1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640
|
//===-- ProfileGenerator.cpp - Profile Generator ---------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "ProfileGenerator.h"
#include "llvm/ProfileData/ProfileCommon.h"
static cl::opt<std::string> OutputFilename("output", cl::value_desc("output"),
cl::Required,
cl::desc("Output profile file"));
static cl::alias OutputA("o", cl::desc("Alias for --output"),
cl::aliasopt(OutputFilename));
static cl::opt<SampleProfileFormat> OutputFormat(
"format", cl::desc("Format of output profile"), cl::init(SPF_Ext_Binary),
cl::values(
clEnumValN(SPF_Binary, "binary", "Binary encoding (default)"),
clEnumValN(SPF_Compact_Binary, "compbinary", "Compact binary encoding"),
clEnumValN(SPF_Ext_Binary, "extbinary", "Extensible binary encoding"),
clEnumValN(SPF_Text, "text", "Text encoding"),
clEnumValN(SPF_GCC, "gcc",
"GCC encoding (only meaningful for -sample)")));
static cl::opt<int32_t, true> RecursionCompression(
"compress-recursion",
cl::desc("Compressing recursion by deduplicating adjacent frame "
"sequences up to the specified size. -1 means no size limit."),
cl::Hidden,
cl::location(llvm::sampleprof::CSProfileGenerator::MaxCompressionSize));
static cl::opt<bool> CSProfMergeColdContext(
"csprof-merge-cold-context", cl::init(true), cl::ZeroOrMore,
cl::desc("If the total count of context profile is smaller than "
"the threshold, it will be merged into context-less base "
"profile."));
static cl::opt<bool> CSProfTrimColdContext(
"csprof-trim-cold-context", cl::init(true), cl::ZeroOrMore,
cl::desc("If the total count of the profile after all merge is done "
"is still smaller than threshold, it will be trimmed."));
static cl::opt<uint32_t> CSProfColdContextFrameDepth(
"csprof-frame-depth-for-cold-context", cl::init(1), cl::ZeroOrMore,
cl::desc("Keep the last K frames while merging cold profile. 1 means the "
"context-less base profile"));
static cl::opt<bool> EnableCSPreInliner(
"csspgo-preinliner", cl::Hidden, cl::init(false),
cl::desc("Run a global pre-inliner to merge context profile based on "
"estimated global top-down inline decisions"));
extern cl::opt<int> ProfileSummaryCutoffCold;
using namespace llvm;
using namespace sampleprof;
namespace llvm {
namespace sampleprof {
// Initialize the MaxCompressionSize to -1 which means no size limit
int32_t CSProfileGenerator::MaxCompressionSize = -1;
static bool
usePseudoProbes(const BinarySampleCounterMap &BinarySampleCounters) {
return BinarySampleCounters.size() &&
BinarySampleCounters.begin()->first->usePseudoProbes();
}
std::unique_ptr<ProfileGenerator>
ProfileGenerator::create(const BinarySampleCounterMap &BinarySampleCounters,
enum PerfScriptType SampleType) {
std::unique_ptr<ProfileGenerator> ProfileGenerator;
if (SampleType == PERF_LBR_STACK) {
if (usePseudoProbes(BinarySampleCounters)) {
ProfileGenerator.reset(
new PseudoProbeCSProfileGenerator(BinarySampleCounters));
} else {
ProfileGenerator.reset(new CSProfileGenerator(BinarySampleCounters));
}
} else {
// TODO:
llvm_unreachable("Unsupported perfscript!");
}
return ProfileGenerator;
}
void ProfileGenerator::write(std::unique_ptr<SampleProfileWriter> Writer,
StringMap<FunctionSamples> &ProfileMap) {
if (std::error_code EC = Writer->write(ProfileMap))
exitWithError(std::move(EC));
}
void ProfileGenerator::write() {
auto WriterOrErr = SampleProfileWriter::create(OutputFilename, OutputFormat);
if (std::error_code EC = WriterOrErr.getError())
exitWithError(EC, OutputFilename);
write(std::move(WriterOrErr.get()), ProfileMap);
}
void ProfileGenerator::findDisjointRanges(RangeSample &DisjointRanges,
const RangeSample &Ranges) {
/*
Regions may overlap with each other. Using the boundary info, find all
disjoint ranges and their sample count. BoundaryPoint contains the count
multiple samples begin/end at this points.
|<--100-->| Sample1
|<------200------>| Sample2
A B C
In the example above,
Sample1 begins at A, ends at B, its value is 100.
