1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650
|
//===- FunctionSpecialization.cpp - Function Specialization ---------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This specialises functions with constant parameters (e.g. functions,
// globals). Constant parameters like function pointers and constant globals
// are propagated to the callee by specializing the function.
//
// Current limitations:
// - It does not handle specialization of recursive functions,
// - It does not yet handle integer ranges.
// - Only 1 argument per function is specialised,
// - The cost-model could be further looked into,
// - We are not yet caching analysis results.
//
// Ideas:
// - With a function specialization attribute for arguments, we could have
// a direct way to steer function specialization, avoiding the cost-model,
// and thus control compile-times / code-size.
//
//===----------------------------------------------------------------------===//
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/CodeMetrics.h"
#include "llvm/Analysis/DomTreeUpdater.h"
#include "llvm/Analysis/InlineCost.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/Transforms/Scalar/SCCP.h"
#include "llvm/Transforms/Utils/Cloning.h"
#include "llvm/Transforms/Utils/SizeOpts.h"
#include <cmath>
using namespace llvm;
#define DEBUG_TYPE "function-specialization"
STATISTIC(NumFuncSpecialized, "Number of functions specialized");
static cl::opt<bool> ForceFunctionSpecialization(
"force-function-specialization", cl::init(false), cl::Hidden,
cl::desc("Force function specialization for every call site with a "
"constant argument"));
static cl::opt<unsigned> FuncSpecializationMaxIters(
"func-specialization-max-iters", cl::Hidden,
cl::desc("The maximum number of iterations function specialization is run"),
cl::init(1));
static cl::opt<unsigned> MaxConstantsThreshold(
"func-specialization-max-constants", cl::Hidden,
cl::desc("The maximum number of clones allowed for a single function "
"specialization"),
cl::init(3));
static cl::opt<unsigned>
AvgLoopIterationCount("func-specialization-avg-iters-cost", cl::Hidden,
cl::desc("Average loop iteration count cost"),
cl::init(10));
static cl::opt<bool> EnableSpecializationForLiteralConstant(
"function-specialization-for-literal-constant", cl::init(false), cl::Hidden,
cl::desc("Make function specialization available for literal constant."));
// Helper to check if \p LV is either overdefined or a constant int.
static bool isOverdefined(const ValueLatticeElement &LV) {
return !LV.isUnknownOrUndef() && !LV.isConstant();
}
class FunctionSpecializer {
/// The IPSCCP Solver.
SCCPSolver &Solver;
/// Analyses used to help determine if a function should be specialized.
std::function<AssumptionCache &(Function &)> GetAC;
std::function<TargetTransformInfo &(Function &)> GetTTI;
std::function<TargetLibraryInfo &(Function &)> GetTLI;
SmallPtrSet<Function *, 2> SpecializedFuncs;
public:
FunctionSpecializer(SCCPSolver &Solver,
std::function<AssumptionCache &(Function &)> GetAC,
std::function<TargetTransformInfo &(Function &)> GetTTI,
std::function<TargetLibraryInfo &(Function &)> GetTLI)
: Solver(Solver), GetAC(GetAC), GetTTI(GetTTI), GetTLI(GetTLI) {}
/// Attempt to specialize functions in the module to enable constant
/// propagation across function boundaries.
///
/// \returns true if at least one function is specialized.
bool
specializeFunctions(SmallVectorImpl<Function *> &FuncDecls,
SmallVectorImpl<Function *> &CurrentSpecializations) {
// Attempt to specialize the argument-tracked functions.
bool Changed = false;
for (auto *F : FuncDecls) {
if (specializeFunction(F, CurrentSpecializations)) {
Changed = true;
LLVM_DEBUG(dbgs() << "FnSpecialization: Can specialize this func.\n");
} else {
LLVM_DEBUG(
dbgs() << "FnSpecialization: Cannot specialize this func.\n");
}
}
for (auto *SpecializedFunc : CurrentSpecializations) {
SpecializedFuncs.insert(SpecializedFunc);
// TODO: If we want to support specializing specialized functions,
// initialize here the state of the newly created functions, marking
// them argument-tracked and executable.
