU12]> {
let Latency = 1;
let ResourceCycles = [2];
let NumMicroOps = 1;
}
def : InstRW<[Zn3WriteRotateR1], (instrs RCL8r1, RCL16r1, RCL32r1, RCL64r1,
RCR8r1, RCR16r1, RCR32r1, RCR64r1)>;
def Zn3WriteRotateM1 : SchedWriteRes<[Zn3AGU012, Zn3Load, Zn3ALU12]> {
let Latency = !add(Znver3Model.LoadLatency, Zn3WriteRotateR1.Latency);
let ResourceCycles = [1, 1, 2];
let NumMicroOps = !add(Zn3WriteRotateR1.NumMicroOps, 1);
}
def : InstRW<[Zn3WriteRotateM1], (instrs RCL8m1, RCL16m1, RCL32m1, RCL64m1,
RCR8m1, RCR16m1, RCR32m1, RCR64m1)>;
def Zn3WriteRotateRightRI : SchedWriteRes<[Zn3ALU12]> {
let Latency = 3;
let ResourceCycles = [6];
let NumMicroOps = 7;
}
def : InstRW<[Zn3WriteRotateRightRI], (instrs RCR8ri, RCR16ri, RCR32ri, RCR64ri)>;
def Zn3WriteRotateRightMI : SchedWriteRes<[Zn3AGU012, Zn3Load, Zn3ALU12]> {
let Latency = !add(Znver3Model.LoadLatency, Zn3WriteRotateRightRI.Latency);
let ResourceCycles = [1, 1, 8];
let NumMicroOps = !add(Zn3WriteRotateRightRI.NumMicroOps, 3);
}
def : InstRW<[Zn3WriteRotateRightMI], (instrs RCR8mi, RCR16mi, RCR32mi, RCR64mi)>;
def Zn3WriteRotateLeftRI : SchedWriteRes<[Zn3ALU12]> {
let Latency = 4;
let ResourceCycles = [8];
let NumMicroOps = 9;
}
def : InstRW<[Zn3WriteRotateLeftRI], (instrs RCL8ri, RCL16ri, RCL32ri, RCL64ri)>;
def Zn3WriteRotateLeftMI : SchedWriteRes<[Zn3AGU012, Zn3Load, Zn3ALU12]> {
let Latency = !add(Znver3Model.LoadLatency, Zn3WriteRotateLeftRI.Latency);
let ResourceCycles = [1, 1, 8];
let NumMicroOps = !add(Zn3WriteRotateLeftRI.NumMicroOps, 2);
}
def : InstRW<[Zn3WriteRotateLeftMI], (instrs RCL8mi, RCL16mi, RCL32mi, RCL64mi)>;
defm : Zn3WriteResIntPair<WriteRotateCL, [Zn3ALU12], 1, [1], 1, /*LoadUOps=*/1>;
def Zn3WriteRotateRightRCL : SchedWriteRes<[Zn3ALU12]> {
let Latency = 3;
let ResourceCycles = [6];
let NumMicroOps = 7;
}
def : InstRW<[Zn3WriteRotateRightRCL], (instrs RCR8rCL, RCR16rCL, RCR32rCL, RCR64rCL)>;
def Zn3WriteRotateRightMCL : SchedWriteRes<[Zn3AGU012, Zn3Load, Zn3ALU12]> {
let Latency = !add(Znver3Model.LoadLatency, Zn3WriteRotateRightRCL.Latency);
let ResourceCycles = [1, 1, 8];
let NumMicroOps = !add(Zn3WriteRotateRightRCL.NumMicroOps, 2);
}
def : InstRW<[Zn3WriteRotateRightMCL], (instrs RCR8mCL, RCR16mCL, RCR32mCL, RCR64mCL)>;
def Zn3WriteRotateLeftRCL : SchedWriteRes<[Zn3ALU12]> {
let Latency = 4;
let ResourceCycles = [8];
let NumMicroOps = 9;
}
def : InstRW<[Zn3WriteRotateLeftRCL], (instrs RCL8rCL, RCL16rCL, RCL32rCL, RCL64rCL)>;
def Zn3WriteRotateLeftMCL : SchedWriteRes<[Zn3AGU012, Zn3Load, Zn3ALU12]> {
let Latency = !add(Znver3Model.LoadLatency, Zn3WriteRotateLeftRCL.Latency);
let ResourceCycles = [1, 1, 8];
let NumMicroOps = !add(Zn3WriteRotateLeftRCL.NumMicroOps, 2);
}
def : InstRW<[Zn3WriteRotateLeftMCL], (instrs RCL8mCL, RCL16mCL, RCL32mCL, RCL64mCL)>;
// Double shift instructions.
defm : Zn3WriteResInt<WriteSHDrri, [Zn3ALU12], 2, [3], 4>;
defm : Zn3WriteResInt<WriteSHDrrcl, [Zn3ALU12], 2, [3], 5>;
defm : Zn3WriteResInt<WriteSHDmri, [Zn3AGU012, Zn3Load, Zn3ALU12], !add(Znver3Model.LoadLatency, 2), [1, 1, 4], 6>;
defm : Zn3WriteResInt<WriteSHDmrcl, [Zn3AGU012, Zn3Load, Zn3ALU12], !add(Znver3Model.LoadLatency, 2), [1, 1, 4], 6>;
// BMI1 BEXTR/BLS, BMI2 BZHI
defm : Zn3WriteResIntPair<WriteBEXTR, [Zn3ALU12], 1, [1], 1, /*LoadUOps=*/1>;
defm : Zn3WriteResIntPair<WriteBLS, [Zn3ALU0123], 2, [2], 2, /*LoadUOps=*/1>;
defm : Zn3WriteResIntPair<WriteBZHI, [Zn3ALU12], 1, [1], 1, /*LoadUOps=*/1>;
// Idioms that clear a register, like xorps %xmm0, %xmm0.
// These can often bypass execution ports completely.
defm : Zn3WriteResInt<WriteZero, [Zn3ALU0123], 0, [0], 1>;
// Branches don't produce values, so they have no latency, but they still
// consume resources. Indirect branches can fold loads.
defm : Zn3WriteResIntPair<WriteJump, [Zn3BRU01], 1, [1], 1>; // FIXME: not from llvm-exegesis
// Floating point. This covers both scalar and vector operations.
defm : Zn3WriteResInt<WriteFLD0, [Zn3FPLd01, Zn3Load, Zn3FPP1], !add(Znver3Model.LoadLatency, 4), [1, 1, 1], 1>;
defm : Zn3WriteResInt<WriteFLD1, [Zn3FPLd01, Zn3Load, Zn3FPP1], !add(Znver3Model.LoadLatency, 7), [1, 1, 1], 1>;
defm : Zn3WriteResInt<WriteFLDC, [Zn3FPLd01, Zn3Load, Zn3FPP1], !add(Znver3Model.LoadLatency, 7), [1, 1, 1], 1>;
defm : Zn3WriteResXMM<WriteFLoad, [Zn3FPLd01, Zn3Load], !add(Znver3Model.VecLoadLatency, 1), [1, 1], 1>;
defm : Zn3WriteResXMM<WriteFLoadX, [Zn3FPLd01, Zn3Load], !add(Znver3Model.VecLoadLatency, 1), [1, 1], 1>;
defm : Zn3WriteResYMM<WriteFLoadY, [Zn3FPLd01, Zn3Load], !add(Znver3Model.VecLoadLatency, 1), [1, 1], 1>;
defm : Zn3WriteResXMM<WriteFMaskedLoad, [Zn3FPLd01, Zn3Load], !add(Znver3Model.VecLoadLatency, 1), [1, 1], 1>;
defm : Zn3WriteResYMM<WriteFMaskedLoadY, [Zn3FPLd01, Zn3Load], !add(Znver3Model.VecLoadLatency, 1), [1, 1], 1>;
defm : Zn3WriteResXMM<WriteFStore, [Zn3FPSt, Zn3Store], Znver3Model.StoreLatency, [1, 1], 1>;
def Zn3WriteWriteFStoreMMX : SchedWriteRes<[Zn3FPSt, Zn3Store]> {
let Latency = 2; // FIXME: not from llvm-exegesis
let ResourceCycles = [1, 1];
let NumMicroOps = 2;
}
def : InstRW<[Zn3WriteWriteFStoreMMX], (instrs MOVHPDmr, MOVHPSmr,
VMOVHPDmr, VMOVHPSmr)>;
defm : Zn3WriteResXMM<WriteFStoreX, [Zn3FPSt, Zn3Store], Znver3Model.StoreLatency, [1, 1], 1>;
defm : Zn3WriteResYMM<WriteFStoreY, [Zn3FPSt, Zn3Store], Znver3Model.StoreLatency, [1, 1], 1>;
defm : Zn3WriteResXMM<WriteFStoreNT, [Zn3FPSt, Zn3Store], Znver3Model.StoreLatency, [1, 1], 1>;
defm : Zn3WriteResXMM<WriteFStoreNTX, [Zn3FPSt, Zn3Store], Znver3Model.StoreLatency, [1, 1], 1>;
defm : Zn3WriteResYMM<WriteFStoreNTY, [Zn3FPSt, Zn3Store], Znver3Model.StoreLatency, [1, 1], 1>;
defm : Zn3WriteResXMM<WriteFMaskedStore32, [Zn3FPSt, Zn3Store], Znver3Model.StoreLatency, [6, 1], 18>;
defm : Zn3WriteResXMM<WriteFMaskedStore64, [Zn3FPSt, Zn3Store], Znver3Model.StoreLatency, [4, 1], 10>;
defm : Zn3WriteResYMM<WriteFMaskedStore32Y, [Zn3FPSt, Zn3Store], Znver3Model.StoreLatency, [12, 1], 42>;
defm : Zn3WriteResYMM<WriteFMaskedStore64Y, [Zn3FPSt, Zn3Store], Znver3Model.StoreLatency, [6, 1], 18>;
defm : Zn3WriteResXMMPair<WriteFAdd, [Zn3FPFAdd01], 3, [1], 1>; // Floating point add/sub.