Sample2 beings at A, ends at C, its value is 200.
For A, BeginCount is the sum of sample begins at A, which is 300 and no
samples ends at A, so EndCount is 0.
Then boundary points A, B, and C with begin/end counts are:
A: (300, 0)
B: (0, 100)
C: (0, 200)
*/
struct BoundaryPoint {
// Sum of sample counts beginning at this point
uint64_t BeginCount;
// Sum of sample counts ending at this point
uint64_t EndCount;
BoundaryPoint() : BeginCount(0), EndCount(0){};
void addBeginCount(uint64_t Count) { BeginCount += Count; }
void addEndCount(uint64_t Count) { EndCount += Count; }
};
/*
For the above example. With boundary points, follwing logic finds two
disjoint region of
[A,B]: 300
[B+1,C]: 200
If there is a boundary point that both begin and end, the point itself
becomes a separate disjoint region. For example, if we have original
ranges of
|<--- 100 --->|
|<--- 200 --->|
A B C
there are three boundary points with their begin/end counts of
A: (100, 0)
B: (200, 100)
C: (0, 200)
the disjoint ranges would be
[A, B-1]: 100
[B, B]: 300
[B+1, C]: 200.
*/
std::map<uint64_t, BoundaryPoint> Boundaries;
for (auto Item : Ranges) {
uint64_t Begin = Item.first.first;
uint64_t End = Item.first.second;
uint64_t Count = Item.second;
if (Boundaries.find(Begin) == Boundaries.end())
Boundaries[Begin] = BoundaryPoint();
Boundaries[Begin].addBeginCount(Count);
if (Boundaries.find(End) == Boundaries.end())
Boundaries[End] = BoundaryPoint();
Boundaries[End].addEndCount(Count);
}
uint64_t BeginAddress = UINT64_MAX;
int Count = 0;
for (auto Item : Boundaries) {
uint64_t Address = Item.first;
BoundaryPoint &Point = Item.second;
if (Point.BeginCount) {
if (BeginAddress != UINT64_MAX)
DisjointRanges[{BeginAddress, Address - 1}] = Count;
Count += Point.BeginCount;
BeginAddress = Address;
}
if (Point.EndCount) {
assert((BeginAddress != UINT64_MAX) &&
"First boundary point cannot be 'end' point");
DisjointRanges[{BeginAddress, Address}] = Count;
Count -= Point.EndCount;
BeginAddress = Address + 1;
}
}
}
FunctionSamples &
CSProfileGenerator::getFunctionProfileForContext(StringRef ContextStr,
bool WasLeafInlined) {
auto Ret = ProfileMap.try_emplace(ContextStr, FunctionSamples());
if (Ret.second) {
// Make a copy of the underlying context string in string table
// before StringRef wrapper is used for context.
auto It = ContextStrings.insert(ContextStr.str());
SampleContext FContext(*It.first, RawContext);
if (WasLeafInlined)
FContext.setAttribute(ContextWasInlined);
FunctionSamples &FProfile = Ret.first->second;
FProfile.setContext(FContext);
FProfile.setName(FContext.getNameWithoutContext());
}
return Ret.first->second;
}
void CSProfileGenerator::generateProfile() {
FunctionSamples::ProfileIsCS = true;
for (const auto &BI : BinarySampleCounters) {
ProfiledBinary *Binary = BI.first;
for (const auto &CI : BI.second) {
const StringBasedCtxKey *CtxKey =
dyn_cast<StringBasedCtxKey>(CI.first.getPtr());
StringRef ContextId(CtxKey->Context);
// Get or create function profile for the range
FunctionSamples &FunctionProfile =
getFunctionProfileForContext(ContextId, CtxKey->WasLeafInlined);
// Fill in function body samples
populateFunctionBodySamples(FunctionProfile, CI.second.RangeCounter,
Binary);
// Fill in boundary sample counts as well as call site samples for calls
populateFunctionBoundarySamples(ContextId, FunctionProfile,
CI.second.BranchCounter, Binary);
}
}
// Fill in call site value sample for inlined calls and also use context to
// infer missing samples. Since we don't have call count for inlined
// functions, we estimate it from inlinee's profile using the entry of the
// body sample.