// Replace the function arguments for the specialized functions.
for (Argument &Arg : SpecializedFunc->args())
if (!Arg.use_empty() && tryToReplaceWithConstant(&Arg))
LLVM_DEBUG(dbgs() << "FnSpecialization: Replaced constant argument: "
<< Arg.getName() << "\n");
}
NumFuncSpecialized += NbFunctionsSpecialized;
return Changed;
}
bool tryToReplaceWithConstant(Value *V) {
if (!V->getType()->isSingleValueType() || isa<CallBase>(V) ||
V->user_empty())
return false;
const ValueLatticeElement &IV = Solver.getLatticeValueFor(V);
if (isOverdefined(IV))
return false;
auto *Const = IV.isConstant() ? Solver.getConstant(IV)
: UndefValue::get(V->getType());
V->replaceAllUsesWith(Const);
// TODO: Update the solver here if we want to specialize specialized
// functions.
return true;
}
private:
// The number of functions specialised, used for collecting statistics and
// also in the cost model.
unsigned NbFunctionsSpecialized = 0;
/// This function decides whether to specialize function \p F based on the
/// known constant values its arguments can take on. Specialization is
/// performed on the first interesting argument. Specializations based on
/// additional arguments will be evaluated on following iterations of the
/// main IPSCCP solve loop. \returns true if the function is specialized and
/// false otherwise.
bool specializeFunction(Function *F,
SmallVectorImpl<Function *> &Specializations) {
// Do not specialize the cloned function again.
if (SpecializedFuncs.contains(F)) {
return false;
}
// If we're optimizing the function for size, we shouldn't specialize it.
if (F->hasOptSize() ||
shouldOptimizeForSize(F, nullptr, nullptr, PGSOQueryType::IRPass))
return false;
// Exit if the function is not executable. There's no point in specializing
// a dead function.
if (!Solver.isBlockExecutable(&F->getEntryBlock()))
return false;
LLVM_DEBUG(dbgs() << "FnSpecialization: Try function: " << F->getName()
<< "\n");
// Determine if we should specialize the function based on the values the
// argument can take on. If specialization is not profitable, we continue
// on to the next argument.
for (Argument &A : F->args()) {
LLVM_DEBUG(dbgs() << "FnSpecialization: Analysing arg: " << A.getName()
<< "\n");
// True if this will be a partial specialization. We will need to keep
// the original function around in addition to the added specializations.
bool IsPartial = true;
// Determine if this argument is interesting. If we know the argument can
// take on any constant values, they are collected in Constants. If the
// argument can only ever equal a constant value in Constants, the
// function will be completely specialized, and the IsPartial flag will
// be set to false by isArgumentInteresting (that function only adds
// values to the Constants list that are deemed profitable).
SmallVector<Constant *, 4> Constants;
if (!isArgumentInteresting(&A, Constants, IsPartial)) {
LLVM_DEBUG(dbgs() << "FnSpecialization: Argument is not interesting\n");
continue;
}
assert(!Constants.empty() && "No constants on which to specialize");
LLVM_DEBUG(dbgs() << "FnSpecialization: Argument is interesting!\n"
<< "FnSpecialization: Specializing '" << F->getName()
<< "' on argument: " << A << "\n"
<< "FnSpecialization: Constants are:\n\n";
for (unsigned I = 0; I < Constants.size(); ++I) dbgs()
<< *Constants[I] << "\n";
dbgs() << "FnSpecialization: End of constants\n\n");
// Create a version of the function in which the argument is marked
// constant with the given value.
for (auto *C : Constants) {
// Clone the function. We leave the ValueToValueMap empty to allow
// IPSCCP to propagate the constant arguments.