def Zn3WriteX87Arith : SchedWriteRes<[Zn3AGU012, Zn3Load, Zn3FPU0123]> {
let Latency = !add(Znver3Model.LoadLatency, 1); // FIXME: not from llvm-exegesis
let ResourceCycles = [1, 1, 24];
let NumMicroOps = 2;
}
def : InstRW<[Zn3WriteX87Arith], (instrs ADD_FI16m, ADD_FI32m,
SUB_FI16m, SUB_FI32m,
SUBR_FI16m, SUBR_FI32m,
MUL_FI16m, MUL_FI32m)>;
def Zn3WriteX87Div : SchedWriteRes<[Zn3AGU012, Zn3Load, Zn3FPU0123]> {
let Latency = !add(Znver3Model.LoadLatency, 1); // FIXME: not from llvm-exegesis
let ResourceCycles = [1, 1, 62];
let NumMicroOps = 2;
}
def : InstRW<[Zn3WriteX87Div], (instrs DIV_FI16m, DIV_FI32m,
DIVR_FI16m, DIVR_FI32m)>;
defm : Zn3WriteResXMMPair<WriteFAddX, [Zn3FPFAdd01], 3, [1], 1>; // Floating point add/sub (XMM).
defm : Zn3WriteResYMMPair<WriteFAddY, [Zn3FPFAdd01], 3, [1], 1>; // Floating point add/sub (YMM).
defm : X86WriteResPairUnsupported<WriteFAddZ>; // Floating point add/sub (ZMM).
defm : Zn3WriteResXMMPair<WriteFAdd64, [Zn3FPFAdd01], 3, [1], 1>; // Floating point double add/sub.
defm : Zn3WriteResXMMPair<WriteFAdd64X, [Zn3FPFAdd01], 3, [1], 1>; // Floating point double add/sub (XMM).
defm : Zn3WriteResYMMPair<WriteFAdd64Y, [Zn3FPFAdd01], 3, [1], 1>; // Floating point double add/sub (YMM).
defm : X86WriteResPairUnsupported<WriteFAdd64Z>; // Floating point double add/sub (ZMM).
defm : Zn3WriteResXMMPair<WriteFCmp, [Zn3FPFMul01], 1, [1], 1>; // Floating point compare.
defm : Zn3WriteResXMMPair<WriteFCmpX, [Zn3FPFMul01], 1, [1], 1>; // Floating point compare (XMM).
defm : Zn3WriteResYMMPair<WriteFCmpY, [Zn3FPFMul01], 1, [1], 1>; // Floating point compare (YMM).
defm : X86WriteResPairUnsupported<WriteFCmpZ>; // Floating point compare (ZMM).
defm : Zn3WriteResXMMPair<WriteFCmp64, [Zn3FPFMul01], 1, [1], 1>; // Floating point double compare.
defm : Zn3WriteResXMMPair<WriteFCmp64X, [Zn3FPFMul01], 1, [1], 1>; // Floating point double compare (XMM).
defm : Zn3WriteResYMMPair<WriteFCmp64Y, [Zn3FPFMul01], 1, [1], 1>; // Floating point double compare (YMM).
defm : X86WriteResPairUnsupported<WriteFCmp64Z>; // Floating point double compare (ZMM).
defm : Zn3WriteResXMMPair<WriteFCom, [Zn3FPFMul01], 3, [2], 1>; // FIXME: latency not from llvm-exegesis // Floating point compare to flags (X87).
defm : Zn3WriteResXMMPair<WriteFComX, [Zn3FPFMul01], 4, [2], 2>; // FIXME: latency not from llvm-exegesis // Floating point compare to flags (SSE).
defm : Zn3WriteResXMMPair<WriteFMul, [Zn3FPFMul01], 3, [1], 1>; // Floating point multiplication.
defm : Zn3WriteResXMMPair<WriteFMulX, [Zn3FPFMul01], 3, [1], 1>; // Floating point multiplication (XMM).
defm : Zn3WriteResYMMPair<WriteFMulY, [Zn3FPFMul01], 3, [1], 1>; // Floating point multiplication (YMM).
defm : X86WriteResPairUnsupported<WriteFMulZ>; // Floating point multiplication (YMM).
defm : Zn3WriteResXMMPair<WriteFMul64, [Zn3FPFMul01], 3, [1], 1>; // Floating point double multiplication.
defm : Zn3WriteResXMMPair<WriteFMul64X, [Zn3FPFMul01], 3, [1], 1>; // Floating point double multiplication (XMM).
defm : Zn3WriteResYMMPair<WriteFMul64Y, [Zn3FPFMul01], 3, [1], 1>; // Floating point double multiplication (YMM).
defm : X86WriteResPairUnsupported<WriteFMul64Z>; // Floating point double multiplication (ZMM).
defm : Zn3WriteResXMMPair<WriteFDiv, [Zn3FPFDiv], 11, [3], 1>; // Floating point division.
defm : Zn3WriteResXMMPair<WriteFDivX, [Zn3FPFDiv], 11, [3], 1>; // Floating point division (XMM).
defm : Zn3WriteResYMMPair<WriteFDivY, [Zn3FPFDiv], 11, [3], 1>; // Floating point division (YMM).
defm : X86WriteResPairUnsupported<WriteFDivZ>; // Floating point division (ZMM).
defm : Zn3WriteResXMMPair<WriteFDiv64, [Zn3FPFDiv], 13, [5], 1>; // Floating point double division.
defm : Zn3WriteResXMMPair<WriteFDiv64X, [Zn3FPFDiv], 13, [5], 1>; // Floating point double division (XMM).
defm : Zn3WriteResYMMPair<WriteFDiv64Y, [Zn3FPFDiv], 13, [5], 1>; // Floating point double division (YMM).
defm : X86WriteResPairUnsupported<WriteFDiv64Z>; // Floating point double division (ZMM).
defm : Zn3WriteResXMMPair<WriteFSqrt, [Zn3FPFDiv], 15, [5], 1>; // Floating point square root.
defm : Zn3WriteResXMMPair<WriteFSqrtX, [Zn3FPFDiv], 15, [5], 1>; // Floating point square root (XMM).
defm : Zn3WriteResYMMPair<WriteFSqrtY, [Zn3FPFDiv], 15, [5], 1>; // Floating point square root (YMM).
defm : X86WriteResPairUnsupported<WriteFSqrtZ>; // Floating point square root (ZMM).
defm : Zn3WriteResXMMPair<WriteFSqrt64, [Zn3FPFDiv], 21, [9], 1>; // Floating point double square root.
defm : Zn3WriteResXMMPair<WriteFSqrt64X, [Zn3FPFDiv], 21, [9], 1>; // Floating point double square root (XMM).
defm : Zn3WriteResYMMPair<WriteFSqrt64Y, [Zn3FPFDiv], 21, [9], 1>; // Floating point double square root (YMM).
defm : X86WriteResPairUnsupported<WriteFSqrt64Z>; // Floating point double square root (ZMM).
defm : Zn3WriteResXMMPair<WriteFSqrt80, [Zn3FPFDiv], 22, [23], 1>; // FIXME: latency not from llvm-exegesis // Floating point long double square root.
defm : Zn3WriteResXMMPair<WriteFRcp, [Zn3FPFMul01], 3, [1], 1>; // Floating point reciprocal estimate.
defm : Zn3WriteResXMMPair<WriteFRcpX, [Zn3FPFMul01], 3, [1], 1>; // Floating point reciprocal estimate (XMM).
defm : Zn3WriteResYMMPair<WriteFRcpY, [Zn3FPFMul01], 3, [1], 1>; // Floating point reciprocal estimate (YMM).
defm : X86WriteResPairUnsupported<WriteFRcpZ>; // Floating point reciprocal estimate (ZMM).
