1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286
|
//===- DFAJumpThreading.cpp - Threads a switch statement inside a loop ----===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Transform each threading path to effectively jump thread the DFA. For
// example, the CFG below could be transformed as follows, where the cloned
// blocks unconditionally branch to the next correct case based on what is
// identified in the analysis.
//
// sw.bb sw.bb
// / | \ / | \
// case1 case2 case3 case1 case2 case3
// \ | / | | |
// determinator det.2 det.3 det.1
// br sw.bb / | \
// sw.bb.2 sw.bb.3 sw.bb.1
// br case2 br case3 br case1ยง
//
// Definitions and Terminology:
//
// * Threading path:
// a list of basic blocks, the exit state, and the block that determines
// the next state, for which the following notation will be used:
// < path of BBs that form a cycle > [ state, determinator ]
//
// * Predictable switch:
// The switch variable is always a known constant so that all conditional
// jumps based on switch variable can be converted to unconditional jump.
//
// * Determinator:
// The basic block that determines the next state of the DFA.
//
// Representing the optimization in C-like pseudocode: the code pattern on the
// left could functionally be transformed to the right pattern if the switch
// condition is predictable.
//
// X = A goto A
// for (...) A:
// switch (X) ...
// case A goto B
// X = B B:
// case B ...
// X = C goto C
//
// The pass first checks that switch variable X is decided by the control flow
// path taken in the loop; for example, in case B, the next value of X is
// decided to be C. It then enumerates through all paths in the loop and labels
// the basic blocks where the next state is decided.
//
// Using this information it creates new paths that unconditionally branch to
// the next case. This involves cloning code, so it only gets triggered if the
// amount of code duplicated is below a threshold.
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Scalar/DFAJumpThreading.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/CodeMetrics.h"
#include "llvm/Analysis/LoopIterator.h"
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Verifier.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/Cloning.h"
#include "llvm/Transforms/Utils/SSAUpdaterBulk.h"
#include "llvm/Transforms/Utils/ValueMapper.h"
#include <algorithm>
#include <deque>
#include <unordered_map>
#include <unordered_set>
using namespace llvm;
#define DEBUG_TYPE "dfa-jump-threading"
STATISTIC(NumTransforms, "Number of transformations done");
STATISTIC(NumCloned, "Number of blocks cloned");
STATISTIC(NumPaths, "Number of individual paths threaded");
static cl::opt<bool>
ClViewCfgBefore("dfa-jump-view-cfg-before",
cl::desc("View the CFG before DFA Jump Threading"),
cl::Hidden, cl::init(false));
static cl::opt<unsigned> MaxPathLength(
"dfa-max-path-length",
cl::desc("Max number of blocks searched to find a threading path"),
cl::Hidden, cl::init(20));
static cl::opt<unsigned>
CostThreshold("dfa-cost-threshold",
cl::desc("Maximum cost accepted for the transformation"),
cl::Hidden, cl::init(50));
namespace {
class SelectInstToUnfold {
SelectInst *SI;
PHINode *SIUse;
public:
SelectInstToUnfold(SelectInst *SI, PHINode *SIUse) : SI(SI), SIUse(SIUse) {}
SelectInst *getInst() { return SI; }
PHINode *getUse() { return SIUse; }
explicit operator bool() const { return SI && SIUse; }
};
void unfold(DomTreeUpdater *DTU, SelectInstToUnfold SIToUnfold,
std::vector<SelectInstToUnfold> *NewSIsToUnfold,
std::vector<BasicBlock *> *NewBBs);
class DFAJumpThreading {
public:
DFAJumpThreading(AssumptionCache *AC, DominatorTree *DT,
TargetTransformInfo *TTI, OptimizationRemarkEmitter *ORE)
: AC(AC), DT(DT), TTI(TTI), ORE(ORE) {}
bool run(Function &F);
private:
void
unfoldSelectInstrs(DominatorTree *DT,
const SmallVector<SelectInstToUnfold, 4> &SelectInsts) {
DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
SmallVector<SelectInstToUnfold, 4> Stack;
for (SelectInstToUnfold SIToUnfold : SelectInsts)
Stack.push_back(SIToUnfold);
while (!Stack.empty()) {
SelectInstToUnfold SIToUnfold = Stack.back();
Stack.pop_back();
std::vector<SelectInstToUnfold> NewSIsToUnfold;
std::vector<BasicBlock *> NewBBs;
unfold(&DTU, SIToUnfold, &NewSIsToUnfold, &NewBBs);
// Put newly discovered select instructions into the work list.
for (const SelectInstToUnfold &NewSIToUnfold : NewSIsToUnfold)
Stack.push_back(NewSIToUnfold);
}
}
AssumptionCache *AC;
DominatorTree *DT;
TargetTransformInfo *TTI;
OptimizationRemarkEmitter *ORE;
};
class DFAJumpThreadingLegacyPass : public FunctionPass {
public:
static char ID; // Pass identification
DFAJumpThreadingLegacyPass() : FunctionPass(ID) {}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addRequired<AssumptionCacheTracker>();
AU.addRequired<DominatorTreeWrapperPass>();
AU.addRequired<TargetTransformInfoWrapperPass>();
AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
}
bool runOnFunction(Function &F) override {
if (skipFunction(F))
return false;
AssumptionCache *AC =
&getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
DominatorTree *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
TargetTransformInfo *TTI =
&getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
OptimizationRemarkEmitter *ORE =
&getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
return DFAJumpThreading(AC, DT, TTI, ORE).run(F);
}
};
} // end anonymous namespace
char DFAJumpThreadingLegacyPass::ID = 0;
INITIALIZE_PASS_BEGIN(DFAJumpThreadingLegacyPass, "dfa-jump-threading",
"DFA Jump Threading", false, false)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
INITIALIZE_PASS_END(DFAJumpThreadingLegacyPass, "dfa-jump-threading",
"DFA Jump Threading", false, false)
// Public interface to the DFA Jump Threading pass
FunctionPass *llvm::createDFAJumpThreadingPass() {
return new DFAJumpThreadingLegacyPass();
}
namespace {
/// Create a new basic block and sink \p SIToSink into it.