ValueToValueMapTy EmptyMap;
Function *Clone = CloneFunction(F, EmptyMap);
Argument *ClonedArg = Clone->arg_begin() + A.getArgNo();
// Rewrite calls to the function so that they call the clone instead.
rewriteCallSites(F, Clone, *ClonedArg, C);
// Initialize the lattice state of the arguments of the function clone,
// marking the argument on which we specialized the function constant
// with the given value.
Solver.markArgInFuncSpecialization(F, ClonedArg, C);
// Mark all the specialized functions
Specializations.push_back(Clone);
NbFunctionsSpecialized++;
}
// TODO: if we want to support specialize specialized functions, and if
// the function has been completely specialized, the original function is
// no longer needed, so we would need to mark it unreachable here.
// FIXME: Only one argument per function.
return true;
}
return false;
}
/// Compute the cost of specializing function \p F.
InstructionCost getSpecializationCost(Function *F) {
// Compute the code metrics for the function.
SmallPtrSet<const Value *, 32> EphValues;
CodeMetrics::collectEphemeralValues(F, &(GetAC)(*F), EphValues);
CodeMetrics Metrics;
for (BasicBlock &BB : *F)
Metrics.analyzeBasicBlock(&BB, (GetTTI)(*F), EphValues);
// If the code metrics reveal that we shouldn't duplicate the function, we
// shouldn't specialize it. Set the specialization cost to Invalid.
if (Metrics.notDuplicatable) {
InstructionCost C{};
C.setInvalid();
return C;
}
// Otherwise, set the specialization cost to be the cost of all the
// instructions in the function and penalty for specializing more functions.
unsigned Penalty = NbFunctionsSpecialized + 1;
return Metrics.NumInsts * InlineConstants::InstrCost * Penalty;
}
InstructionCost getUserBonus(User *U, llvm::TargetTransformInfo &TTI,
LoopInfo &LI) {
auto *I = dyn_cast_or_null<Instruction>(U);
// If not an instruction we do not know how to evaluate.
// Keep minimum possible cost for now so that it doesnt affect
// specialization.
if (!I)
return std::numeric_limits<unsigned>::min();
auto Cost = TTI.getUserCost(U, TargetTransformInfo::TCK_SizeAndLatency);
// Traverse recursively if there are more uses.
// TODO: Any other instructions to be added here?
if (I->mayReadFromMemory() || I->isCast())
for (auto *User : I->users())
Cost += getUserBonus(User, TTI, LI);
// Increase the cost if it is inside the loop.
auto LoopDepth = LI.getLoopDepth(I->getParent());
Cost *= std::pow((double)AvgLoopIterationCount, LoopDepth);
return Cost;
}
/// Compute a bonus for replacing argument \p A with constant \p C.
InstructionCost getSpecializationBonus(Argument *A, Constant *C) {
Function *F = A->getParent();
DominatorTree DT(*F);
LoopInfo LI(DT);
auto &TTI = (GetTTI)(*F);
LLVM_DEBUG(dbgs() << "FnSpecialization: Analysing bonus for: " << *A
<< "\n");
InstructionCost TotalCost = 0;
for (auto *U : A->users()) {
TotalCost += getUserBonus(U, TTI, LI);
LLVM_DEBUG(dbgs() << "FnSpecialization: User cost ";
TotalCost.print(dbgs()); dbgs() << " for: " << *U << "\n");
}
// The below heuristic is only concerned with exposing inlining
// opportunities via indirect call promotion. If the argument is not a
// function pointer, give up.
if (!isa<PointerType>(A->getType()) ||
!isa<FunctionType>(A->getType()->getPointerElementType()))
return TotalCost;
// Since the argument is a function pointer, its incoming constant values
// should be functions or constant expressions. The code below attempts to
// look through cast expressions to find the function that will be called.
Value *CalledValue = C;
while (isa<ConstantExpr>(CalledValue) &&
cast<ConstantExpr>(CalledValue)->isCast())
CalledValue = cast<User>(CalledValue)->getOperand(0);
Function *CalledFunction = dyn_cast<Function>(CalledValue);
if (!CalledFunction)
return TotalCost;
// Get TTI for the called function (used for the inline cost).
auto &CalleeTTI = (GetTTI)(*CalledFunction);
// Look at all the call sites whose called value is the argument.