defm : Zn3WriteResXMMPair<WriteFRsqrt, [Zn3FPFDiv], 3, [1], 1>; // Floating point reciprocal square root estimate.
defm : Zn3WriteResXMMPair<WriteFRsqrtX, [Zn3FPFDiv], 3, [1], 1>; // Floating point reciprocal square root estimate (XMM).
defm : Zn3WriteResYMMPair<WriteFRsqrtY, [Zn3FPFDiv], 3, [1], 1>; // Floating point reciprocal square root estimate (YMM).
defm : X86WriteResPairUnsupported<WriteFRsqrtZ>; // Floating point reciprocal square root estimate (ZMM).
defm : Zn3WriteResXMMPair<WriteFMA, [Zn3FPFMul01], 4, [2], 1>; // Fused Multiply Add.
defm : Zn3WriteResXMMPair<WriteFMAX, [Zn3FPFMul01], 4, [2], 1>; // Fused Multiply Add (XMM).
defm : Zn3WriteResYMMPair<WriteFMAY, [Zn3FPFMul01], 4, [2], 1>; // Fused Multiply Add (YMM).
defm : X86WriteResPairUnsupported<WriteFMAZ>; // Fused Multiply Add (ZMM).
defm : Zn3WriteResXMMPair<WriteDPPD, [Zn3FPFMul01], 9, [6], 3, /*LoadUOps=*/2>; // Floating point double dot product.
defm : Zn3WriteResXMMPair<WriteDPPS, [Zn3FPFMul01], 15, [8], 8, /*LoadUOps=*/2>; // Floating point single dot product.
defm : Zn3WriteResYMMPair<WriteDPPSY, [Zn3FPFMul01], 15, [8], 7, /*LoadUOps=*/1>; // Floating point single dot product (YMM).
defm : X86WriteResPairUnsupported<WriteDPPSZ>; // Floating point single dot product (ZMM).
defm : Zn3WriteResXMMPair<WriteFSign, [Zn3FPFMul01], 1, [2], 1>; // FIXME: latency not from llvm-exegesis // Floating point fabs/fchs.
defm : Zn3WriteResXMMPair<WriteFRnd, [Zn3FPFCvt01], 3, [1], 1>; // Floating point rounding.
defm : Zn3WriteResYMMPair<WriteFRndY, [Zn3FPFCvt01], 3, [1], 1>; // Floating point rounding (YMM).
defm : X86WriteResPairUnsupported<WriteFRndZ>; // Floating point rounding (ZMM).
defm : Zn3WriteResXMMPair<WriteFLogic, [Zn3FPVMisc0123], 1, [1], 1>; // Floating point and/or/xor logicals.
defm : Zn3WriteResYMMPair<WriteFLogicY, [Zn3FPVMisc0123], 1, [1], 1>; // Floating point and/or/xor logicals (YMM).
defm : X86WriteResPairUnsupported<WriteFLogicZ>; // Floating point and/or/xor logicals (ZMM).
defm : Zn3WriteResXMMPair<WriteFTest, [Zn3FPFMisc12], 1, [2], 2>; // FIXME: latency not from llvm-exegesis // Floating point TEST instructions.
defm : Zn3WriteResYMMPair<WriteFTestY, [Zn3FPFMisc12], 1, [2], 2>; // FIXME: latency not from llvm-exegesis // Floating point TEST instructions (YMM).
defm : X86WriteResPairUnsupported<WriteFTestZ>; // Floating point TEST instructions (ZMM).
defm : Zn3WriteResXMMPair<WriteFShuffle, [Zn3FPVShuf01], 1, [1], 1>; // Floating point vector shuffles.
defm : Zn3WriteResYMMPair<WriteFShuffleY, [Zn3FPVShuf01], 1, [1], 1>; // Floating point vector shuffles (YMM).
defm : X86WriteResPairUnsupported<WriteFShuffleZ>; // Floating point vector shuffles (ZMM).
defm : Zn3WriteResXMMPair<WriteFVarShuffle, [Zn3FPVShuf01], 3, [1], 1>; // Floating point vector variable shuffles.
defm : Zn3WriteResYMMPair<WriteFVarShuffleY, [Zn3FPVShuf01], 3, [1], 1>; // Floating point vector variable shuffles (YMM).
defm : X86WriteResPairUnsupported<WriteFVarShuffleZ>; // Floating point vector variable shuffles (ZMM).
defm : Zn3WriteResXMMPair<WriteFBlend, [Zn3FPFMul01], 1, [1], 1>; // Floating point vector blends.
defm : Zn3WriteResYMMPair<WriteFBlendY, [Zn3FPFMul01], 1, [1], 1>; // Floating point vector blends (YMM).
defm : X86WriteResPairUnsupported<WriteFBlendZ>; // Floating point vector blends (ZMM).
defm : Zn3WriteResXMMPair<WriteFVarBlend, [Zn3FPFMul01], 1, [1], 1>; // Fp vector variable blends.
defm : Zn3WriteResYMMPair<WriteFVarBlendY, [Zn3FPFMul01], 1, [1], 1>; // Fp vector variable blends (YMM).
defm : X86WriteResPairUnsupported<WriteFVarBlendZ>; // Fp vector variable blends (ZMM).
// Horizontal Add/Sub (float and integer)
defm : Zn3WriteResXMMPair<WriteFHAdd, [Zn3FPFAdd0], 6, [2], 4>;
defm : Zn3WriteResYMMPair<WriteFHAddY, [Zn3FPFAdd0], 6, [2], 3, /*LoadUOps=*/1>;
defm : X86WriteResPairUnsupported<WriteFHAddZ>;
defm : Zn3WriteResXMMPair<WritePHAdd, [Zn3FPVAdd0], 2, [2], 3, /*LoadUOps=*/1>;
defm : Zn3WriteResXMMPair<WritePHAddX, [Zn3FPVAdd0], 2, [2], 4>;
defm : Zn3WriteResYMMPair<WritePHAddY, [Zn3FPVAdd0], 2, [2], 3, /*LoadUOps=*/1>;
defm : X86WriteResPairUnsupported<WritePHAddZ>;
// Vector integer operations.
defm : Zn3WriteResXMM<WriteVecLoad, [Zn3FPLd01, Zn3Load], !add(Znver3Model.VecLoadLatency, 1), [1, 1], 1>;
defm : Zn3WriteResXMM<WriteVecLoadX, [Zn3FPLd01, Zn3Load], !add(Znver3Model.VecLoadLatency, 1), [1, 1], 1>;
defm : Zn3WriteResYMM<WriteVecLoadY, [Zn3FPLd01, Zn3Load], !add(Znver3Model.VecLoadLatency, 1), [1, 1], 1>;
defm : Zn3WriteResXMM<WriteVecLoadNT, [Zn3FPLd01, Zn3Load], !add(Znver3Model.VecLoadLatency, 1), [1, 1], 1>;
defm : Zn3WriteResYMM<WriteVecLoadNTY, [Zn3FPLd01, Zn3Load], !add(Znver3Model.VecLoadLatency, 1), [1, 1], 1>;
defm : Zn3WriteResXMM<WriteVecMaskedLoad, [Zn3FPLd01, Zn3Load], !add(Znver3Model.VecLoadLatency, 1), [1, 1], 1>;
defm : Zn3WriteResYMM<WriteVecMaskedLoadY, [Zn3FPLd01, Zn3Load], !add(Znver3Model.VecLoadLatency, 1), [1, 1], 1>;
defm : Zn3WriteResXMM<WriteVecStore, [Zn3FPSt, Zn3Store], Znver3Model.StoreLatency, [1, 1], 1>;
defm : Zn3WriteResXMM<WriteVecStoreX, [Zn3FPSt, Zn3Store], Znver3Model.StoreLatency, [1, 1], 1>;
def Zn3WriteVEXTRACTF128rr_VEXTRACTI128rr : SchedWriteRes<[Zn3FPFMisc0]> {
let Latency = 4;
let ResourceCycles = [1];
let NumMicroOps = 1;
}
def : InstRW<[Zn3WriteVEXTRACTF128rr_VEXTRACTI128rr], (instrs VEXTRACTF128rr, VEXTRACTI128rr)>;
def Zn3WriteVEXTRACTI128mr : SchedWriteRes<[Zn3FPFMisc0, Zn3FPSt, Zn3Store]> {
let Latency = !add(Znver3Model.LoadLatency, Zn3WriteVEXTRACTF128rr_VEXTRACTI128rr.Latency);