void createBasicBlockAndSinkSelectInst(
DomTreeUpdater *DTU, SelectInst *SI, PHINode *SIUse, SelectInst *SIToSink,
BasicBlock *EndBlock, StringRef NewBBName, BasicBlock **NewBlock,
BranchInst **NewBranch, std::vector<SelectInstToUnfold> *NewSIsToUnfold,
std::vector<BasicBlock *> *NewBBs) {
assert(SIToSink->hasOneUse());
assert(NewBlock);
assert(NewBranch);
*NewBlock = BasicBlock::Create(SI->getContext(), NewBBName,
EndBlock->getParent(), EndBlock);
NewBBs->push_back(*NewBlock);
*NewBranch = BranchInst::Create(EndBlock, *NewBlock);
SIToSink->moveBefore(*NewBranch);
NewSIsToUnfold->push_back(SelectInstToUnfold(SIToSink, SIUse));
DTU->applyUpdates({{DominatorTree::Insert, *NewBlock, EndBlock}});
}
/// Unfold the select instruction held in \p SIToUnfold by replacing it with
/// control flow.
///
/// Put newly discovered select instructions into \p NewSIsToUnfold. Put newly
/// created basic blocks into \p NewBBs.
///
/// TODO: merge it with CodeGenPrepare::optimizeSelectInst() if possible.
void unfold(DomTreeUpdater *DTU, SelectInstToUnfold SIToUnfold,
std::vector<SelectInstToUnfold> *NewSIsToUnfold,
std::vector<BasicBlock *> *NewBBs) {
SelectInst *SI = SIToUnfold.getInst();
PHINode *SIUse = SIToUnfold.getUse();
BasicBlock *StartBlock = SI->getParent();
BasicBlock *EndBlock = SIUse->getParent();
BranchInst *StartBlockTerm =
dyn_cast<BranchInst>(StartBlock->getTerminator());
assert(StartBlockTerm && StartBlockTerm->isUnconditional());
assert(SI->hasOneUse());
// These are the new basic blocks for the conditional branch.
// At least one will become an actual new basic block.
BasicBlock *TrueBlock = nullptr;
BasicBlock *FalseBlock = nullptr;
BranchInst *TrueBranch = nullptr;
BranchInst *FalseBranch = nullptr;
// Sink select instructions to be able to unfold them later.
if (SelectInst *SIOp = dyn_cast<SelectInst>(SI->getTrueValue())) {
createBasicBlockAndSinkSelectInst(DTU, SI, SIUse, SIOp, EndBlock,
"si.unfold.true", &TrueBlock, &TrueBranch,
NewSIsToUnfold, NewBBs);
}
if (SelectInst *SIOp = dyn_cast<SelectInst>(SI->getFalseValue())) {
createBasicBlockAndSinkSelectInst(DTU, SI, SIUse, SIOp, EndBlock,
"si.unfold.false", &FalseBlock,
&FalseBranch, NewSIsToUnfold, NewBBs);
}
// If there was nothing to sink, then arbitrarily choose the 'false' side
// for a new input value to the PHI.
if (!TrueBlock && !FalseBlock) {
FalseBlock = BasicBlock::Create(SI->getContext(), "si.unfold.false",
EndBlock->getParent(), EndBlock);
NewBBs->push_back(FalseBlock);
BranchInst::Create(EndBlock, FalseBlock);
DTU->applyUpdates({{DominatorTree::Insert, FalseBlock, EndBlock}});
}
// Insert the real conditional branch based on the original condition.
// If we did not create a new block for one of the 'true' or 'false' paths
// of the condition, it means that side of the branch goes to the end block
// directly and the path originates from the start block from the point of
// view of the new PHI.
BasicBlock *TT = EndBlock;
BasicBlock *FT = EndBlock;
if (TrueBlock && FalseBlock) {
// A diamond.
TT = TrueBlock;
FT = FalseBlock;
// Update the phi node of SI.
SIUse->removeIncomingValue(StartBlock, /* DeletePHIIfEmpty = */ false);
SIUse->addIncoming(SI->getTrueValue(), TrueBlock);
SIUse->addIncoming(SI->getFalseValue(), FalseBlock);
// Update any other PHI nodes in EndBlock.
for (PHINode &Phi : EndBlock->phis()) {
if (&Phi != SIUse) {
Phi.addIncoming(Phi.getIncomingValueForBlock(StartBlock), TrueBlock);
Phi.addIncoming(Phi.getIncomingValueForBlock(StartBlock), FalseBlock);
}
}
} else {
BasicBlock *NewBlock = nullptr;
Value *SIOp1 = SI->getTrueValue();
Value *SIOp2 = SI->getFalseValue();
// A triangle pointing right.
if (!TrueBlock) {
NewBlock = FalseBlock;
FT = FalseBlock;
}
// A triangle pointing left.
else {
NewBlock = TrueBlock;
TT = TrueBlock;
std::swap(SIOp1, SIOp2);
}
// Update the phi node of SI.
for (unsigned Idx = 0; Idx < SIUse->getNumIncomingValues(); ++Idx) {
if (SIUse->getIncomingBlock(Idx) == StartBlock)
SIUse->setIncomingValue(Idx, SIOp1);
}
SIUse->addIncoming(SIOp2, NewBlock);
// Update any other PHI nodes in EndBlock.
for (auto II = EndBlock->begin(); PHINode *Phi = dyn_cast<PHINode>(II);
++II) {
if (Phi != SIUse)
Phi->addIncoming(Phi->getIncomingValueForBlock(StartBlock), NewBlock);
}
}
StartBlockTerm->eraseFromParent();
BranchInst::Create(TT, FT, SI->getCondition(), StartBlock);
DTU->applyUpdates({{DominatorTree::Insert, StartBlock, TT},
{DominatorTree::Insert, StartBlock, FT}});
// The select is now dead.