// Specializing the function on the argument would allow these indirect
// calls to be promoted to direct calls. If the indirect call promotion
// would likely enable the called function to be inlined, specializing is a
// good idea.
int Bonus = 0;
for (User *U : A->users()) {
if (!isa<CallInst>(U) && !isa<InvokeInst>(U))
continue;
auto *CS = cast<CallBase>(U);
if (CS->getCalledOperand() != A)
continue;
// Get the cost of inlining the called function at this call site. Note
// that this is only an estimate. The called function may eventually
// change in a way that leads to it not being inlined here, even though
// inlining looks profitable now. For example, one of its called
// functions may be inlined into it, making the called function too large
// to be inlined into this call site.
//
// We apply a boost for performing indirect call promotion by increasing
// the default threshold by the threshold for indirect calls.
auto Params = getInlineParams();
Params.DefaultThreshold += InlineConstants::IndirectCallThreshold;
InlineCost IC =
getInlineCost(*CS, CalledFunction, Params, CalleeTTI, GetAC, GetTLI);
// We clamp the bonus for this call to be between zero and the default
// threshold.
if (IC.isAlways())
Bonus += Params.DefaultThreshold;
else if (IC.isVariable() && IC.getCostDelta() > 0)
Bonus += IC.getCostDelta();
}
return TotalCost + Bonus;
}
/// Determine if we should specialize a function based on the incoming values
/// of the given argument.
///
/// This function implements the goal-directed heuristic. It determines if
/// specializing the function based on the incoming values of argument \p A
/// would result in any significant optimization opportunities. If
/// optimization opportunities exist, the constant values of \p A on which to
/// specialize the function are collected in \p Constants. If the values in
/// \p Constants represent the complete set of values that \p A can take on,
/// the function will be completely specialized, and the \p IsPartial flag is
/// set to false.
///
/// \returns true if the function should be specialized on the given
/// argument.
bool isArgumentInteresting(Argument *A,
SmallVectorImpl<Constant *> &Constants,
bool &IsPartial) {
Function *F = A->getParent();
// For now, don't attempt to specialize functions based on the values of
// composite types.
if (!A->getType()->isSingleValueType() || A->user_empty())
return false;
// If the argument isn't overdefined, there's nothing to do. It should
// already be constant.
if (!Solver.getLatticeValueFor(A).isOverdefined()) {
LLVM_DEBUG(dbgs() << "FnSpecialization: nothing to do, arg is already "
<< "constant?\n");
return false;
}
// Collect the constant values that the argument can take on. If the
// argument can't take on any constant values, we aren't going to
// specialize the function. While it's possible to specialize the function
// based on non-constant arguments, there's likely not much benefit to
// constant propagation in doing so.
//
// TODO 1: currently it won't specialize if there are over the threshold of
// calls using the same argument, e.g foo(a) x 4 and foo(b) x 1, but it
// might be beneficial to take the occurrences into account in the cost
// model, so we would need to find the unique constants.
//
// TODO 2: this currently does not support constants, i.e. integer ranges.
//
SmallVector<Constant *, 4> PossibleConstants;
bool AllConstant = getPossibleConstants(A, PossibleConstants);
if (PossibleConstants.empty()) {
LLVM_DEBUG(dbgs() << "FnSpecialization: no possible constants found\n");
return false;
}
if (PossibleConstants.size() > MaxConstantsThreshold) {
LLVM_DEBUG(dbgs() << "FnSpecialization: number of constants found exceed "
<< "the maximum number of constants threshold.\n");
return false;
}
// Determine if it would be profitable to create a specialization of the
// function where the argument takes on the given constant value. If so,
// add the constant to Constants.