let ResourceCycles = [1, 1, 1];
let NumMicroOps = !add(Zn3WriteVEXTRACTF128rr_VEXTRACTI128rr.NumMicroOps, 1);
}
def : InstRW<[Zn3WriteVEXTRACTI128mr], (instrs VEXTRACTI128mr, VEXTRACTF128mr)>;
def Zn3WriteVINSERTF128rmr : SchedWriteRes<[Zn3AGU012, Zn3Load, Zn3FPFMisc0]> {
let Latency = !add(Znver3Model.LoadLatency, Zn3WriteVEXTRACTF128rr_VEXTRACTI128rr.Latency);
let ResourceCycles = [1, 1, 1];
let NumMicroOps = !add(Zn3WriteVEXTRACTF128rr_VEXTRACTI128rr.NumMicroOps, 0);
}
def : InstRW<[Zn3WriteVINSERTF128rmr], (instrs VINSERTF128rm)>;
defm : Zn3WriteResYMM<WriteVecStoreY, [Zn3FPSt, Zn3Store], Znver3Model.StoreLatency, [1, 1], 1>;
defm : Zn3WriteResXMM<WriteVecStoreNT, [Zn3FPSt, Zn3Store], Znver3Model.StoreLatency, [1, 1], 1>;
defm : Zn3WriteResYMM<WriteVecStoreNTY, [Zn3FPSt, Zn3Store], Znver3Model.StoreLatency, [1, 1], 1>;
defm : Zn3WriteResXMM<WriteVecMaskedStore32, [Zn3FPSt, Zn3Store], Znver3Model.StoreLatency, [6, 1], 18>;
defm : Zn3WriteResXMM<WriteVecMaskedStore64, [Zn3FPSt, Zn3Store], Znver3Model.StoreLatency, [4, 1], 10>;
defm : Zn3WriteResYMM<WriteVecMaskedStore32Y, [Zn3FPSt, Zn3Store], Znver3Model.StoreLatency, [12, 1], 42>;
defm : Zn3WriteResYMM<WriteVecMaskedStore64Y, [Zn3FPSt, Zn3Store], Znver3Model.StoreLatency, [6, 1], 18>;
defm : Zn3WriteResXMM<WriteVecMoveToGpr, [Zn3FPLd01], 1, [2], 1>;
defm : Zn3WriteResXMM<WriteVecMoveFromGpr, [Zn3FPLd01], 1, [2], 1>;
def Zn3WriteMOVMMX : SchedWriteRes<[Zn3FPLd01, Zn3FPFMisc0123]> {
let Latency = 1;
let ResourceCycles = [1, 2];
let NumMicroOps = 2;
}
def : InstRW<[Zn3WriteMOVMMX], (instrs MMX_MOVQ2FR64rr, MMX_MOVQ2DQrr)>;
def Zn3WriteMOVMMXSlow : SchedWriteRes<[Zn3FPLd01, Zn3FPFMisc0123]> {
let Latency = 1;
let ResourceCycles = [1, 4];
let NumMicroOps = 2;
}
def : InstRW<[Zn3WriteMOVMMXSlow], (instrs MMX_MOVD64rr, MMX_MOVD64to64rr)>;
defm : Zn3WriteResXMMPair<WriteVecALU, [Zn3FPVAdd0123], 1, [1], 1>; // Vector integer ALU op, no logicals.
def Zn3WriteEXTRQ_INSERTQ : SchedWriteRes<[Zn3FPVShuf01, Zn3FPLd01]> {
let Latency = 3;
let ResourceCycles = [1, 1];
let NumMicroOps = 1;
}
def : InstRW<[Zn3WriteEXTRQ_INSERTQ], (instrs EXTRQ, INSERTQ)>;
def Zn3WriteEXTRQI_INSERTQI : SchedWriteRes<[Zn3FPVShuf01, Zn3FPLd01]> {
let Latency = 3;
let ResourceCycles = [1, 1];
let NumMicroOps = 2;
}
def : InstRW<[Zn3WriteEXTRQI_INSERTQI], (instrs EXTRQI, INSERTQI)>;
defm : Zn3WriteResXMMPair<WriteVecALUX, [Zn3FPVAdd0123], 1, [1], 1>; // Vector integer ALU op, no logicals (XMM).
def Zn3WriteVecALUXSlow : SchedWriteRes<[Zn3FPVAdd01]> {
let Latency = 1;
let ResourceCycles = [1];
let NumMicroOps = 1;
}
def : InstRW<[Zn3WriteVecALUXSlow], (instrs PABSBrr, PABSDrr, PABSWrr,
PADDSBrr, PADDSWrr, PADDUSBrr, PADDUSWrr,
PAVGBrr, PAVGWrr,
PSIGNBrr, PSIGNDrr, PSIGNWrr,
VPABSBrr, VPABSDrr, VPABSWrr,
VPADDSBrr, VPADDSWrr, VPADDUSBrr, VPADDUSWrr,
VPAVGBrr, VPAVGWrr,
VPCMPEQQrr,
VPSIGNBrr, VPSIGNDrr, VPSIGNWrr,
PSUBSBrr, PSUBSWrr, PSUBUSBrr, PSUBUSWrr, VPSUBSBrr, VPSUBSWrr, VPSUBUSBrr, VPSUBUSWrr)>;
def Zn3WriteVecALUXMMX : SchedWriteRes<[Zn3FPVAdd01]> {
let Latency = 1;
let ResourceCycles = [1];
let NumMicroOps = 1;
}
def : InstRW<[Zn3WriteVecALUXMMX], (instrs MMX_PABSBrr, MMX_PABSDrr, MMX_PABSWrr,
MMX_PSIGNBrr, MMX_PSIGNDrr, MMX_PSIGNWrr,
MMX_PADDSBirr, MMX_PADDSWirr, MMX_PADDUSBirr, MMX_PADDUSWirr,
MMX_PAVGBirr, MMX_PAVGWirr,
MMX_PSUBSBirr, MMX_PSUBSWirr, MMX_PSUBUSBirr, MMX_PSUBUSWirr)>;
defm : Zn3WriteResYMMPair<WriteVecALUY, [Zn3FPVAdd0123], 1, [1], 1>; // Vector integer ALU op, no logicals (YMM).
def Zn3WriteVecALUYSlow : SchedWriteRes<[Zn3FPVAdd01]> {
let Latency = 1;
let ResourceCycles = [1];
let NumMicroOps = 1;
}
def : InstRW<[Zn3WriteVecALUYSlow], (instrs VPABSBYrr, VPABSDYrr, VPABSWYrr,
VPADDSBYrr, VPADDSWYrr, VPADDUSBYrr, VPADDUSWYrr,
VPSUBSBYrr, VPSUBSWYrr, VPSUBUSBYrr, VPSUBUSWYrr,
VPAVGBYrr, VPAVGWYrr,
VPCMPEQQYrr,
VPSIGNBYrr, VPSIGNDYrr, VPSIGNWYrr)>;
defm : X86WriteResPairUnsupported<WriteVecALUZ>; // Vector integer ALU op, no logicals (ZMM).
defm : Zn3WriteResXMMPair<WriteVecLogic, [Zn3FPVMisc0123], 1, [1], 1>; // Vector integer and/or/xor logicals.
defm : Zn3WriteResXMMPair<WriteVecLogicX, [Zn3FPVMisc0123], 1, [1], 1>; // Vector integer and/or/xor logicals (XMM).
defm : Zn3WriteResYMMPair<WriteVecLogicY, [Zn3FPVMisc0123], 1, [1], 1>; // Vector integer and/or/xor logicals (YMM).
defm : X86WriteResPairUnsupported<WriteVecLogicZ>; // Vector integer and/or/xor logicals (ZMM).
defm : Zn3WriteResXMMPair<WriteVecTest, [Zn3FPVAdd12, Zn3FPSt], 1, [1, 1], 2>; // FIXME: latency not from llvm-exegesis // Vector integer TEST instructions.
defm : Zn3WriteResYMMPair<WriteVecTestY, [Zn3FPVAdd12, Zn3FPSt], 1, [1, 1], 2>; // FIXME: latency not from llvm-exegesis // Vector integer TEST instructions (YMM).
defm : X86WriteResPairUnsupported<WriteVecTestZ>; // Vector integer TEST instructions (ZMM).
defm : Zn3WriteResXMMPair<WriteVecShift, [Zn3FPVShift01], 1, [1], 1>; // Vector integer shifts (default).
defm : Zn3WriteResXMMPair<WriteVecShiftX, [Zn3FPVShift01], 1, [1], 1>; // Vector integer shifts (XMM).
defm : Zn3WriteResYMMPair<WriteVecShiftY, [Zn3FPVShift01], 1, [1], 1>; // Vector integer shifts (YMM).
defm : X86WriteResPairUnsupported<WriteVecShiftZ>; // Vector integer shifts (ZMM).
defm : Zn3WriteResXMMPair<WriteVecShiftImm, [Zn3FPVShift01], 1, [1], 1>; // Vector integer immediate shifts (default).
defm : Zn3WriteResXMMPair<WriteVecShiftImmX, [Zn3FPVShift01], 1, [1], 1>; // Vector integer immediate shifts (XMM).
defm : Zn3WriteResYMMPair<WriteVecShiftImmY, [Zn3FPVShift01], 1, [1], 1>; // Vector integer immediate shifts (YMM).