SI->eraseFromParent();
}
struct ClonedBlock {
BasicBlock *BB;
uint64_t State; ///< \p State corresponds to the next value of a switch stmnt.
};
typedef std::deque<BasicBlock *> PathType;
typedef std::vector<PathType> PathsType;
typedef std::set<const BasicBlock *> VisitedBlocks;
typedef std::vector<ClonedBlock> CloneList;
// This data structure keeps track of all blocks that have been cloned. If two
// different ThreadingPaths clone the same block for a certain state it should
// be reused, and it can be looked up in this map.
typedef DenseMap<BasicBlock *, CloneList> DuplicateBlockMap;
// This map keeps track of all the new definitions for an instruction. This
// information is needed when restoring SSA form after cloning blocks.
typedef DenseMap<Instruction *, std::vector<Instruction *>> DefMap;
inline raw_ostream &operator<<(raw_ostream &OS, const PathType &Path) {
OS << "< ";
for (const BasicBlock *BB : Path) {
std::string BBName;
if (BB->hasName())
raw_string_ostream(BBName) << BB->getName();
else
raw_string_ostream(BBName) << BB;
OS << BBName << " ";
}
OS << ">";
return OS;
}
/// ThreadingPath is a path in the control flow of a loop that can be threaded
/// by cloning necessary basic blocks and replacing conditional branches with
/// unconditional ones. A threading path includes a list of basic blocks, the
/// exit state, and the block that determines the next state.
struct ThreadingPath {
/// Exit value is DFA's exit state for the given path.
uint64_t getExitValue() const { return ExitVal; }
void setExitValue(const ConstantInt *V) {
ExitVal = V->getZExtValue();
IsExitValSet = true;
}
bool isExitValueSet() const { return IsExitValSet; }
/// Determinator is the basic block that determines the next state of the DFA.
const BasicBlock *getDeterminatorBB() const { return DBB; }
void setDeterminator(const BasicBlock *BB) { DBB = BB; }
/// Path is a list of basic blocks.
const PathType &getPath() const { return Path; }
void setPath(const PathType &NewPath) { Path = NewPath; }
void print(raw_ostream &OS) const {
OS << Path << " [ " << ExitVal << ", " << DBB->getName() << " ]";
}
private:
PathType Path;
uint64_t ExitVal;
const BasicBlock *DBB = nullptr;
bool IsExitValSet = false;
};
#ifndef NDEBUG
inline raw_ostream &operator<<(raw_ostream &OS, const ThreadingPath &TPath) {
TPath.print(OS);
return OS;
}
#endif
struct MainSwitch {
MainSwitch(SwitchInst *SI, OptimizationRemarkEmitter *ORE) {
if (isPredictable(SI)) {
Instr = SI;
} else {
ORE->emit([&]() {
return OptimizationRemarkMissed(DEBUG_TYPE, "SwitchNotPredictable", SI)
<< "Switch instruction is not predictable.";
});
}
}
virtual ~MainSwitch() = default;
SwitchInst *getInstr() const { return Instr; }
const SmallVector<SelectInstToUnfold, 4> getSelectInsts() {
return SelectInsts;
}
private:
/// Do a use-def chain traversal. Make sure the value of the switch variable
/// is always a known constant. This means that all conditional jumps based on
/// switch variable can be converted to unconditional jumps.
bool isPredictable(const SwitchInst *SI) {
std::deque<Instruction *> Q;
SmallSet<Value *, 16> SeenValues;
SelectInsts.clear();
Value *FirstDef = SI->getOperand(0);
auto *Inst = dyn_cast<Instruction>(FirstDef);
// If this is a function argument or another non-instruction, then give up.
// We are interested in loop local variables.
if (!Inst)
return false;
// Require the first definition to be a PHINode
if (!isa<PHINode>(Inst))
return false;
LLVM_DEBUG(dbgs() << "\tisPredictable() FirstDef: " << *Inst << "\n");
Q.push_back(Inst);
SeenValues.insert(FirstDef);
while (!Q.empty()) {
Instruction *Current = Q.front();
Q.pop_front();
if (auto *Phi = dyn_cast<PHINode>(Current)) {
for (Value *Incoming : Phi->incoming_values()) {
if (!isPredictableValue(Incoming, SeenValues))
return false;
addInstToQueue(Incoming, Q, SeenValues);
}
LLVM_DEBUG(dbgs() << "\tisPredictable() phi: " << *Phi << "\n");
} else if (SelectInst *SelI = dyn_cast<SelectInst>(Current)) {
if (!isValidSelectInst(SelI))
return false;
if (!isPredictableValue(SelI->getTrueValue(), SeenValues) ||
!isPredictableValue(SelI->getFalseValue(), SeenValues)) {
return false;
}
addInstToQueue(SelI->getTrueValue(), Q, SeenValues);
addInstToQueue(SelI->getFalseValue(), Q, SeenValues);
LLVM_DEBUG(dbgs() << "\tisPredictable() select: " << *SelI << "\n");
if (auto *SelIUse = dyn_cast<PHINode>(SelI->user_back()))
SelectInsts.push_back(SelectInstToUnfold(SelI, SelIUse));
} else {
// If it is neither a phi nor a select, then we give up.
return false;
}
}
return true;
}
bool isPredictableValue(Value *InpVal, SmallSet<Value *, 16> &SeenValues) {
if (SeenValues.find(InpVal) != SeenValues.end())
return true;
if (isa<ConstantInt>(InpVal))
return true;
// If this is a function argument or another non-instruction, then give up.
if (!isa<Instruction>(InpVal))
return false;
return true;
}
void addInstToQueue(Value *Val, std::deque<Instruction *> &Q,
SmallSet<Value *, 16> &SeenValues) {
if (SeenValues.find(Val) != SeenValues.end())
return;
if (Instruction *I = dyn_cast<Instruction>(Val))
Q.push_back(I);
SeenValues.insert(Val);
}
bool isValidSelectInst(SelectInst *SI) {
if (!SI->hasOneUse())
return false;
Instruction *SIUse = dyn_cast<Instruction>(SI->user_back());
// The use of the select inst should be either a phi or another select.
if (!SIUse && !(isa<PHINode>(SIUse) || isa<SelectInst>(SIUse)))
return false;
BasicBlock *SIBB = SI->getParent();
// Currently, we can only expand select instructions in basic blocks with
// one successor.