auto FnSpecCost = getSpecializationCost(F);
if (!FnSpecCost.isValid()) {
LLVM_DEBUG(dbgs() << "FnSpecialization: Invalid specialisation cost.\n");
return false;
}
LLVM_DEBUG(dbgs() << "FnSpecialization: func specialisation cost: ";
FnSpecCost.print(dbgs()); dbgs() << "\n");
for (auto *C : PossibleConstants) {
LLVM_DEBUG(dbgs() << "FnSpecialization: Constant: " << *C << "\n");
if (ForceFunctionSpecialization) {
LLVM_DEBUG(dbgs() << "FnSpecialization: Forced!\n");
Constants.push_back(C);
continue;
}
if (getSpecializationBonus(A, C) > FnSpecCost) {
LLVM_DEBUG(dbgs() << "FnSpecialization: profitable!\n");
Constants.push_back(C);
} else {
LLVM_DEBUG(dbgs() << "FnSpecialization: not profitable\n");
}
}
// None of the constant values the argument can take on were deemed good
// candidates on which to specialize the function.
if (Constants.empty())
return false;
// This will be a partial specialization if some of the constants were
// rejected due to their profitability.
IsPartial = !AllConstant || PossibleConstants.size() != Constants.size();
return true;
}
/// Collect in \p Constants all the constant values that argument \p A can
/// take on.
///
/// \returns true if all of the values the argument can take on are constant
/// (e.g., the argument's parent function cannot be called with an
/// overdefined value).
bool getPossibleConstants(Argument *A,
SmallVectorImpl<Constant *> &Constants) {
Function *F = A->getParent();
bool AllConstant = true;
// Iterate over all the call sites of the argument's parent function.
for (User *U : F->users()) {
if (!isa<CallInst>(U) && !isa<InvokeInst>(U))
continue;
auto &CS = *cast<CallBase>(U);
// If the parent of the call site will never be executed, we don't need
// to worry about the passed value.
if (!Solver.isBlockExecutable(CS.getParent()))
continue;
auto *V = CS.getArgOperand(A->getArgNo());
// TrackValueOfGlobalVariable only tracks scalar global variables.
if (auto *GV = dyn_cast<GlobalVariable>(V)) {
if (!GV->getValueType()->isSingleValueType()) {
return false;
}
}
if (isa<Constant>(V) && (Solver.getLatticeValueFor(V).isConstant() ||
EnableSpecializationForLiteralConstant))
Constants.push_back(cast<Constant>(V));
else
AllConstant = false;
}
// If the argument can only take on constant values, AllConstant will be
// true.
return AllConstant;
}
/// Rewrite calls to function \p F to call function \p Clone instead.
///
/// This function modifies calls to function \p F whose argument at index \p
/// ArgNo is equal to constant \p C. The calls are rewritten to call function
/// \p Clone instead.
void rewriteCallSites(Function *F, Function *Clone, Argument &Arg,
Constant *C) {
unsigned ArgNo = Arg.getArgNo();
SmallVector<CallBase *, 4> CallSitesToRewrite;
for (auto *U : F->users()) {
if (!isa<CallInst>(U) && !isa<InvokeInst>(U))
continue;
auto &CS = *cast<CallBase>(U);
if (!CS.getCalledFunction() || CS.getCalledFunction() != F)
continue;
CallSitesToRewrite.push_back(&CS);
}
for (auto *CS : CallSitesToRewrite) {
if ((CS->getFunction() == Clone && CS->getArgOperand(ArgNo) == &Arg) ||
CS->getArgOperand(ArgNo) == C) {
CS->setCalledFunction(Clone);
Solver.markOverdefined(CS);
}
}
}
};
/// Function to clean up the left over intrinsics from SCCP util.