defm : X86WriteResPairUnsupported<WriteVecShiftImmZ>; // Vector integer immediate shifts (ZMM).
defm : Zn3WriteResXMMPair<WriteVecIMul, [Zn3FPVMul01], 3, [1], 1>; // Vector integer multiply (default).
defm : Zn3WriteResXMMPair<WriteVecIMulX, [Zn3FPVMul01], 3, [1], 1>; // Vector integer multiply (XMM).
defm : Zn3WriteResYMMPair<WriteVecIMulY, [Zn3FPVMul01], 3, [1], 1>; // Vector integer multiply (YMM).
defm : X86WriteResPairUnsupported<WriteVecIMulZ>; // Vector integer multiply (ZMM).
defm : Zn3WriteResXMMPair<WritePMULLD, [Zn3FPVMul01], 3, [1], 1>; // Vector PMULLD.
defm : Zn3WriteResYMMPair<WritePMULLDY, [Zn3FPVMul01], 3, [1], 1>; // Vector PMULLD (YMM).
defm : X86WriteResPairUnsupported<WritePMULLDZ>; // Vector PMULLD (ZMM).
defm : Zn3WriteResXMMPair<WriteShuffle, [Zn3FPVShuf01], 1, [1], 1>; // Vector shuffles.
defm : Zn3WriteResXMMPair<WriteShuffleX, [Zn3FPVShuf01], 1, [1], 1>; // Vector shuffles (XMM).
defm : Zn3WriteResYMMPair<WriteShuffleY, [Zn3FPVShuf01], 1, [1], 1>; // Vector shuffles (YMM).
defm : X86WriteResPairUnsupported<WriteShuffleZ>; // Vector shuffles (ZMM).
defm : Zn3WriteResXMMPair<WriteVarShuffle, [Zn3FPVShuf01], 1, [1], 1>; // Vector variable shuffles.
defm : Zn3WriteResXMMPair<WriteVarShuffleX, [Zn3FPVShuf01], 1, [1], 1>; // Vector variable shuffles (XMM).
defm : Zn3WriteResYMMPair<WriteVarShuffleY, [Zn3FPVShuf01], 1, [1], 1>; // Vector variable shuffles (YMM).
defm : X86WriteResPairUnsupported<WriteVarShuffleZ>; // Vector variable shuffles (ZMM).
defm : Zn3WriteResXMMPair<WriteBlend, [Zn3FPVMisc0123], 1, [1], 1>; // Vector blends.
defm : Zn3WriteResYMMPair<WriteBlendY, [Zn3FPVMisc0123], 1, [1], 1>; // Vector blends (YMM).
defm : X86WriteResPairUnsupported<WriteBlendZ>; // Vector blends (ZMM).
defm : Zn3WriteResXMMPair<WriteVarBlend, [Zn3FPVMul01], 1, [1], 1>; // Vector variable blends.
defm : Zn3WriteResYMMPair<WriteVarBlendY, [Zn3FPVMul01], 1, [1], 1>; // Vector variable blends (YMM).
defm : X86WriteResPairUnsupported<WriteVarBlendZ>; // Vector variable blends (ZMM).
defm : Zn3WriteResXMMPair<WritePSADBW, [Zn3FPVAdd0123], 3, [2], 1>; // Vector PSADBW.
defm : Zn3WriteResXMMPair<WritePSADBWX, [Zn3FPVAdd0123], 3, [2], 1>; // Vector PSADBW (XMM).
defm : Zn3WriteResYMMPair<WritePSADBWY, [Zn3FPVAdd0123], 3, [2], 1>; // Vector PSADBW (YMM).
defm : X86WriteResPairUnsupported<WritePSADBWZ>; // Vector PSADBW (ZMM).
defm : Zn3WriteResXMMPair<WriteMPSAD, [Zn3FPVAdd0123], 4, [8], 4, /*LoadUOps=*/2>; // Vector MPSAD.
defm : Zn3WriteResYMMPair<WriteMPSADY, [Zn3FPVAdd0123], 4, [8], 3, /*LoadUOps=*/1>; // Vector MPSAD (YMM).
defm : X86WriteResPairUnsupported<WriteMPSADZ>; // Vector MPSAD (ZMM).
defm : Zn3WriteResXMMPair<WritePHMINPOS, [Zn3FPVAdd01], 3, [1], 1>; // Vector PHMINPOS.
// Vector insert/extract operations.
defm : Zn3WriteResXMMPair<WriteVecInsert, [Zn3FPLd01], 1, [2], 2, /*LoadUOps=*/-1>; // Insert gpr to vector element.
defm : Zn3WriteResXMM<WriteVecExtract, [Zn3FPLd01], 1, [2], 2>; // Extract vector element to gpr.
defm : Zn3WriteResXMM<WriteVecExtractSt, [Zn3FPSt, Zn3Store], !add(1, Znver3Model.StoreLatency), [1, 1], 2>; // Extract vector element and store.
// MOVMSK operations.
defm : Zn3WriteResXMM<WriteFMOVMSK, [Zn3FPVMisc2], 1, [1], 1>;
defm : Zn3WriteResXMM<WriteVecMOVMSK, [Zn3FPVMisc2], 1, [1], 1>;
defm : Zn3WriteResYMM<WriteVecMOVMSKY, [Zn3FPVMisc2], 1, [1], 1>;
defm : Zn3WriteResXMM<WriteMMXMOVMSK, [Zn3FPVMisc2], 1, [1], 1>;
// Conversion between integer and float.
defm : Zn3WriteResXMMPair<WriteCvtSD2I, [Zn3FPFCvt01], 2, [2], 2>; // Double -> Integer.
defm : Zn3WriteResXMMPair<WriteCvtPD2I, [Zn3FPFCvt01], 3, [1], 1>; // Double -> Integer (XMM).
defm : Zn3WriteResYMMPair<WriteCvtPD2IY, [Zn3FPFCvt01], 6, [2], 2>; // Double -> Integer (YMM).
defm : X86WriteResPairUnsupported<WriteCvtPD2IZ>; // Double -> Integer (ZMM).
def Zn3WriteCvtPD2IMMX : SchedWriteRes<[Zn3FPFCvt01]> {
let Latency = 1;
let ResourceCycles = [2];
let NumMicroOps = 2;
}
def : InstRW<[Zn3WriteCvtPD2IMMX], (instrs MMX_CVTPD2PIirm, MMX_CVTTPD2PIirm, MMX_CVTPD2PIirr, MMX_CVTTPD2PIirr)>;
defm : Zn3WriteResXMMPair<WriteCvtSS2I, [Zn3FPFCvt01], 2, [2], 2>; // Float -> Integer.
defm : Zn3WriteResXMMPair<WriteCvtPS2I, [Zn3FPFCvt01], 3, [1], 1>; // Float -> Integer (XMM).
defm : Zn3WriteResYMMPair<WriteCvtPS2IY, [Zn3FPFCvt01], 3, [1], 1>; // Float -> Integer (YMM).
defm : X86WriteResPairUnsupported<WriteCvtPS2IZ>; // Float -> Integer (ZMM).
defm : Zn3WriteResXMMPair<WriteCvtI2SD, [Zn3FPFCvt01], 3, [2], 2, /*LoadUOps=*/-1>; // Integer -> Double.
defm : Zn3WriteResXMMPair<WriteCvtI2PD, [Zn3FPFCvt01], 3, [1], 1>; // Integer -> Double (XMM).
defm : Zn3WriteResYMMPair<WriteCvtI2PDY, [Zn3FPFCvt01], 4, [2], 2, /*LoadUOps=*/-1>; // Integer -> Double (YMM).
defm : X86WriteResPairUnsupported<WriteCvtI2PDZ>; // Integer -> Double (ZMM).
def Zn3WriteCvtI2PDMMX : SchedWriteRes<[Zn3FPFCvt01]> {
let Latency = 2;
let ResourceCycles = [6];
let NumMicroOps = 2;
}
def : InstRW<[Zn3WriteCvtI2PDMMX], (instrs MMX_CVTPI2PDirm, MMX_CVTPI2PDirr)>;
defm : Zn3WriteResXMMPair<WriteCvtI2SS, [Zn3FPFCvt01], 3, [2], 2, /*LoadUOps=*/-1>; // Integer -> Float.
defm : Zn3WriteResXMMPair<WriteCvtI2PS, [Zn3FPFCvt01], 3, [1], 1>; // Integer -> Float (XMM).
defm : Zn3WriteResYMMPair<WriteCvtI2PSY, [Zn3FPFCvt01], 3, [1], 1>; // Integer -> Float (YMM).
defm : X86WriteResPairUnsupported<WriteCvtI2PSZ>; // Integer -> Float (ZMM).
def Zn3WriteCvtI2PSMMX : SchedWriteRes<[Zn3FPFCvt01]> {
let Latency = 3;
let ResourceCycles = [1];
let NumMicroOps = 2;
}
def : InstRW<[Zn3WriteCvtI2PSMMX], (instrs MMX_CVTPI2PSirr)>;
defm : Zn3WriteResXMMPair<WriteCvtSS2SD, [Zn3FPFCvt01], 3, [1], 1>; // Float -> Double size conversion.