BranchInst *SITerm = dyn_cast<BranchInst>(SIBB->getTerminator());
if (!SITerm || !SITerm->isUnconditional())
return false;
if (isa<PHINode>(SIUse) &&
SIBB->getSingleSuccessor() != dyn_cast<Instruction>(SIUse)->getParent())
return false;
// If select will not be sunk during unfolding, and it is in the same basic
// block as another state defining select, then cannot unfold both.
for (SelectInstToUnfold SIToUnfold : SelectInsts) {
SelectInst *PrevSI = SIToUnfold.getInst();
if (PrevSI->getTrueValue() != SI && PrevSI->getFalseValue() != SI &&
PrevSI->getParent() == SI->getParent())
return false;
}
return true;
}
SwitchInst *Instr = nullptr;
SmallVector<SelectInstToUnfold, 4> SelectInsts;
};
struct AllSwitchPaths {
AllSwitchPaths(const MainSwitch *MSwitch, OptimizationRemarkEmitter *ORE)
: Switch(MSwitch->getInstr()), SwitchBlock(Switch->getParent()),
ORE(ORE) {}
std::vector<ThreadingPath> &getThreadingPaths() { return TPaths; }
unsigned getNumThreadingPaths() { return TPaths.size(); }
SwitchInst *getSwitchInst() { return Switch; }
BasicBlock *getSwitchBlock() { return SwitchBlock; }
void run() {
VisitedBlocks Visited;
PathsType LoopPaths = paths(SwitchBlock, Visited, /* PathDepth = */ 1);
StateDefMap StateDef = getStateDefMap();
for (PathType Path : LoopPaths) {
ThreadingPath TPath;
const BasicBlock *PrevBB = Path.back();
for (const BasicBlock *BB : Path) {
if (StateDef.count(BB) != 0) {
const PHINode *Phi = dyn_cast<PHINode>(StateDef[BB]);
assert(Phi && "Expected a state-defining instr to be a phi node.");
const Value *V = Phi->getIncomingValueForBlock(PrevBB);
if (const ConstantInt *C = dyn_cast<const ConstantInt>(V)) {
TPath.setExitValue(C);
TPath.setDeterminator(BB);
TPath.setPath(Path);
}
}
// Switch block is the determinator, this is the final exit value.
if (TPath.isExitValueSet() && BB == Path.front())
break;
PrevBB = BB;
}
if (TPath.isExitValueSet())
TPaths.push_back(TPath);
}
}
private:
// Value: an instruction that defines a switch state;
// Key: the parent basic block of that instruction.
typedef DenseMap<const BasicBlock *, const PHINode *> StateDefMap;
PathsType paths(BasicBlock *BB, VisitedBlocks &Visited,
unsigned PathDepth) const {
PathsType Res;
// Stop exploring paths after visiting MaxPathLength blocks
if (PathDepth > MaxPathLength) {
ORE->emit([&]() {
return OptimizationRemarkAnalysis(DEBUG_TYPE, "MaxPathLengthReached",
Switch)
<< "Exploration stopped after visiting MaxPathLength="
<< ore::NV("MaxPathLength", MaxPathLength) << " blocks.";
});
return Res;
}
Visited.insert(BB);
// Some blocks have multiple edges to the same successor, and this set
// is used to prevent a duplicate path from being generated
SmallSet<BasicBlock *, 4> Successors;
for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI) {
BasicBlock *Succ = *SI;
if (Successors.find(Succ) != Successors.end())
continue;
Successors.insert(Succ);
// Found a cycle through the SwitchBlock
if (Succ == SwitchBlock) {
Res.push_back({BB});
continue;
}
// We have encountered a cycle, do not get caught in it
if (Visited.find(Succ) != Visited.end())
continue;
PathsType SuccPaths = paths(Succ, Visited, PathDepth + 1);
for (PathType Path : SuccPaths) {
PathType NewPath(Path);
NewPath.push_front(BB);
Res.push_back(NewPath);
}
}
// This block could now be visited again from a different predecessor. Note
// that this will result in exponential runtime. Subpaths could possibly be
// cached but it takes a lot of memory to store them.
Visited.erase(BB);
return Res;
}
/// Walk the use-def chain and collect all the state-defining instructions.