static void cleanup(Module &M) {
for (Function &F : M) {
for (BasicBlock &BB : F) {
for (BasicBlock::iterator BI = BB.begin(), E = BB.end(); BI != E;) {
Instruction *Inst = &*BI++;
if (auto *II = dyn_cast<IntrinsicInst>(Inst)) {
if (II->getIntrinsicID() == Intrinsic::ssa_copy) {
Value *Op = II->getOperand(0);
Inst->replaceAllUsesWith(Op);
Inst->eraseFromParent();
}
}
}
}
}
}
bool llvm::runFunctionSpecialization(
Module &M, const DataLayout &DL,
std::function<TargetLibraryInfo &(Function &)> GetTLI,
std::function<TargetTransformInfo &(Function &)> GetTTI,
std::function<AssumptionCache &(Function &)> GetAC,
function_ref<AnalysisResultsForFn(Function &)> GetAnalysis) {
SCCPSolver Solver(DL, GetTLI, M.getContext());
FunctionSpecializer FS(Solver, GetAC, GetTTI, GetTLI);
bool Changed = false;
// Loop over all functions, marking arguments to those with their addresses
// taken or that are external as overdefined.
for (Function &F : M) {
if (F.isDeclaration())
continue;
if (F.hasFnAttribute(Attribute::NoDuplicate))
continue;
LLVM_DEBUG(dbgs() << "\nFnSpecialization: Analysing decl: " << F.getName()
<< "\n");
Solver.addAnalysis(F, GetAnalysis(F));
// Determine if we can track the function's arguments. If so, add the
// function to the solver's set of argument-tracked functions.
if (canTrackArgumentsInterprocedurally(&F)) {
LLVM_DEBUG(dbgs() << "FnSpecialization: Can track arguments\n");
Solver.addArgumentTrackedFunction(&F);
continue;
} else {
LLVM_DEBUG(dbgs() << "FnSpecialization: Can't track arguments!\n"
<< "FnSpecialization: Doesn't have local linkage, or "
<< "has its address taken\n");
}
// Assume the function is called.
Solver.markBlockExecutable(&F.front());
// Assume nothing about the incoming arguments.
for (Argument &AI : F.args())
Solver.markOverdefined(&AI);
}
// Determine if we can track any of the module's global variables. If so, add
// the global variables we can track to the solver's set of tracked global
// variables.
for (GlobalVariable &G : M.globals()) {
G.removeDeadConstantUsers();
if (canTrackGlobalVariableInterprocedurally(&G))
Solver.trackValueOfGlobalVariable(&G);
}
// Solve for constants.
auto RunSCCPSolver = [&](auto &WorkList) {
bool ResolvedUndefs = true;
while (ResolvedUndefs) {
LLVM_DEBUG(dbgs() << "FnSpecialization: Running solver\n");
Solver.solve();
LLVM_DEBUG(dbgs() << "FnSpecialization: Resolving undefs\n");
ResolvedUndefs = false;
for (Function *F : WorkList)
if (Solver.resolvedUndefsIn(*F))
ResolvedUndefs = true;
}
for (auto *F : WorkList) {
for (BasicBlock &BB : *F) {
if (!Solver.isBlockExecutable(&BB))
continue;
for (auto &I : make_early_inc_range(BB))
FS.tryToReplaceWithConstant(&I);
}
}
};
auto &TrackedFuncs = Solver.getArgumentTrackedFunctions();
SmallVector<Function *, 16> FuncDecls(TrackedFuncs.begin(),
TrackedFuncs.end());
#ifndef NDEBUG
LLVM_DEBUG(dbgs() << "FnSpecialization: Worklist fn decls:\n");
for (auto *F : FuncDecls)
LLVM_DEBUG(dbgs() << "FnSpecialization: *) " << F->getName() << "\n");
#endif
// Initially resolve the constants in all the argument tracked functions.
RunSCCPSolver(FuncDecls);
SmallVector<Function *, 2> CurrentSpecializations;
unsigned I = 0;
while (FuncSpecializationMaxIters != I++ &&
FS.specializeFunctions(FuncDecls, CurrentSpecializations)) {
// TODO: run the solver here for the specialized functions only if we want
// to specialize recursively.
CurrentSpecializations.clear();
Changed = true;
}
// Clean up the IR by removing ssa_copy intrinsics.
cleanup(M);
return Changed;
}
|