populateInferredFunctionSamples();
postProcessProfiles();
}
void CSProfileGenerator::updateBodySamplesforFunctionProfile(
FunctionSamples &FunctionProfile, const FrameLocation &LeafLoc,
uint64_t Count) {
// Filter out invalid negative(int type) lineOffset
if (LeafLoc.second.LineOffset & 0x80000000)
return;
// Use the maximum count of samples with same line location
ErrorOr<uint64_t> R = FunctionProfile.findSamplesAt(
LeafLoc.second.LineOffset, LeafLoc.second.Discriminator);
uint64_t PreviousCount = R ? R.get() : 0;
if (PreviousCount < Count) {
FunctionProfile.addBodySamples(LeafLoc.second.LineOffset,
LeafLoc.second.Discriminator,
Count - PreviousCount);
}
}
void CSProfileGenerator::populateFunctionBodySamples(
FunctionSamples &FunctionProfile, const RangeSample &RangeCounter,
ProfiledBinary *Binary) {
// Compute disjoint ranges first, so we can use MAX
// for calculating count for each location.
RangeSample Ranges;
findDisjointRanges(Ranges, RangeCounter);
for (auto Range : Ranges) {
uint64_t RangeBegin = Binary->offsetToVirtualAddr(Range.first.first);
uint64_t RangeEnd = Binary->offsetToVirtualAddr(Range.first.second);
uint64_t Count = Range.second;
// Disjoint ranges have introduce zero-filled gap that
// doesn't belong to current context, filter them out.
if (Count == 0)
continue;
InstructionPointer IP(Binary, RangeBegin, true);
// Disjoint ranges may have range in the middle of two instr,
// e.g. If Instr1 at Addr1, and Instr2 at Addr2, disjoint range
// can be Addr1+1 to Addr2-1. We should ignore such range.
if (IP.Address > RangeEnd)
continue;
while (IP.Address <= RangeEnd) {
uint64_t Offset = Binary->virtualAddrToOffset(IP.Address);
auto LeafLoc = Binary->getInlineLeafFrameLoc(Offset);
if (LeafLoc.hasValue()) {
// Recording body sample for this specific context
updateBodySamplesforFunctionProfile(FunctionProfile, *LeafLoc, Count);
}
// Accumulate total sample count even it's a line with invalid debug info
FunctionProfile.addTotalSamples(Count);
// Move to next IP within the range
IP.advance();
}
}
}
void CSProfileGenerator::populateFunctionBoundarySamples(
StringRef ContextId, FunctionSamples &FunctionProfile,
const BranchSample &BranchCounters, ProfiledBinary *Binary) {
for (auto Entry : BranchCounters) {
uint64_t SourceOffset = Entry.first.first;
uint64_t TargetOffset = Entry.first.second;
uint64_t Count = Entry.second;
// Get the callee name by branch target if it's a call branch
StringRef CalleeName = FunctionSamples::getCanonicalFnName(
Binary->getFuncFromStartOffset(TargetOffset));
if (CalleeName.size() == 0)
continue;
// Record called target sample and its count
auto LeafLoc = Binary->getInlineLeafFrameLoc(SourceOffset);
if (!LeafLoc.hasValue())
continue;
FunctionProfile.addCalledTargetSamples(LeafLoc->second.LineOffset,
LeafLoc->second.Discriminator,
CalleeName, Count);
// Record head sample for called target(callee)
std::ostringstream OCalleeCtxStr;
if (ContextId.find(" @ ") != StringRef::npos) {
OCalleeCtxStr << ContextId.rsplit(" @ ").first.str();
OCalleeCtxStr << " @ ";
}
OCalleeCtxStr << getCallSite(*LeafLoc) << " @ " << CalleeName.str();
FunctionSamples &CalleeProfile =
getFunctionProfileForContext(OCalleeCtxStr.str());
assert(Count != 0 && "Unexpected zero weight branch");
CalleeProfile.addHeadSamples(Count);
}
}
static FrameLocation getCallerContext(StringRef CalleeContext,
StringRef &CallerNameWithContext) {
StringRef CallerContext = CalleeContext.rsplit(" @ ").first;
CallerNameWithContext = CallerContext.rsplit(':').first;
auto ContextSplit = CallerContext.rsplit(" @ ");
StringRef CallerFrameStr = ContextSplit.second.size() == 0
? ContextSplit.first
: ContextSplit.second;
FrameLocation LeafFrameLoc = {"", {0, 0}};
StringRef Funcname;
SampleContext::decodeContextString(CallerFrameStr, Funcname,
LeafFrameLoc.second);
LeafFrameLoc.first = Funcname.str();
return LeafFrameLoc;
}
void CSProfileGenerator::populateInferredFunctionSamples() {
for (const auto &Item : ProfileMap) {
const StringRef CalleeContext = Item.first();
const FunctionSamples &CalleeProfile = Item.second;
// If we already have head sample counts, we must have value profile
// for call sites added already. Skip to avoid double counting.
