1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464
|
//===-- ProfiledBinary.cpp - Binary decoder ---------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "ProfiledBinary.h"
#include "ErrorHandling.h"
#include "ProfileGenerator.h"
#include "llvm/ADT/Triple.h"
#include "llvm/Demangle/Demangle.h"
#include "llvm/IR/DebugInfoMetadata.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Format.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Support/TargetSelect.h"
#define DEBUG_TYPE "load-binary"
using namespace llvm;
using namespace sampleprof;
cl::opt<bool> ShowDisassemblyOnly("show-disassembly-only", cl::ReallyHidden,
cl::init(false), cl::ZeroOrMore,
cl::desc("Print disassembled code."));
cl::opt<bool> ShowSourceLocations("show-source-locations", cl::ReallyHidden,
cl::init(false), cl::ZeroOrMore,
cl::desc("Print source locations."));
cl::opt<bool> ShowCanonicalFnName("show-canonical-fname", cl::ReallyHidden,
cl::init(false), cl::ZeroOrMore,
cl::desc("Print canonical function name."));
cl::opt<bool> ShowPseudoProbe(
"show-pseudo-probe", cl::ReallyHidden, cl::init(false), cl::ZeroOrMore,
cl::desc("Print pseudo probe section and disassembled info."));
namespace llvm {
namespace sampleprof {
static const Target *getTarget(const ObjectFile *Obj) {
Triple TheTriple = Obj->makeTriple();
std::string Error;
std::string ArchName;
const Target *TheTarget =
TargetRegistry::lookupTarget(ArchName, TheTriple, Error);
if (!TheTarget)
exitWithError(Error, Obj->getFileName());
return TheTarget;
}
void ProfiledBinary::load() {
// Attempt to open the binary.
OwningBinary<Binary> OBinary = unwrapOrError(createBinary(Path), Path);
Binary &Binary = *OBinary.getBinary();
auto *Obj = dyn_cast<ELFObjectFileBase>(&Binary);
if (!Obj)
exitWithError("not a valid Elf image", Path);
TheTriple = Obj->makeTriple();
// Current only support X86
if (!TheTriple.isX86())
exitWithError("unsupported target", TheTriple.getTriple());
LLVM_DEBUG(dbgs() << "Loading " << Path << "\n");
// Find the preferred load address for text sections.
setPreferredTextSegmentAddresses(Obj);
// Decode pseudo probe related section
decodePseudoProbe(Obj);
// Disassemble the text sections.
disassemble(Obj);
// Use function start and return address to infer prolog and epilog
ProEpilogTracker.inferPrologOffsets(FuncStartAddrMap);
ProEpilogTracker.inferEpilogOffsets(RetAddrs);
// TODO: decode other sections.
}
bool ProfiledBinary::inlineContextEqual(uint64_t Address1,
uint64_t Address2) const {
uint64_t Offset1 = virtualAddrToOffset(Address1);
uint64_t Offset2 = virtualAddrToOffset(Address2);
const FrameLocationStack &Context1 = getFrameLocationStack(Offset1);
const FrameLocationStack &Context2 = getFrameLocationStack(Offset2);
if (Context1.size() != Context2.size())
return false;
if (Context1.empty())
return false;
// The leaf frame contains location within the leaf, and it
// needs to be remove that as it's not part of the calling context
return std::equal(Context1.begin(), Context1.begin() + Context1.size() - 1,
Context2.begin(), Context2.begin() + Context2.size() - 1);
}
std::string
ProfiledBinary::getExpandedContextStr(const SmallVectorImpl<uint64_t> &Stack,
bool &WasLeafInlined) const {
std::string ContextStr;
SmallVector<std::string, 16> ContextVec;
// Process from frame root to leaf
for (auto Address : Stack) {
uint64_t Offset = virtualAddrToOffset(Address);
const FrameLocationStack &ExpandedContext = getFrameLocationStack(Offset);
// An instruction without a valid debug line will be ignored by sample
// processing
if (ExpandedContext.empty())
return std::string();
// Set WasLeafInlined to the size of inlined frame count for the last
// address which is leaf
WasLeafInlined = (ExpandedContext.size() > 1);
for (const auto &Loc : ExpandedContext) {
ContextVec.push_back(getCallSite(Loc));
}
}
assert(ContextVec.size() && "Context length should be at least 1");
// Compress the context string except for the leaf frame
std::string LeafFrame = ContextVec.back();
ContextVec.pop_back();
CSProfileGenerator::compressRecursionContext<std::string>(ContextVec);
std::ostringstream OContextStr;
for (uint32_t I = 0; I < (uint32_t)ContextVec.size(); I++) {
if (OContextStr.str().size()) {
OContextStr << " @ ";
}
OContextStr << ContextVec[I];
}
// Only keep the function name for the leaf frame
if (OContextStr.str().size())
OContextStr << " @ ";
OContextStr << StringRef(LeafFrame).split(":").first.str();
return OContextStr.str();
}
template <class ELFT>
void ProfiledBinary::setPreferredTextSegmentAddresses(const ELFFile<ELFT> &Obj, StringRef FileName) {
const auto &PhdrRange = unwrapOrError(Obj.program_headers(), FileName);
for (const typename ELFT::Phdr &Phdr : PhdrRange) {
if ((Phdr.p_type == ELF::PT_LOAD) && (Phdr.p_flags & ELF::PF_X)) {
// Segments will always be loaded at a page boundary.