defm : Zn3WriteResXMMPair<WriteCvtPS2PD, [Zn3FPFCvt01], 3, [1], 1>; // Float -> Double size conversion (XMM).
defm : Zn3WriteResYMMPair<WriteCvtPS2PDY, [Zn3FPFCvt01], 4, [2], 2, /*LoadUOps=*/-1>; // Float -> Double size conversion (YMM).
defm : X86WriteResPairUnsupported<WriteCvtPS2PDZ>; // Float -> Double size conversion (ZMM).
defm : Zn3WriteResXMMPair<WriteCvtSD2SS, [Zn3FPFCvt01], 3, [1], 1>; // Double -> Float size conversion.
defm : Zn3WriteResXMMPair<WriteCvtPD2PS, [Zn3FPFCvt01], 3, [1], 1>; // Double -> Float size conversion (XMM).
defm : Zn3WriteResYMMPair<WriteCvtPD2PSY, [Zn3FPFCvt01], 6, [2], 2>; // Double -> Float size conversion (YMM).
defm : X86WriteResPairUnsupported<WriteCvtPD2PSZ>; // Double -> Float size conversion (ZMM).
defm : Zn3WriteResXMMPair<WriteCvtPH2PS, [Zn3FPFCvt01], 3, [1], 1>; // Half -> Float size conversion.
defm : Zn3WriteResYMMPair<WriteCvtPH2PSY, [Zn3FPFCvt01], 4, [2], 2, /*LoadUOps=*/-1>; // Half -> Float size conversion (YMM).
defm : X86WriteResPairUnsupported<WriteCvtPH2PSZ>; // Half -> Float size conversion (ZMM).
defm : Zn3WriteResXMM<WriteCvtPS2PH, [Zn3FPFCvt01], 3, [2], 1>; // Float -> Half size conversion.
defm : Zn3WriteResYMM<WriteCvtPS2PHY, [Zn3FPFCvt01], 6, [2], 2>; // Float -> Half size conversion (YMM).
defm : X86WriteResUnsupported<WriteCvtPS2PHZ>; // Float -> Half size conversion (ZMM).
defm : Zn3WriteResXMM<WriteCvtPS2PHSt, [Zn3FPFCvt01, Zn3FPSt, Zn3Store], !add(3, Znver3Model.StoreLatency), [1, 1, 1], 2>; // Float -> Half + store size conversion.
defm : Zn3WriteResYMM<WriteCvtPS2PHYSt, [Zn3FPFCvt01, Zn3FPSt, Zn3Store], !add(6, Znver3Model.StoreLatency), [2, 1, 1], 3>; // Float -> Half + store size conversion (YMM).
defm : X86WriteResUnsupported<WriteCvtPS2PHZSt>; // Float -> Half + store size conversion (ZMM).
// CRC32 instruction.
defm : Zn3WriteResIntPair<WriteCRC32, [Zn3ALU1], 3, [1], 1>;
def Zn3WriteSHA1MSG1rr : SchedWriteRes<[Zn3FPU0123]> {
let Latency = 2;
let ResourceCycles = [2];
let NumMicroOps = 2;
}
def : InstRW<[Zn3WriteSHA1MSG1rr], (instrs SHA1MSG1rr)>;
def Zn3WriteSHA1MSG1rm : SchedWriteRes<[Zn3AGU012, Zn3Load, Zn3FPU0123]> {
let Latency = !add(Znver3Model.LoadLatency, Zn3WriteSHA1MSG1rr.Latency);
let ResourceCycles = [1, 1, 2];
let NumMicroOps = !add(Zn3WriteSHA1MSG1rr.NumMicroOps, 0);
}
def : InstRW<[Zn3WriteSHA1MSG1rm], (instrs SHA1MSG1rm)>;
def Zn3WriteSHA1MSG2rr_SHA1NEXTErr : SchedWriteRes<[Zn3FPU0123]> {
let Latency = 1;
let ResourceCycles = [2];
let NumMicroOps = 1;
}
def : InstRW<[Zn3WriteSHA1MSG2rr_SHA1NEXTErr], (instrs SHA1MSG2rr, SHA1NEXTErr)>;
def Zn3Writerm_SHA1MSG2rm_SHA1NEXTErm : SchedWriteRes<[Zn3AGU012, Zn3Load, Zn3FPU0123]> {
let Latency = !add(Znver3Model.LoadLatency, Zn3WriteSHA1MSG2rr_SHA1NEXTErr.Latency);
let ResourceCycles = [1, 1, 2];
let NumMicroOps = !add(Zn3WriteSHA1MSG2rr_SHA1NEXTErr.NumMicroOps, 0);
}
def : InstRW<[Zn3Writerm_SHA1MSG2rm_SHA1NEXTErm], (instrs SHA1MSG2rm, SHA1NEXTErm)>;
def Zn3WriteSHA256MSG1rr : SchedWriteRes<[Zn3FPU0123]> {
let Latency = 2;
let ResourceCycles = [3];
let NumMicroOps = 2;
}
def : InstRW<[Zn3WriteSHA256MSG1rr], (instrs SHA256MSG1rr)>;
def Zn3Writerm_SHA256MSG1rm : SchedWriteRes<[Zn3AGU012, Zn3Load, Zn3FPU0123]> {
let Latency = !add(Znver3Model.LoadLatency, Zn3WriteSHA256MSG1rr.Latency);
let ResourceCycles = [1, 1, 3];
let NumMicroOps = !add(Zn3WriteSHA256MSG1rr.NumMicroOps, 0);
}
def : InstRW<[Zn3Writerm_SHA256MSG1rm], (instrs SHA256MSG1rm)>;
def Zn3WriteSHA256MSG2rr : SchedWriteRes<[Zn3FPU0123]> {
let Latency = 3;
let ResourceCycles = [8];
let NumMicroOps = 4;
}
def : InstRW<[Zn3WriteSHA256MSG2rr], (instrs SHA256MSG2rr)>;
def Zn3WriteSHA256MSG2rm : SchedWriteRes<[Zn3AGU012, Zn3Load, Zn3FPU0123]> {
let Latency = !add(Znver3Model.LoadLatency, Zn3WriteSHA256MSG2rr.Latency);
let ResourceCycles = [1, 1, 8];
let NumMicroOps = !add(Zn3WriteSHA256MSG2rr.NumMicroOps, 1);
}
def : InstRW<[Zn3WriteSHA256MSG2rm], (instrs SHA256MSG2rm)>;
def Zn3WriteSHA1RNDS4rri : SchedWriteRes<[Zn3FPU0123]> {
let Latency = 6;
let ResourceCycles = [8];
let NumMicroOps = 1;
}
def : InstRW<[Zn3WriteSHA1RNDS4rri], (instrs SHA1RNDS4rri)>;
def Zn3WriteSHA256RNDS2rr : SchedWriteRes<[Zn3FPU0123]> {
let Latency = 4;
let ResourceCycles = [8];
let NumMicroOps = 1;
}
def : InstRW<[Zn3WriteSHA256RNDS2rr], (instrs SHA256RNDS2rr)>;
// Strings instructions.
// Packed Compare Implicit Length Strings, Return Mask
defm : Zn3WriteResXMMPair<WritePCmpIStrM, [Zn3FPVAdd0123], 6, [8], 3, /*LoadUOps=*/1>;
// Packed Compare Explicit Length Strings, Return Mask
defm : Zn3WriteResXMMPair<WritePCmpEStrM, [Zn3FPVAdd0123], 6, [12], 7, /*LoadUOps=*/5>;
// Packed Compare Implicit Length Strings, Return Index
defm : Zn3WriteResXMMPair<WritePCmpIStrI, [Zn3FPVAdd0123], 2, [8], 4>;
// Packed Compare Explicit Length Strings, Return Index
defm : Zn3WriteResXMMPair<WritePCmpEStrI, [Zn3FPVAdd0123], 6, [12], 8, /*LoadUOps=*/4>;
// AES instructions.
defm : Zn3WriteResXMMPair<WriteAESDecEnc, [Zn3FPAES01], 4, [1], 1>; // Decryption, encryption.
defm : Zn3WriteResXMMPair<WriteAESIMC, [Zn3FPAES01], 4, [1], 1>; // InvMixColumn.
defm : Zn3WriteResXMMPair<WriteAESKeyGen, [Zn3FPAES01], 4, [1], 1>; // Key Generation.