if (CalleeProfile.getHeadSamples())
continue;
// If we don't have context, nothing to do for caller's call site.
// This could happen for entry point function.
if (CalleeContext.find(" @ ") == StringRef::npos)
continue;
// Infer Caller's frame loc and context ID through string splitting
StringRef CallerContextId;
FrameLocation &&CallerLeafFrameLoc =
getCallerContext(CalleeContext, CallerContextId);
// It's possible that we haven't seen any sample directly in the caller,
// in which case CallerProfile will not exist. But we can't modify
// ProfileMap while iterating it.
// TODO: created function profile for those callers too
if (ProfileMap.find(CallerContextId) == ProfileMap.end())
continue;
FunctionSamples &CallerProfile = ProfileMap[CallerContextId];
// Since we don't have call count for inlined functions, we
// estimate it from inlinee's profile using entry body sample.
uint64_t EstimatedCallCount = CalleeProfile.getEntrySamples();
// If we don't have samples with location, use 1 to indicate live.
if (!EstimatedCallCount && !CalleeProfile.getBodySamples().size())
EstimatedCallCount = 1;
CallerProfile.addCalledTargetSamples(
CallerLeafFrameLoc.second.LineOffset,
CallerLeafFrameLoc.second.Discriminator,
CalleeProfile.getContext().getNameWithoutContext(), EstimatedCallCount);
CallerProfile.addBodySamples(CallerLeafFrameLoc.second.LineOffset,
CallerLeafFrameLoc.second.Discriminator,
EstimatedCallCount);
CallerProfile.addTotalSamples(EstimatedCallCount);
}
}
void CSProfileGenerator::postProcessProfiles() {
// Compute hot/cold threshold based on profile. This will be used for cold
// context profile merging/trimming.
computeSummaryAndThreshold();
// Run global pre-inliner to adjust/merge context profile based on estimated
// inline decisions.
if (EnableCSPreInliner)
CSPreInliner(ProfileMap, HotCountThreshold, ColdCountThreshold).run();
// Trim and merge cold context profile using cold threshold above;
SampleContextTrimmer(ProfileMap)
.trimAndMergeColdContextProfiles(
ColdCountThreshold, CSProfTrimColdContext, CSProfMergeColdContext,
CSProfColdContextFrameDepth);
}
void CSProfileGenerator::computeSummaryAndThreshold() {
// Update the default value of cold cutoff for llvm-profgen.
// Do it here because we don't want to change the global default,
// which would lead CS profile size too large.