PreferredTextSegmentAddresses.push_back(Phdr.p_vaddr & ~(Phdr.p_align - 1U));
TextSegmentOffsets.push_back(Phdr.p_offset & ~(Phdr.p_align - 1U));
}
}
if (PreferredTextSegmentAddresses.empty())
exitWithError("no executable segment found", FileName);
}
void ProfiledBinary::setPreferredTextSegmentAddresses(const ELFObjectFileBase *Obj) {
if (const auto *ELFObj = dyn_cast<ELF32LEObjectFile>(Obj))
setPreferredTextSegmentAddresses(ELFObj->getELFFile(), Obj->getFileName());
else if (const auto *ELFObj = dyn_cast<ELF32BEObjectFile>(Obj))
setPreferredTextSegmentAddresses(ELFObj->getELFFile(), Obj->getFileName());
else if (const auto *ELFObj = dyn_cast<ELF64LEObjectFile>(Obj))
setPreferredTextSegmentAddresses(ELFObj->getELFFile(), Obj->getFileName());
else if (const auto *ELFObj = cast<ELF64BEObjectFile>(Obj))
setPreferredTextSegmentAddresses(ELFObj->getELFFile(), Obj->getFileName());
else
llvm_unreachable("invalid ELF object format");
}
void ProfiledBinary::decodePseudoProbe(const ELFObjectFileBase *Obj) {
StringRef FileName = Obj->getFileName();
for (section_iterator SI = Obj->section_begin(), SE = Obj->section_end();
SI != SE; ++SI) {
const SectionRef &Section = *SI;
StringRef SectionName = unwrapOrError(Section.getName(), FileName);
if (SectionName == ".pseudo_probe_desc") {
StringRef Contents = unwrapOrError(Section.getContents(), FileName);
ProbeDecoder.buildGUID2FuncDescMap(
reinterpret_cast<const uint8_t *>(Contents.data()), Contents.size());
} else if (SectionName == ".pseudo_probe") {
StringRef Contents = unwrapOrError(Section.getContents(), FileName);
ProbeDecoder.buildAddress2ProbeMap(
reinterpret_cast<const uint8_t *>(Contents.data()), Contents.size());
// set UsePseudoProbes flag, used for PerfReader
UsePseudoProbes = true;
}
}
if (ShowPseudoProbe)
ProbeDecoder.printGUID2FuncDescMap(outs());
}
bool ProfiledBinary::dissassembleSymbol(std::size_t SI, ArrayRef<uint8_t> Bytes,
SectionSymbolsTy &Symbols,
const SectionRef &Section) {
std::size_t SE = Symbols.size();
uint64_t SectionOffset = Section.getAddress() - getPreferredBaseAddress();
uint64_t SectSize = Section.getSize();
uint64_t StartOffset = Symbols[SI].Addr - getPreferredBaseAddress();
uint64_t EndOffset = (SI + 1 < SE)
? Symbols[SI + 1].Addr - getPreferredBaseAddress()
: SectionOffset + SectSize;
if (StartOffset >= EndOffset)
return true;
StringRef SymbolName =
ShowCanonicalFnName
? FunctionSamples::getCanonicalFnName(Symbols[SI].Name)
: Symbols[SI].Name;
if (ShowDisassemblyOnly)
outs() << '<' << SymbolName << ">:\n";
auto WarnInvalidInsts = [](uint64_t Start, uint64_t End) {
WithColor::warning() << "Invalid instructions at "
<< format("%8" PRIx64, Start) << " - "
<< format("%8" PRIx64, End) << "\n";
};
uint64_t Offset = StartOffset;
// Size of a consecutive invalid instruction range starting from Offset -1
// backwards.
uint64_t InvalidInstLength = 0;
while (Offset < EndOffset) {
MCInst Inst;
uint64_t Size;
// Disassemble an instruction.