// Carry-less multiplication instructions.
defm : Zn3WriteResXMMPair<WriteCLMul, [Zn3FPCLM01], 4, [4], 4>;
// EMMS/FEMMS
defm : Zn3WriteResInt<WriteEMMS, [Zn3ALU0123], 2, [1], 1>; // FIXME: latency not from llvm-exegesis
// Load/store MXCSR
defm : Zn3WriteResInt<WriteLDMXCSR, [Zn3AGU012, Zn3Load, Zn3ALU0123], !add(Znver3Model.LoadLatency, 1), [1, 1, 6], 1>; // FIXME: latency not from llvm-exegesis
defm : Zn3WriteResInt<WriteSTMXCSR, [Zn3ALU0123, Zn3AGU012, Zn3Store], !add(1, Znver3Model.StoreLatency), [60, 1, 1], 2>; // FIXME: latency not from llvm-exegesis
// Catch-all for expensive system instructions.
defm : Zn3WriteResInt<WriteSystem, [Zn3ALU0123], 100, [100], 100>;
def Zn3WriteVZEROUPPER : SchedWriteRes<[Zn3FPU0123]> {
let Latency = 0; // FIXME: not from llvm-exegesis
let ResourceCycles = [1];
let NumMicroOps = 1;
}
def : InstRW<[Zn3WriteVZEROUPPER], (instrs VZEROUPPER)>;
def Zn3WriteVZEROALL : SchedWriteRes<[Zn3FPU0123]> {
let Latency = 10; // FIXME: not from llvm-exegesis
let ResourceCycles = [24];
let NumMicroOps = 18;
}
def : InstRW<[Zn3WriteVZEROALL], (instrs VZEROALL)>;
// AVX2.
defm : Zn3WriteResYMMPair<WriteFShuffle256, [Zn3FPVShuf], 2, [1], 1, /*LoadUOps=*/2>; // Fp 256-bit width vector shuffles.
defm : Zn3WriteResYMMPair<WriteFVarShuffle256, [Zn3FPVShuf], 7, [1], 2, /*LoadUOps=*/1>; // Fp 256-bit width variable shuffles.
defm : Zn3WriteResYMMPair<WriteShuffle256, [Zn3FPVShuf], 2, [1], 1>; // 256-bit width vector shuffles.
def Zn3WriteVPERM2I128rr_VPERM2F128rr : SchedWriteRes<[Zn3FPVShuf]> {
let Latency = 3;
let ResourceCycles = [1];
let NumMicroOps = 1;
}
def : InstRW<[Zn3WriteVPERM2I128rr_VPERM2F128rr], (instrs VPERM2I128rr, VPERM2F128rr)>;
def Zn3WriteVPERM2F128rm : SchedWriteRes<[Zn3AGU012, Zn3Load, Zn3FPVShuf]> {
let Latency = !add(Znver3Model.LoadLatency, Zn3WriteVPERM2I128rr_VPERM2F128rr.Latency);
let ResourceCycles = [1, 1, 1];
let NumMicroOps = !add(Zn3WriteVPERM2I128rr_VPERM2F128rr.NumMicroOps, 0);
}
def : InstRW<[Zn3WriteVPERM2F128rm], (instrs VPERM2F128rm)>;
def Zn3WriteVPERMPSYrr : SchedWriteRes<[Zn3FPVShuf]> {
let Latency = 7;
let ResourceCycles = [1];
let NumMicroOps = 2;
}
def : InstRW<[Zn3WriteVPERMPSYrr], (instrs VPERMPSYrr)>;
def Zn3WriteVPERMPSYrm : SchedWriteRes<[Zn3AGU012, Zn3Load, Zn3FPVShuf]> {
let Latency = !add(Znver3Model.LoadLatency, Zn3WriteVPERMPSYrr.Latency);
let ResourceCycles = [1, 1, 2];
let NumMicroOps = !add(Zn3WriteVPERMPSYrr.NumMicroOps, 1);
}
def : InstRW<[Zn3WriteVPERMPSYrm], (instrs VPERMPSYrm)>;
def Zn3WriteVPERMYri : SchedWriteRes<[Zn3FPVShuf]> {
let Latency = 6;
let ResourceCycles = [1];
let NumMicroOps = 2;
}
def : InstRW<[Zn3WriteVPERMYri], (instrs VPERMPDYri, VPERMQYri)>;
def Zn3WriteVPERMPDYmi : SchedWriteRes<[Zn3AGU012, Zn3Load, Zn3FPVShuf]> {
let Latency = !add(Znver3Model.LoadLatency, Zn3WriteVPERMYri.Latency);
let ResourceCycles = [1, 1, 2];
let NumMicroOps = !add(Zn3WriteVPERMYri.NumMicroOps, 1);
}
def : InstRW<[Zn3WriteVPERMPDYmi], (instrs VPERMPDYmi)>;
def Zn3WriteVPERMDYrr : SchedWriteRes<[Zn3FPVShuf]> {
let Latency = 5;
let ResourceCycles = [1];
let NumMicroOps = 2;
}
def : InstRW<[Zn3WriteVPERMDYrr], (instrs VPERMDYrr)>;
def Zn3WriteVPERMYm : SchedWriteRes<[Zn3AGU012, Zn3Load, Zn3FPVShuf]> {
let Latency = !add(Znver3Model.LoadLatency, Zn3WriteVPERMDYrr.Latency);
let ResourceCycles = [1, 1, 2];
let NumMicroOps = !add(Zn3WriteVPERMDYrr.NumMicroOps, 0);
}
def : InstRW<[Zn3WriteVPERMYm], (instrs VPERMQYmi, VPERMDYrm)>;
defm : Zn3WriteResYMMPair<WriteVPMOV256, [Zn3FPVShuf01], 4, [3], 2, /*LoadUOps=*/-1>; // 256-bit width packed vector width-changing move.
defm : Zn3WriteResYMMPair<WriteVarShuffle256, [Zn3FPVShuf01], 1, [1], 2>; // 256-bit width vector variable shuffles.
defm : Zn3WriteResXMMPair<WriteVarVecShift, [Zn3FPVShift01], 1, [1], 1>; // Variable vector shifts.
defm : Zn3WriteResYMMPair<WriteVarVecShiftY, [Zn3FPVShift01], 1, [1], 1>; // Variable vector shifts (YMM).
defm : X86WriteResPairUnsupported<WriteVarVecShiftZ>; // Variable vector shifts (ZMM).
// Old microcoded instructions that nobody use.
defm : Zn3WriteResInt<WriteMicrocoded, [Zn3ALU0123], 100, [100], 100>;
// Fence instructions.
defm : Zn3WriteResInt<WriteFence, [Zn3ALU0123], 1, [100], 1>;
def Zn3WriteLFENCE : SchedWriteRes<[Zn3LSU]> {
let Latency = 1;
let ResourceCycles = [30];
let NumMicroOps = 1;
}
def : InstRW<[Zn3WriteLFENCE], (instrs LFENCE)>;
def Zn3WriteSFENCE : SchedWriteRes<[Zn3LSU]> {
let Latency = 1;
let ResourceCycles = [1];
let NumMicroOps = 1;
}
def : InstRW<[Zn3WriteSFENCE], (instrs SFENCE)>;
// Nop, not very useful expect it provides a model for nops!
defm : Zn3WriteResInt<WriteNop, [Zn3ALU0123], 0, [1], 1>; // FIXME: latency not from llvm-exegesis
///////////////////////////////////////////////////////////////////////////////
// Zero Cycle Move
///////////////////////////////////////////////////////////////////////////////
def Zn3WriteZeroLatency : SchedWriteRes<[]> {
let Latency = 0;
let ResourceCycles = [];
let NumMicroOps = 1;
}
def : InstRW<[Zn3WriteZeroLatency], (instrs MOV32rr, MOV32rr_REV,
MOV64rr, MOV64rr_REV,
MOVSX32rr32)>;
def Zn3WriteSwapRenameable : SchedWriteRes<[]> {
let Latency = 0;
let ResourceCycles = [];
let NumMicroOps = 2;
}
def : InstRW<[Zn3WriteSwapRenameable], (instrs XCHG32rr, XCHG32ar,
XCHG64rr, XCHG64ar)>;
defm : Zn3WriteResInt<WriteXCHG, [Zn3ALU0123], 0, [8], 2>; // Compare+Exchange - TODO RMW support.
defm : Zn3WriteResXMM<WriteFMove, [Zn3FPVMisc0123], 1, [1], 1>; // Empty sched class
defm : Zn3WriteResXMM<WriteFMoveX, [], 0, [], 1>;
defm : Zn3WriteResYMM<WriteFMoveY, [], 0, [], 1>;
defm : Zn3WriteResXMM<WriteVecMove, [Zn3FPFMisc0123], 1, [1], 1>; // MMX
defm : Zn3WriteResXMM<WriteVecMoveX, [], 0, [], 1>;
defm : Zn3WriteResYMM<WriteVecMoveY, [], 0, [], 1>;
def : IsOptimizableRegisterMove<[
InstructionEquivalenceClass<[
// GPR variants.
MOV32rr, MOV32rr_REV,
MOV64rr, MOV64rr_REV,
MOVSX32rr32,
XCHG32rr, XCHG32ar,
XCHG64rr, XCHG64ar,
// MMX variants.