if (!ProfileSummaryCutoffCold.getNumOccurrences())
ProfileSummaryCutoffCold = 999000;
SampleProfileSummaryBuilder Builder(ProfileSummaryBuilder::DefaultCutoffs);
auto Summary = Builder.computeSummaryForProfiles(ProfileMap);
HotCountThreshold = ProfileSummaryBuilder::getHotCountThreshold(
(Summary->getDetailedSummary()));
ColdCountThreshold = ProfileSummaryBuilder::getColdCountThreshold(
(Summary->getDetailedSummary()));
}
void CSProfileGenerator::write(std::unique_ptr<SampleProfileWriter> Writer,
StringMap<FunctionSamples> &ProfileMap) {
if (std::error_code EC = Writer->write(ProfileMap))
exitWithError(std::move(EC));
}
// Helper function to extract context prefix string stack
// Extract context stack for reusing, leaf context stack will
// be added compressed while looking up function profile
static void
extractPrefixContextStack(SmallVectorImpl<std::string> &ContextStrStack,
const SmallVectorImpl<const PseudoProbe *> &Probes,
ProfiledBinary *Binary) {
for (const auto *P : Probes) {
Binary->getInlineContextForProbe(P, ContextStrStack, true);
}
}
void PseudoProbeCSProfileGenerator::generateProfile() {
// Enable pseudo probe functionalities in SampleProf
FunctionSamples::ProfileIsProbeBased = true;
FunctionSamples::ProfileIsCS = true;
for (const auto &BI : BinarySampleCounters) {
ProfiledBinary *Binary = BI.first;
for (const auto &CI : BI.second) {
const ProbeBasedCtxKey *CtxKey =
dyn_cast<ProbeBasedCtxKey>(CI.first.getPtr());
SmallVector<std::string, 16> ContextStrStack;
extractPrefixContextStack(ContextStrStack, CtxKey->Probes, Binary);
// Fill in function body samples from probes, also infer caller's samples
// from callee's probe
populateBodySamplesWithProbes(CI.second.RangeCounter, ContextStrStack,
Binary);
// Fill in boundary samples for a call probe
populateBoundarySamplesWithProbes(CI.second.BranchCounter,
ContextStrStack, Binary);
}
}
postProcessProfiles();
}
void PseudoProbeCSProfileGenerator::extractProbesFromRange(
const RangeSample &RangeCounter, ProbeCounterMap &ProbeCounter,
ProfiledBinary *Binary) {
RangeSample Ranges;
findDisjointRanges(Ranges, RangeCounter);
for (const auto &Range : Ranges) {
uint64_t RangeBegin = Binary->offsetToVirtualAddr(Range.first.first);
uint64_t RangeEnd = Binary->offsetToVirtualAddr(Range.first.second);
uint64_t Count = Range.second;
// Disjoint ranges have introduce zero-filled gap that
// doesn't belong to current context, filter them out.
if (Count == 0)
continue;
InstructionPointer IP(Binary, RangeBegin, true);
// Disjoint ranges may have range in the middle of two instr,
// e.g. If Instr1 at Addr1, and Instr2 at Addr2, disjoint range
// can be Addr1+1 to Addr2-1. We should ignore such range.
if (IP.Address > RangeEnd)
continue;
while (IP.Address <= RangeEnd) {
const AddressProbesMap &Address2ProbesMap =
Binary->getAddress2ProbesMap();
auto It = Address2ProbesMap.find(IP.Address);
if (It != Address2ProbesMap.end()) {
for (const auto &Probe : It->second) {
if (!Probe.isBlock())
continue;
ProbeCounter[&Probe] += Count;
}
}
IP.advance();
}
}
}
void PseudoProbeCSProfileGenerator::populateBodySamplesWithProbes(
const RangeSample &RangeCounter,
SmallVectorImpl<std::string> &ContextStrStack, ProfiledBinary *Binary) {
ProbeCounterMap ProbeCounter;
// Extract the top frame probes by looking up each address among the range in
// the Address2ProbeMap
extractProbesFromRange(RangeCounter, ProbeCounter, Binary);
std::unordered_map<PseudoProbeInlineTree *, FunctionSamples *> FrameSamples;
for (auto PI : ProbeCounter) {
const PseudoProbe *Probe = PI.first;
uint64_t Count = PI.second;
FunctionSamples &FunctionProfile =
getFunctionProfileForLeafProbe(ContextStrStack, Probe, Binary);
// Record the current frame and FunctionProfile whenever samples are
// collected for non-danglie probes. This is for reporting all of the
// zero count probes of the frame later.
FrameSamples[Probe->getInlineTreeNode()] = &FunctionProfile;
FunctionProfile.addBodySamplesForProbe(Probe->Index, Count);
FunctionProfile.addTotalSamples(Count);
if (Probe->isEntry()) {
FunctionProfile.addHeadSamples(Count);
// Look up for the caller's function profile
const auto *InlinerDesc = Binary->getInlinerDescForProbe(Probe);
if (InlinerDesc != nullptr) {
// Since the context id will be compressed, we have to use callee's
// context id to infer caller's context id to ensure they share the
// same context prefix.