bool Disassembled =
DisAsm->getInstruction(Inst, Size, Bytes.slice(Offset - SectionOffset),
Offset + getPreferredBaseAddress(), nulls());
if (Size == 0)
Size = 1;
if (ShowDisassemblyOnly) {
if (ShowPseudoProbe) {
ProbeDecoder.printProbeForAddress(outs(),
Offset + getPreferredBaseAddress());
}
outs() << format("%8" PRIx64 ":", Offset + getPreferredBaseAddress());
size_t Start = outs().tell();
if (Disassembled)
IPrinter->printInst(&Inst, Offset + Size, "", *STI.get(), outs());
else
outs() << "\t<unknown>";
if (ShowSourceLocations) {
unsigned Cur = outs().tell() - Start;
if (Cur < 40)
outs().indent(40 - Cur);
InstructionPointer IP(this, Offset);
outs() << getReversedLocWithContext(symbolize(IP, ShowCanonicalFnName));
}
outs() << "\n";
}
if (Disassembled) {
const MCInstrDesc &MCDesc = MII->get(Inst.getOpcode());
// Populate a vector of the symbolized callsite at this location
// We don't need symbolized info for probe-based profile, just use an
// empty stack as an entry to indicate a valid binary offset
FrameLocationStack SymbolizedCallStack;
if (!UsePseudoProbes) {
InstructionPointer IP(this, Offset);
SymbolizedCallStack = symbolize(IP, true);
}
Offset2LocStackMap[Offset] = SymbolizedCallStack;
// Populate address maps.
CodeAddrs.push_back(Offset);
if (MCDesc.isCall())
CallAddrs.insert(Offset);
else if (MCDesc.isReturn())
RetAddrs.insert(Offset);
if (InvalidInstLength) {
WarnInvalidInsts(Offset - InvalidInstLength, Offset - 1);
InvalidInstLength = 0;
}
} else {
InvalidInstLength += Size;
}
Offset += Size;
}
if (InvalidInstLength)
WarnInvalidInsts(Offset - InvalidInstLength, Offset - 1);
if (ShowDisassemblyOnly)
outs() << "\n";
FuncStartAddrMap[StartOffset] = Symbols[SI].Name.str();
return true;
}
void ProfiledBinary::setUpDisassembler(const ELFObjectFileBase *Obj) {
const Target *TheTarget = getTarget(Obj);
std::string TripleName = TheTriple.getTriple();
StringRef FileName = Obj->getFileName();
MRI.reset(TheTarget->createMCRegInfo(TripleName));
if (!MRI)
exitWithError("no register info for target " + TripleName, FileName);
MCTargetOptions MCOptions;
AsmInfo.reset(TheTarget->createMCAsmInfo(*MRI, TripleName, MCOptions));
if (!AsmInfo)
exitWithError("no assembly info for target " + TripleName, FileName);
SubtargetFeatures Features = Obj->getFeatures();
STI.reset(
TheTarget->createMCSubtargetInfo(TripleName, "", Features.getString()));
if (!STI)
exitWithError("no subtarget info for target " + TripleName, FileName);
MII.reset(TheTarget->createMCInstrInfo());
if (!MII)
exitWithError("no instruction info for target " + TripleName, FileName);
MCContext Ctx(Triple(TripleName), AsmInfo.get(), MRI.get(), STI.get());
std::unique_ptr<MCObjectFileInfo> MOFI(
TheTarget->createMCObjectFileInfo(Ctx, /*PIC=*/false));
Ctx.setObjectFileInfo(MOFI.get());
DisAsm.reset(TheTarget->createMCDisassembler(*STI, Ctx));
if (!DisAsm)
exitWithError("no disassembler for target " + TripleName, FileName);
MIA.reset(TheTarget->createMCInstrAnalysis(MII.get()));
int AsmPrinterVariant = AsmInfo->getAssemblerDialect();
IPrinter.reset(TheTarget->createMCInstPrinter(
Triple(TripleName), AsmPrinterVariant, *AsmInfo, *MII, *MRI));
IPrinter->setPrintBranchImmAsAddress(true);
}
void ProfiledBinary::disassemble(const ELFObjectFileBase *Obj) {
// Set up disassembler and related components.
setUpDisassembler(Obj);
// Create a mapping from virtual address to symbol name. The symbols in text
// sections are the candidates to dissassemble.