// MMX moves are *NOT* eliminated.
// SSE variants.
MOVAPSrr, MOVAPSrr_REV,
MOVUPSrr, MOVUPSrr_REV,
MOVAPDrr, MOVAPDrr_REV,
MOVUPDrr, MOVUPDrr_REV,
MOVDQArr, MOVDQArr_REV,
MOVDQUrr, MOVDQUrr_REV,
// AVX variants.
VMOVAPSrr, VMOVAPSrr_REV,
VMOVUPSrr, VMOVUPSrr_REV,
VMOVAPDrr, VMOVAPDrr_REV,
VMOVUPDrr, VMOVUPDrr_REV,
VMOVDQArr, VMOVDQArr_REV,
VMOVDQUrr, VMOVDQUrr_REV,
// AVX YMM variants.
VMOVAPSYrr, VMOVAPSYrr_REV,
VMOVUPSYrr, VMOVUPSYrr_REV,
VMOVAPDYrr, VMOVAPDYrr_REV,
VMOVUPDYrr, VMOVUPDYrr_REV,
VMOVDQAYrr, VMOVDQAYrr_REV,
VMOVDQUYrr, VMOVDQUYrr_REV,
], TruePred >
]>;
///////////////////////////////////////////////////////////////////////////////
// Dependency breaking instructions.
///////////////////////////////////////////////////////////////////////////////
def Zn3WriteZeroIdiom : SchedWriteVariant<[
SchedVar<MCSchedPredicate<ZeroIdiomPredicate>, [Zn3WriteZeroLatency]>,
SchedVar<NoSchedPred, [WriteALU]>
]>;
def : InstRW<[Zn3WriteZeroIdiom], (instrs XOR32rr, XOR32rr_REV,
XOR64rr, XOR64rr_REV,
SUB32rr, SUB32rr_REV,
SUB64rr, SUB64rr_REV)>;
def Zn3WriteZeroIdiomEFLAGS : SchedWriteVariant<[
SchedVar<MCSchedPredicate<CheckSameRegOperand<0, 1>>, [Zn3WriteZeroLatency]>,
SchedVar<NoSchedPred, [WriteALU]>
]>;
def : InstRW<[Zn3WriteZeroIdiomEFLAGS], (instrs CMP8rr, CMP8rr_REV,
CMP16rr, CMP16rr_REV,
CMP32rr, CMP32rr_REV,
CMP64rr, CMP64rr_REV)>;
def Zn3WriteFZeroIdiom : SchedWriteVariant<[
SchedVar<MCSchedPredicate<ZeroIdiomPredicate>, [Zn3WriteZeroLatency]>,
SchedVar<NoSchedPred, [WriteFLogic]>
]>;
// NOTE: XORPSrr, XORPDrr are not zero-cycle!
def : InstRW<[Zn3WriteFZeroIdiom], (instrs VXORPSrr, VXORPDrr,
VANDNPSrr, VANDNPDrr)>;
def Zn3WriteFZeroIdiomY : SchedWriteVariant<[
SchedVar<MCSchedPredicate<ZeroIdiomPredicate>, [Zn3WriteZeroLatency]>,
SchedVar<NoSchedPred, [WriteFLogicY]>
]>;
def : InstRW<[Zn3WriteFZeroIdiomY], (instrs VXORPSYrr, VXORPDYrr,
VANDNPSYrr, VANDNPDYrr)>;
def Zn3WriteVZeroIdiomLogicX : SchedWriteVariant<[
SchedVar<MCSchedPredicate<ZeroIdiomPredicate>, [Zn3WriteZeroLatency]>,
SchedVar<NoSchedPred, [WriteVecLogicX]>
]>;
// NOTE: PXORrr,PANDNrr are not zero-cycle!
def : InstRW<[Zn3WriteVZeroIdiomLogicX], (instrs VPXORrr, VPANDNrr)>;
def Zn3WriteVZeroIdiomLogicY : SchedWriteVariant<[
SchedVar<MCSchedPredicate<ZeroIdiomPredicate>, [Zn3WriteZeroLatency]>,
SchedVar<NoSchedPred, [WriteVecLogicY]>
]>;
def : InstRW<[Zn3WriteVZeroIdiomLogicY], (instrs VPXORYrr, VPANDNYrr)>;
def Zn3WriteVZeroIdiomALUX : SchedWriteVariant<[
SchedVar<MCSchedPredicate<ZeroIdiomPredicate>, [Zn3WriteZeroLatency]>,
SchedVar<NoSchedPred, [WriteVecALUX]>
]>;
// NOTE: PSUBBrr, PSUBWrr, PSUBDrr, PSUBQrr,
// PCMPGTBrr, PCMPGTWrr, PCMPGTDrr, PCMPGTQrr are not zero-cycle!
def : InstRW<[Zn3WriteVZeroIdiomALUX],
(instrs VPSUBBrr, VPSUBWrr, VPSUBDrr, VPSUBQrr,
VPCMPGTBrr, VPCMPGTWrr, VPCMPGTDrr, VPCMPGTQrr)>;
def Zn3WriteVZeroIdiomALUY : SchedWriteVariant<[
SchedVar<MCSchedPredicate<ZeroIdiomPredicate>, [Zn3WriteZeroLatency]>,
SchedVar<NoSchedPred, [WriteVecALUY]>
]>;
def : InstRW<[Zn3WriteVZeroIdiomALUY],
(instrs VPSUBBYrr, VPSUBWYrr, VPSUBDYrr, VPSUBQYrr,
VPCMPGTBYrr, VPCMPGTWYrr, VPCMPGTDYrr, VPCMPGTQYrr)>;
def : IsZeroIdiomFunction<[
// GPR Zero-idioms.
DepBreakingClass<[ XOR32rr, XOR32rr_REV,
XOR64rr, XOR64rr_REV,
SUB32rr, SUB32rr_REV,
SUB64rr, SUB64rr_REV ], ZeroIdiomPredicate>,
// SSE XMM Zero-idioms.
DepBreakingClass<[
// fp variants.
XORPSrr, XORPDrr,
ANDNPSrr, ANDNPDrr,
// int variants.
PXORrr,
PANDNrr,
PSUBBrr, PSUBWrr, PSUBDrr, PSUBQrr,
PSUBSBrr, PSUBSWrr,
PSUBUSBrr, PSUBUSWrr,
PCMPGTBrr, PCMPGTWrr, PCMPGTDrr, PCMPGTQrr
], ZeroIdiomPredicate>,
// AVX XMM Zero-idioms.
DepBreakingClass<[
// fp variants.
VXORPSrr, VXORPDrr,
VANDNPSrr, VANDNPDrr,
// int variants.
VPXORrr,
VPANDNrr,
VPSUBBrr, VPSUBWrr, VPSUBDrr, VPSUBQrr,
VPSUBSBrr, VPSUBSWrr,
VPSUBUSBrr, VPSUBUSWrr,
VPCMPGTBrr, VPCMPGTWrr, VPCMPGTDrr, VPCMPGTQrr,
], ZeroIdiomPredicate>,
// AVX YMM Zero-idioms.
DepBreakingClass<[
// fp variants.
VXORPSYrr, VXORPDYrr,
VANDNPSYrr, VANDNPDYrr,
// int variants.
VPXORYrr,
VPANDNYrr,
VPSUBBYrr, VPSUBWYrr, VPSUBDYrr, VPSUBQYrr,
VPSUBSBYrr, VPSUBSWYrr,
VPSUBUSBYrr, VPSUBUSWYrr,
VPCMPGTBYrr, VPCMPGTWYrr, VPCMPGTDYrr, VPCMPGTQYrr
], ZeroIdiomPredicate>,
]>;
def : IsDepBreakingFunction<[
// GPR
DepBreakingClass<[ SBB32rr, SBB32rr_REV,
SBB64rr, SBB64rr_REV ], ZeroIdiomPredicate>,
DepBreakingClass<[ CMP8rr, CMP8rr_REV,
CMP16rr, CMP16rr_REV,
CMP32rr, CMP32rr_REV,
CMP64rr, CMP64rr_REV ], CheckSameRegOperand<0, 1> >,
// MMX
DepBreakingClass<[
MMX_PCMPEQBirr, MMX_PCMPEQWirr, MMX_PCMPEQDirr
], ZeroIdiomPredicate>,
// SSE
DepBreakingClass<[
PCMPEQBrr, PCMPEQWrr, PCMPEQDrr, PCMPEQQrr
], ZeroIdiomPredicate>,
// AVX XMM
DepBreakingClass<[
VPCMPEQBrr, VPCMPEQWrr, VPCMPEQDrr, VPCMPEQQrr
], ZeroIdiomPredicate>,
// AVX YMM
DepBreakingClass<[
VPCMPEQBYrr, VPCMPEQWYrr, VPCMPEQDYrr, VPCMPEQQYrr
], ZeroIdiomPredicate>,
]>;
} // SchedModel
|