StateDefMap getStateDefMap() const {
StateDefMap Res;
Value *FirstDef = Switch->getOperand(0);
assert(isa<PHINode>(FirstDef) && "After select unfolding, all state "
"definitions are expected to be phi "
"nodes.");
SmallVector<PHINode *, 8> Stack;
Stack.push_back(dyn_cast<PHINode>(FirstDef));
SmallSet<Value *, 16> SeenValues;
while (!Stack.empty()) {
PHINode *CurPhi = Stack.back();
Stack.pop_back();
Res[CurPhi->getParent()] = CurPhi;
SeenValues.insert(CurPhi);
for (Value *Incoming : CurPhi->incoming_values()) {
if (Incoming == FirstDef || isa<ConstantInt>(Incoming) ||
SeenValues.find(Incoming) != SeenValues.end()) {
continue;
}
assert(isa<PHINode>(Incoming) && "After select unfolding, all state "
"definitions are expected to be phi "
"nodes.");
Stack.push_back(cast<PHINode>(Incoming));
}
}
return Res;
}
SwitchInst *Switch;
BasicBlock *SwitchBlock;
OptimizationRemarkEmitter *ORE;
std::vector<ThreadingPath> TPaths;
};
struct TransformDFA {
TransformDFA(AllSwitchPaths *SwitchPaths, DominatorTree *DT,
AssumptionCache *AC, TargetTransformInfo *TTI,
OptimizationRemarkEmitter *ORE,
SmallPtrSet<const Value *, 32> EphValues)
: SwitchPaths(SwitchPaths), DT(DT), AC(AC), TTI(TTI), ORE(ORE),
EphValues(EphValues) {}
void run() {
if (isLegalAndProfitableToTransform()) {
createAllExitPaths();
NumTransforms++;
}
}
private:
/// This function performs both a legality check and profitability check at
/// the same time since it is convenient to do so. It iterates through all
/// blocks that will be cloned, and keeps track of the duplication cost. It
/// also returns false if it is illegal to clone some required block.
bool isLegalAndProfitableToTransform() {
CodeMetrics Metrics;
SwitchInst *Switch = SwitchPaths->getSwitchInst();
// Note that DuplicateBlockMap is not being used as intended here. It is
// just being used to ensure (BB, State) pairs are only counted once.
DuplicateBlockMap DuplicateMap;
for (ThreadingPath &TPath : SwitchPaths->getThreadingPaths()) {
PathType PathBBs = TPath.getPath();
uint64_t NextState = TPath.getExitValue();
const BasicBlock *Determinator = TPath.getDeterminatorBB();
// Update Metrics for the Switch block, this is always cloned
BasicBlock *BB = SwitchPaths->getSwitchBlock();
BasicBlock *VisitedBB = getClonedBB(BB, NextState, DuplicateMap);
if (!VisitedBB) {
Metrics.analyzeBasicBlock(BB, *TTI, EphValues);
DuplicateMap[BB].push_back({BB, NextState});
}
// If the Switch block is the Determinator, then we can continue since
// this is the only block that is cloned and we already counted for it.
if (PathBBs.front() == Determinator)
continue;
// Otherwise update Metrics for all blocks that will be cloned. If any
// block is already cloned and would be reused, don't double count it.
auto DetIt = std::find(PathBBs.begin(), PathBBs.end(), Determinator);
for (auto BBIt = DetIt; BBIt != PathBBs.end(); BBIt++) {
BB = *BBIt;
VisitedBB = getClonedBB(BB, NextState, DuplicateMap);
if (VisitedBB)
continue;
Metrics.analyzeBasicBlock(BB, *TTI, EphValues);
DuplicateMap[BB].push_back({BB, NextState});
}
if (Metrics.notDuplicatable) {
LLVM_DEBUG(dbgs() << "DFA Jump Threading: Not jump threading, contains "
<< "non-duplicatable instructions.\n");
ORE->emit([&]() {
return OptimizationRemarkMissed(DEBUG_TYPE, "NonDuplicatableInst",
Switch)
<< "Contains non-duplicatable instructions.";
});
return false;
}
if (Metrics.convergent) {
LLVM_DEBUG(dbgs() << "DFA Jump Threading: Not jump threading, contains "
<< "convergent instructions.\n");
ORE->emit([&]() {
return OptimizationRemarkMissed(DEBUG_TYPE, "ConvergentInst", Switch)
<< "Contains convergent instructions.";
});
return false;
}
}
unsigned DuplicationCost = 0;
unsigned JumpTableSize = 0;
TTI->getEstimatedNumberOfCaseClusters(*Switch, JumpTableSize, nullptr,
nullptr);
if (JumpTableSize == 0) {
// Factor in the number of conditional branches reduced from jump
// threading. Assume that lowering the switch block is implemented by
// using binary search, hence the LogBase2().
unsigned CondBranches =
APInt(32, Switch->getNumSuccessors()).ceilLogBase2();
DuplicationCost = Metrics.NumInsts / CondBranches;
} else {
// Compared with jump tables, the DFA optimizer removes an indirect branch
// on each loop iteration, thus making branch prediction more precise. The
// more branch targets there are, the more likely it is for the branch
// predictor to make a mistake, and the more benefit there is in the DFA
// optimizer. Thus, the more branch targets there are, the lower is the
// cost of the DFA opt.
DuplicationCost = Metrics.NumInsts / JumpTableSize;
}
LLVM_DEBUG(dbgs() << "\nDFA Jump Threading: Cost to jump thread block "
<< SwitchPaths->getSwitchBlock()->getName()
<< " is: " << DuplicationCost << "\n\n");
if (DuplicationCost > CostThreshold) {
LLVM_DEBUG(dbgs() << "Not jump threading, duplication cost exceeds the "
<< "cost threshold.\n");
ORE->emit([&]() {
return OptimizationRemarkMissed(DEBUG_TYPE, "NotProfitable", Switch)
<< "Duplication cost exceeds the cost threshold (cost="
<< ore::NV("Cost", DuplicationCost)
<< ", threshold=" << ore::NV("Threshold", CostThreshold) << ").";
});
return false;
}
ORE->emit([&]() {
return OptimizationRemark(DEBUG_TYPE, "JumpThreaded", Switch)
<< "Switch statement jump-threaded.";
});
return true;
}
/// Transform each threading path to effectively jump thread the DFA.