std::map<SectionRef, SectionSymbolsTy> AllSymbols;
StringRef FileName = Obj->getFileName();
for (const SymbolRef &Symbol : Obj->symbols()) {
const uint64_t Addr = unwrapOrError(Symbol.getAddress(), FileName);
const StringRef Name = unwrapOrError(Symbol.getName(), FileName);
section_iterator SecI = unwrapOrError(Symbol.getSection(), FileName);
if (SecI != Obj->section_end())
AllSymbols[*SecI].push_back(SymbolInfoTy(Addr, Name, ELF::STT_NOTYPE));
}
// Sort all the symbols. Use a stable sort to stabilize the output.
for (std::pair<const SectionRef, SectionSymbolsTy> &SecSyms : AllSymbols)
stable_sort(SecSyms.second);
if (ShowDisassemblyOnly)
outs() << "\nDisassembly of " << FileName << ":\n";
// Dissassemble a text section.
for (section_iterator SI = Obj->section_begin(), SE = Obj->section_end();
SI != SE; ++SI) {
const SectionRef &Section = *SI;
if (!Section.isText())
continue;
uint64_t ImageLoadAddr = getPreferredBaseAddress();
uint64_t SectionOffset = Section.getAddress() - ImageLoadAddr;
uint64_t SectSize = Section.getSize();
if (!SectSize)
continue;
// Register the text section.
TextSections.insert({SectionOffset, SectSize});
if (ShowDisassemblyOnly) {
StringRef SectionName = unwrapOrError(Section.getName(), FileName);
outs() << "\nDisassembly of section " << SectionName;
outs() << " [" << format("0x%" PRIx64, Section.getAddress()) << ", "
<< format("0x%" PRIx64, Section.getAddress() + SectSize)
<< "]:\n\n";
}
// Get the section data.
ArrayRef<uint8_t> Bytes =
arrayRefFromStringRef(unwrapOrError(Section.getContents(), FileName));
// Get the list of all the symbols in this section.
SectionSymbolsTy &Symbols = AllSymbols[Section];
// Disassemble symbol by symbol.
for (std::size_t SI = 0, SE = Symbols.size(); SI != SE; ++SI) {
if (!dissassembleSymbol(SI, Bytes, Symbols, Section))
exitWithError("disassembling error", FileName);
}
}
}
void ProfiledBinary::setupSymbolizer() {
symbolize::LLVMSymbolizer::Options SymbolizerOpts;
SymbolizerOpts.PrintFunctions =
DILineInfoSpecifier::FunctionNameKind::LinkageName;
SymbolizerOpts.Demangle = false;
SymbolizerOpts.DefaultArch = TheTriple.getArchName().str();
SymbolizerOpts.UseSymbolTable = false;
SymbolizerOpts.RelativeAddresses = false;
Symbolizer = std::make_unique<symbolize::LLVMSymbolizer>(SymbolizerOpts);
}
FrameLocationStack ProfiledBinary::symbolize(const InstructionPointer &IP,
bool UseCanonicalFnName) {
assert(this == IP.Binary &&
"Binary should only symbolize its own instruction");
auto Addr = object::SectionedAddress{IP.Offset + getPreferredBaseAddress(),
object::SectionedAddress::UndefSection};
DIInliningInfo InlineStack =
unwrapOrError(Symbolizer->symbolizeInlinedCode(Path, Addr), getName());
FrameLocationStack CallStack;
for (int32_t I = InlineStack.getNumberOfFrames() - 1; I >= 0; I--) {
const auto &CallerFrame = InlineStack.getFrame(I);
if (CallerFrame.FunctionName == "<invalid>")
break;
StringRef FunctionName(CallerFrame.FunctionName);
if (UseCanonicalFnName)
FunctionName = FunctionSamples::getCanonicalFnName(FunctionName);
LineLocation Line(CallerFrame.Line - CallerFrame.StartLine,
DILocation::getBaseDiscriminatorFromDiscriminator(
CallerFrame.Discriminator,
/* IsFSDiscriminator */ false));
FrameLocation Callsite(FunctionName.str(), Line);
CallStack.push_back(Callsite);
}
return CallStack;
}
InstructionPointer::InstructionPointer(ProfiledBinary *Binary, uint64_t Address,
bool RoundToNext)
: Binary(Binary), Address(Address) {
Index = Binary->getIndexForAddr(Address);
if (RoundToNext) {
// we might get address which is not the code
// it should round to the next valid address
this->Address = Binary->getAddressforIndex(Index);
}
}
void InstructionPointer::advance() {
Index++;
Address = Binary->getAddressforIndex(Index);
}
void InstructionPointer::backward() {
Index--;
Address = Binary->getAddressforIndex(Index);
}
void InstructionPointer::update(uint64_t Addr) {
Address = Addr;
Index = Binary->getIndexForAddr(Address);
}
} // end namespace sampleprof
} // end namespace llvm
|