StringRef CalleeContextId =
FunctionProfile.getContext().getNameWithContext();
StringRef CallerContextId;
FrameLocation &&CallerLeafFrameLoc =
getCallerContext(CalleeContextId, CallerContextId);
uint64_t CallerIndex = CallerLeafFrameLoc.second.LineOffset;
assert(CallerIndex &&
"Inferred caller's location index shouldn't be zero!");
FunctionSamples &CallerProfile =
getFunctionProfileForContext(CallerContextId);
CallerProfile.setFunctionHash(InlinerDesc->FuncHash);
CallerProfile.addBodySamples(CallerIndex, 0, Count);
CallerProfile.addTotalSamples(Count);
CallerProfile.addCalledTargetSamples(
CallerIndex, 0,
FunctionProfile.getContext().getNameWithoutContext(), Count);
}
}
// Assign zero count for remaining probes without sample hits to
// differentiate from probes optimized away, of which the counts are unknown
// and will be inferred by the compiler.
for (auto &I : FrameSamples) {
auto *FunctionProfile = I.second;
for (auto *Probe : I.first->getProbes()) {
FunctionProfile->addBodySamplesForProbe(Probe->Index, 0);
}
}
}
}
void PseudoProbeCSProfileGenerator::populateBoundarySamplesWithProbes(
const BranchSample &BranchCounter,
SmallVectorImpl<std::string> &ContextStrStack, ProfiledBinary *Binary) {
for (auto BI : BranchCounter) {
uint64_t SourceOffset = BI.first.first;
uint64_t TargetOffset = BI.first.second;
uint64_t Count = BI.second;
uint64_t SourceAddress = Binary->offsetToVirtualAddr(SourceOffset);
const PseudoProbe *CallProbe = Binary->getCallProbeForAddr(SourceAddress);
if (CallProbe == nullptr)
continue;
FunctionSamples &FunctionProfile =
getFunctionProfileForLeafProbe(ContextStrStack, CallProbe, Binary);
FunctionProfile.addBodySamples(CallProbe->Index, 0, Count);
FunctionProfile.addTotalSamples(Count);
StringRef CalleeName = FunctionSamples::getCanonicalFnName(
Binary->getFuncFromStartOffset(TargetOffset));
if (CalleeName.size() == 0)
continue;
FunctionProfile.addCalledTargetSamples(CallProbe->Index, 0, CalleeName,
Count);
}
}
FunctionSamples &PseudoProbeCSProfileGenerator::getFunctionProfileForLeafProbe(
SmallVectorImpl<std::string> &ContextStrStack,
const PseudoProbeFuncDesc *LeafFuncDesc, bool WasLeafInlined) {
assert(ContextStrStack.size() && "Profile context must have the leaf frame");
// Compress the context string except for the leaf frame
std::string LeafFrame = ContextStrStack.back();
ContextStrStack.pop_back();
CSProfileGenerator::compressRecursionContext(ContextStrStack);
std::ostringstream OContextStr;
for (uint32_t I = 0; I < ContextStrStack.size(); I++) {
if (OContextStr.str().size())
OContextStr << " @ ";
OContextStr << ContextStrStack[I];
}
// For leaf inlined context with the top frame, we should strip off the top
// frame's probe id, like:
// Inlined stack: [foo:1, bar:2], the ContextId will be "foo:1 @ bar"
if (OContextStr.str().size())
OContextStr << " @ ";
OContextStr << StringRef(LeafFrame).split(":").first.str();
FunctionSamples &FunctionProile =
getFunctionProfileForContext(OContextStr.str(), WasLeafInlined);
FunctionProile.setFunctionHash(LeafFuncDesc->FuncHash);
return FunctionProile;
}
FunctionSamples &PseudoProbeCSProfileGenerator::getFunctionProfileForLeafProbe(
SmallVectorImpl<std::string> &ContextStrStack, const PseudoProbe *LeafProbe,
ProfiledBinary *Binary) {
// Explicitly copy the context for appending the leaf context
SmallVector<std::string, 16> ContextStrStackCopy(ContextStrStack.begin(),
ContextStrStack.end());
Binary->getInlineContextForProbe(LeafProbe, ContextStrStackCopy, true);
const auto *FuncDesc = Binary->getFuncDescForGUID(LeafProbe->GUID);
bool WasLeafInlined = LeafProbe->InlineTree->hasInlineSite();
return getFunctionProfileForLeafProbe(ContextStrStackCopy, FuncDesc,
WasLeafInlined);
}
} // end namespace sampleprof
} // end namespace llvm
|