void createAllExitPaths() {
DomTreeUpdater DTU(*DT, DomTreeUpdater::UpdateStrategy::Eager);
// Move the switch block to the end of the path, since it will be duplicated
BasicBlock *SwitchBlock = SwitchPaths->getSwitchBlock();
for (ThreadingPath &TPath : SwitchPaths->getThreadingPaths()) {
LLVM_DEBUG(dbgs() << TPath << "\n");
PathType NewPath(TPath.getPath());
NewPath.push_back(SwitchBlock);
TPath.setPath(NewPath);
}
// Transform the ThreadingPaths and keep track of the cloned values
DuplicateBlockMap DuplicateMap;
DefMap NewDefs;
SmallSet<BasicBlock *, 16> BlocksToClean;
for (BasicBlock *BB : successors(SwitchBlock))
BlocksToClean.insert(BB);
for (ThreadingPath &TPath : SwitchPaths->getThreadingPaths()) {
createExitPath(NewDefs, TPath, DuplicateMap, BlocksToClean, &DTU);
NumPaths++;
}
// After all paths are cloned, now update the last successor of the cloned
// path so it skips over the switch statement
for (ThreadingPath &TPath : SwitchPaths->getThreadingPaths())
updateLastSuccessor(TPath, DuplicateMap, &DTU);
// For each instruction that was cloned and used outside, update its uses
updateSSA(NewDefs);
// Clean PHI Nodes for the newly created blocks
for (BasicBlock *BB : BlocksToClean)
cleanPhiNodes(BB);
}
/// For a specific ThreadingPath \p Path, create an exit path starting from
/// the determinator block.
///
/// To remember the correct destination, we have to duplicate blocks
/// corresponding to each state. Also update the terminating instruction of
/// the predecessors, and phis in the successor blocks.
void createExitPath(DefMap &NewDefs, ThreadingPath &Path,
DuplicateBlockMap &DuplicateMap,
SmallSet<BasicBlock *, 16> &BlocksToClean,
DomTreeUpdater *DTU) {
uint64_t NextState = Path.getExitValue();
const BasicBlock *Determinator = Path.getDeterminatorBB();
PathType PathBBs = Path.getPath();
// Don't select the placeholder block in front
if (PathBBs.front() == Determinator)
PathBBs.pop_front();
auto DetIt = std::find(PathBBs.begin(), PathBBs.end(), Determinator);
auto Prev = std::prev(DetIt);
BasicBlock *PrevBB = *Prev;
for (auto BBIt = DetIt; BBIt != PathBBs.end(); BBIt++) {
BasicBlock *BB = *BBIt;
BlocksToClean.insert(BB);
// We already cloned BB for this NextState, now just update the branch
// and continue.
BasicBlock *NextBB = getClonedBB(BB, NextState, DuplicateMap);
if (NextBB) {
updatePredecessor(PrevBB, BB, NextBB, DTU);
PrevBB = NextBB;
continue;
}
// Clone the BB and update the successor of Prev to jump to the new block
BasicBlock *NewBB = cloneBlockAndUpdatePredecessor(
BB, PrevBB, NextState, DuplicateMap, NewDefs, DTU);
DuplicateMap[BB].push_back({NewBB, NextState});
BlocksToClean.insert(NewBB);
PrevBB = NewBB;
}
}
/// Restore SSA form after cloning blocks.
///
/// Each cloned block creates new defs for a variable, and the uses need to be
/// updated to reflect this. The uses may be replaced with a cloned value, or
/// some derived phi instruction. Note that all uses of a value defined in the
/// same block were already remapped when cloning the block.
void updateSSA(DefMap &NewDefs) {
SSAUpdaterBulk SSAUpdate;
SmallVector<Use *, 16> UsesToRename;
for (auto KV : NewDefs) {
Instruction *I = KV.first;
BasicBlock *BB = I->getParent();
std::vector<Instruction *> Cloned = KV.second;
// Scan all uses of this instruction to see if it is used outside of its
// block, and if so, record them in UsesToRename.
for (Use &U : I->uses()) {
Instruction *User = cast<Instruction>(U.getUser());
if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
if (UserPN->getIncomingBlock(U) == BB)
continue;
} else if (User->getParent() == BB) {
continue;
}
UsesToRename.push_back(&U);
}
// If there are no uses outside the block, we're done with this
// instruction.
if (UsesToRename.empty())
continue;
LLVM_DEBUG(dbgs() << "DFA-JT: Renaming non-local uses of: " << *I
<< "\n");
// We found a use of I outside of BB. Rename all uses of I that are
// outside its block to be uses of the appropriate PHI node etc. See
// ValuesInBlocks with the values we know.
unsigned VarNum = SSAUpdate.AddVariable(I->getName(), I->getType());
SSAUpdate.AddAvailableValue(VarNum, BB, I);
for (Instruction *New : Cloned)
SSAUpdate.AddAvailableValue(VarNum, New->getParent(), New);
while (!UsesToRename.empty())
SSAUpdate.AddUse(VarNum, UsesToRename.pop_back_val());
LLVM_DEBUG(dbgs() << "\n");
}
// SSAUpdater handles phi placement and renaming uses with the appropriate
// value.
SSAUpdate.RewriteAllUses(DT);
}
/// Clones a basic block, and adds it to the CFG.
///
/// This function also includes updating phi nodes in the successors of the
/// BB, and remapping uses that were defined locally in the cloned BB.
BasicBlock *cloneBlockAndUpdatePredecessor(BasicBlock *BB, BasicBlock *PrevBB,
uint64_t NextState,
DuplicateBlockMap &DuplicateMap,
DefMap &NewDefs,
DomTreeUpdater *DTU) {
ValueToValueMapTy VMap;
BasicBlock *NewBB = CloneBasicBlock(
BB, VMap, ".jt" + std::to_string(NextState), BB->getParent());
NewBB->moveAfter(BB);
NumCloned++;
for (Instruction &I : *NewBB) {
// Do not remap operands of PHINode in case a definition in BB is an
// incoming value to a phi in the same block. This incoming value will
// be renamed later while restoring SSA.
if (isa<PHINode>(&I))
continue;
RemapInstruction(&I, VMap,
RF_IgnoreMissingLocals | RF_NoModuleLevelChanges);
if (AssumeInst *II = dyn_cast<AssumeInst>(&I))
AC->registerAssumption(II);
}
updateSuccessorPhis(BB, NewBB, NextState, VMap, DuplicateMap);
updatePredecessor(PrevBB, BB, NewBB, DTU);
updateDefMap(NewDefs, VMap);
// Add all successors to the DominatorTree
SmallPtrSet<BasicBlock *, 4> SuccSet;
for (auto *SuccBB : successors(NewBB)) {
if (SuccSet.insert(SuccBB).second)
DTU->applyUpdates({{DominatorTree::Insert, NewBB, SuccBB}});
}
SuccSet.clear();
return NewBB;
}
/// Update the phi nodes in BB's successors.
///
/// This means creating a new incoming value from NewBB with the new
/// instruction wherever there is an incoming value from BB.
void updateSuccessorPhis(BasicBlock *BB, BasicBlock *ClonedBB,
uint64_t NextState, ValueToValueMapTy &VMap,
DuplicateBlockMap &DuplicateMap) {
std::vector<BasicBlock *> BlocksToUpdate;
// If BB is the last block in the path, we can simply update the one case
// successor that will be reached.
if (BB == SwitchPaths->getSwitchBlock()) {
SwitchInst *Switch = SwitchPaths->getSwitchInst();
BasicBlock *NextCase = getNextCaseSuccessor(Switch, NextState);
BlocksToUpdate.push_back(NextCase);
BasicBlock *ClonedSucc = getClonedBB(NextCase, NextState, DuplicateMap);
if (ClonedSucc)
BlocksToUpdate.push_back(ClonedSucc);
}
// Otherwise update phis in all successors.
else {
for (BasicBlock *Succ : successors(BB)) {
BlocksToUpdate.push_back(Succ);
// Check if a successor has already been cloned for the particular exit
// value. In this case if a successor was already cloned, the phi nodes
// in the cloned block should be updated directly.
BasicBlock *ClonedSucc = getClonedBB(Succ, NextState, DuplicateMap);
if (ClonedSucc)
BlocksToUpdate.push_back(ClonedSucc);
}
}
// If there is a phi with an incoming value from BB, create a new incoming
// value for the new predecessor ClonedBB. The value will either be the same
// value from BB or a cloned value.
for (BasicBlock *Succ : BlocksToUpdate) {
for (auto II = Succ->begin(); PHINode *Phi = dyn_cast<PHINode>(II);
++II) {
Value *Incoming = Phi->getIncomingValueForBlock(BB);
if (Incoming) {
if (isa<Constant>(Incoming)) {
Phi->addIncoming(Incoming, ClonedBB);
continue;
}
Value *ClonedVal = VMap[Incoming];
if (ClonedVal)
Phi->addIncoming(ClonedVal, ClonedBB);
else
Phi->addIncoming(Incoming, ClonedBB);
}
}
}
}
/// Sets the successor of PrevBB to be NewBB instead of OldBB. Note that all
/// other successors are kept as well.
void updatePredecessor(BasicBlock *PrevBB, BasicBlock *OldBB,
BasicBlock *NewBB, DomTreeUpdater *DTU) {
// When a path is reused, there is a chance that predecessors were already
// updated before. Check if the predecessor needs to be updated first.
if (!isPredecessor(OldBB, PrevBB))
return;
Instruction *PrevTerm = PrevBB->getTerminator();
for (unsigned Idx = 0; Idx < PrevTerm->getNumSuccessors(); Idx++) {
if (PrevTerm->getSuccessor(Idx) == OldBB) {
OldBB->removePredecessor(PrevBB, /* KeepOneInputPHIs = */ true);
PrevTerm->setSuccessor(Idx, NewBB);
}
}
DTU->applyUpdates({{DominatorTree::Delete, PrevBB, OldBB},
{DominatorTree::Insert, PrevBB, NewBB}});
}
/// Add new value mappings to the DefMap to keep track of all new definitions
/// for a particular instruction. These will be used while updating SSA form.
void updateDefMap(DefMap &NewDefs, ValueToValueMapTy &VMap) {
for (auto Entry : VMap) {
Instruction *Inst =
dyn_cast<Instruction>(const_cast<Value *>(Entry.first));
if (!Inst || !Entry.second || isa<BranchInst>(Inst) ||
isa<SwitchInst>(Inst)) {
continue;
}
Instruction *Cloned = dyn_cast<Instruction>(Entry.second);
if (!Cloned)
continue;
if (NewDefs.find(Inst) == NewDefs.end())
NewDefs[Inst] = {Cloned};
else
NewDefs[Inst].push_back(Cloned);
}
}
/// Update the last branch of a particular cloned path to point to the correct
/// case successor.
///
/// Note that this is an optional step and would have been done in later
/// optimizations, but it makes the CFG significantly easier to work with.
void updateLastSuccessor(ThreadingPath &TPath,
DuplicateBlockMap &DuplicateMap,
DomTreeUpdater *DTU) {
uint64_t NextState = TPath.getExitValue();
BasicBlock *BB = TPath.getPath().back();
BasicBlock *LastBlock = getClonedBB(BB, NextState, DuplicateMap);
// Note multiple paths can end at the same block so check that it is not
// updated yet
if (!isa<SwitchInst>(LastBlock->getTerminator()))
return;
SwitchInst *Switch = cast<SwitchInst>(LastBlock->getTerminator());
BasicBlock *NextCase = getNextCaseSuccessor(Switch, NextState);
std::vector<DominatorTree::UpdateType> DTUpdates;
SmallPtrSet<BasicBlock *, 4> SuccSet;
for (BasicBlock *Succ : successors(LastBlock)) {
if (Succ != NextCase && SuccSet.insert(Succ).second)
DTUpdates.push_back({DominatorTree::Delete, LastBlock, Succ});
}
Switch->eraseFromParent();
BranchInst::Create(NextCase, LastBlock);
DTU->applyUpdates(DTUpdates);
}
/// After cloning blocks, some of the phi nodes have extra incoming values
/// that are no longer used. This function removes them.
void cleanPhiNodes(BasicBlock *BB) {
// If BB is no longer reachable, remove any remaining phi nodes
if (pred_empty(BB)) {
std::vector<PHINode *> PhiToRemove;
for (auto II = BB->begin(); PHINode *Phi = dyn_cast<PHINode>(II); ++II) {
PhiToRemove.push_back(Phi);
}
for (PHINode *PN : PhiToRemove) {
PN->replaceAllUsesWith(UndefValue::get(PN->getType()));
PN->eraseFromParent();
}
return;
}
// Remove any incoming values that come from an invalid predecessor
for (auto II = BB->begin(); PHINode *Phi = dyn_cast<PHINode>(II); ++II) {
std::vector<BasicBlock *> BlocksToRemove;
for (BasicBlock *IncomingBB : Phi->blocks()) {
if (!isPredecessor(BB, IncomingBB))
BlocksToRemove.push_back(IncomingBB);
}
for (BasicBlock *BB : BlocksToRemove)
Phi->removeIncomingValue(BB);
}
}
/// Checks if BB was already cloned for a particular next state value. If it
/// was then it returns this cloned block, and otherwise null.
BasicBlock *getClonedBB(BasicBlock *BB, uint64_t NextState,
DuplicateBlockMap &DuplicateMap) {
CloneList ClonedBBs = DuplicateMap[BB];
// Find an entry in the CloneList with this NextState. If it exists then
// return the corresponding BB
auto It = llvm::find_if(ClonedBBs, [NextState](const ClonedBlock &C) {
return C.State == NextState;
});
return It != ClonedBBs.end() ? (*It).BB : nullptr;
}
/// Helper to get the successor corresponding to a particular case value for
/// a switch statement.
BasicBlock *getNextCaseSuccessor(SwitchInst *Switch, uint64_t NextState) {
BasicBlock *NextCase = nullptr;
for (auto Case : Switch->cases()) {
if (Case.getCaseValue()->getZExtValue() == NextState) {
NextCase = Case.getCaseSuccessor();
break;
}
}
if (!NextCase)
NextCase = Switch->getDefaultDest();
return NextCase;
}
/// Returns true if IncomingBB is a predecessor of BB.
bool isPredecessor(BasicBlock *BB, BasicBlock *IncomingBB) {
return llvm::find(predecessors(BB), IncomingBB) != pred_end(BB);
}
AllSwitchPaths *SwitchPaths;
DominatorTree *DT;
AssumptionCache *AC;
TargetTransformInfo *TTI;
OptimizationRemarkEmitter *ORE;
SmallPtrSet<const Value *, 32> EphValues;
std::vector<ThreadingPath> TPaths;
};
bool DFAJumpThreading::run(Function &F) {
LLVM_DEBUG(dbgs() << "\nDFA Jump threading: " << F.getName() << "\n");
if (F.hasOptSize()) {
LLVM_DEBUG(dbgs() << "Skipping due to the 'minsize' attribute\n");
return false;
}
if (ClViewCfgBefore)
F.viewCFG();
SmallVector<AllSwitchPaths, 2> ThreadableLoops;
bool MadeChanges = false;
for (BasicBlock &BB : F) {
auto *SI = dyn_cast<SwitchInst>(BB.getTerminator());
if (!SI)
continue;
LLVM_DEBUG(dbgs() << "\nCheck if SwitchInst in BB " << BB.getName()
<< " is predictable\n");
MainSwitch Switch(SI, ORE);
if (!Switch.getInstr())
continue;
LLVM_DEBUG(dbgs() << "\nSwitchInst in BB " << BB.getName() << " is a "
<< "candidate for jump threading\n");
LLVM_DEBUG(SI->dump());
unfoldSelectInstrs(DT, Switch.getSelectInsts());
if (!Switch.getSelectInsts().empty())
MadeChanges = true;
AllSwitchPaths SwitchPaths(&Switch, ORE);
SwitchPaths.run();
if (SwitchPaths.getNumThreadingPaths() > 0) {
ThreadableLoops.push_back(SwitchPaths);
// For the time being limit this optimization to occurring once in a
// function since it can change the CFG significantly. This is not a
// strict requirement but it can cause buggy behavior if there is an
// overlap of blocks in different opportunities. There is a lot of room to
// experiment with catching more opportunities here.
break;
}
}
SmallPtrSet<const Value *, 32> EphValues;
if (ThreadableLoops.size() > 0)
CodeMetrics::collectEphemeralValues(&F, AC, EphValues);
for (AllSwitchPaths SwitchPaths : ThreadableLoops) {
TransformDFA Transform(&SwitchPaths, DT, AC, TTI, ORE, EphValues);
Transform.run();
MadeChanges = true;
}
#ifdef EXPENSIVE_CHECKS
assert(DT->verify(DominatorTree::VerificationLevel::Full));
verifyFunction(F, &dbgs());
#endif
return MadeChanges;
}
} // end anonymous namespace
/// Integrate with the new Pass Manager
PreservedAnalyses DFAJumpThreadingPass::run(Function &F,
FunctionAnalysisManager &AM) {
AssumptionCache &AC = AM.getResult<AssumptionAnalysis>(F);
DominatorTree &DT = AM.getResult<DominatorTreeAnalysis>(F);
TargetTransformInfo &TTI = AM.getResult<TargetIRAnalysis>(F);
OptimizationRemarkEmitter ORE(&F);
if (!DFAJumpThreading(&AC, &DT, &TTI, &ORE).run(F))
return PreservedAnalyses::all();
PreservedAnalyses PA;
PA.preserve<DominatorTreeAnalysis>();
return PA;
}
|