1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
|
//===- toyc.cpp - The Toy Compiler ----------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the entry point for the Toy compiler.
//
//===----------------------------------------------------------------------===//
#include "toy/Dialect.h"
#include "toy/MLIRGen.h"
#include "toy/Parser.h"
#include "toy/Passes.h"
#include "mlir/Dialect/Affine/Passes.h"
#include "mlir/ExecutionEngine/ExecutionEngine.h"
#include "mlir/ExecutionEngine/OptUtils.h"
#include "mlir/IR/AsmState.h"
#include "mlir/IR/BuiltinOps.h"
#include "mlir/IR/MLIRContext.h"
#include "mlir/IR/Verifier.h"
#include "mlir/InitAllDialects.h"
#include "mlir/Parser.h"
#include "mlir/Pass/Pass.h"
#include "mlir/Pass/PassManager.h"
#include "mlir/Target/LLVMIR/Dialect/LLVMIR/LLVMToLLVMIRTranslation.h"
#include "mlir/Target/LLVMIR/Export.h"
#include "mlir/Transforms/Passes.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/IR/Module.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/ErrorOr.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/SourceMgr.h"
#include "llvm/Support/TargetSelect.h"
#include "llvm/Support/raw_ostream.h"
using namespace toy;
namespace cl = llvm::cl;
static cl::opt<std::string> inputFilename(cl::Positional,
cl::desc("<input toy file>"),
cl::init("-"),
cl::value_desc("filename"));
namespace {
enum InputType { Toy, MLIR };
}
static cl::opt<enum InputType> inputType(
"x", cl::init(Toy), cl::desc("Decided the kind of output desired"),
cl::values(clEnumValN(Toy, "toy", "load the input file as a Toy source.")),
cl::values(clEnumValN(MLIR, "mlir",
"load the input file as an MLIR file")));
namespace {
enum Action {
None,
DumpAST,
DumpMLIR,
DumpMLIRAffine,
DumpMLIRLLVM,
DumpLLVMIR,
RunJIT
};
}
static cl::opt<enum Action> emitAction(
"emit", cl::desc("Select the kind of output desired"),
cl::values(clEnumValN(DumpAST, "ast", "output the AST dump")),
cl::values(clEnumValN(DumpMLIR, "mlir", "output the MLIR dump")),
cl::values(clEnumValN(DumpMLIRAffine, "mlir-affine",
"output the MLIR dump after affine lowering")),
cl::values(clEnumValN(DumpMLIRLLVM, "mlir-llvm",
"output the MLIR dump after llvm lowering")),
cl::values(clEnumValN(DumpLLVMIR, "llvm", "output the LLVM IR dump")),
cl::values(
clEnumValN(RunJIT, "jit",
"JIT the code and run it by invoking the main function")));
static cl::opt<bool> enableOpt("opt", cl::desc("Enable optimizations"));
/// Returns a Toy AST resulting from parsing the file or a nullptr on error.
std::unique_ptr<toy::ModuleAST> parseInputFile(llvm::StringRef filename) {
llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> fileOrErr =
llvm::MemoryBuffer::getFileOrSTDIN(filename);
if (std::error_code ec = fileOrErr.getError()) {
llvm::errs() << "Could not open input file: " << ec.message() << "\n";
return nullptr;
}
auto buffer = fileOrErr.get()->getBuffer();
LexerBuffer lexer(buffer.begin(), buffer.end(), std::string(filename));
Parser parser(lexer);
return parser.parseModule();
}
int loadMLIR(mlir::MLIRContext &context, mlir::OwningModuleRef &module) {
// Handle '.toy' input to the compiler.
if (inputType != InputType::MLIR &&
!llvm::StringRef(inputFilename).endswith(".mlir")) {
auto moduleAST = parseInputFile(inputFilename);
if (!moduleAST)
return 6;
module = mlirGen(context, *moduleAST);
return !module ? 1 : 0;
}
// Otherwise, the input is '.mlir'.
llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> fileOrErr =
llvm::MemoryBuffer::getFileOrSTDIN(inputFilename);
if (std::error_code EC = fileOrErr.getError()) {
llvm::errs() << "Could not open input file: " << EC.message() << "\n";
return -1;
}
// Parse the input mlir.
llvm::SourceMgr sourceMgr;
sourceMgr.AddNewSourceBuffer(std::move(*fileOrErr), llvm::SMLoc());
module = mlir::parseSourceFile(sourceMgr, &context);
if (!module) {
llvm::errs() << "Error can't load file " << inputFilename << "\n";
return 3;
}
return 0;
}
int loadAndProcessMLIR(mlir::MLIRContext &context,
mlir::OwningModuleRef &module) {
if (int error = loadMLIR(context, module))
return error;
mlir::PassManager pm(&context);
// Apply any generic pass manager command line options and run the pipeline.
applyPassManagerCLOptions(pm);
// Check to see what granularity of MLIR we are compiling to.
bool isLoweringToAffine = emitAction >= Action::DumpMLIRAffine;
bool isLoweringToLLVM = emitAction >= Action::DumpMLIRLLVM;
if (enableOpt || isLoweringToAffine) {
// Inline all functions into main and then delete them.
pm.addPass(mlir::createInlinerPass());
// Now that there is only one function, we can infer the shapes of each of
// the operations.
mlir::OpPassManager &optPM = pm.nest<mlir::FuncOp>();
optPM.addPass(mlir::createCanonicalizerPass());
optPM.addPass(mlir::toy::createShapeInferencePass());
optPM.addPass(mlir::createCanonicalizerPass());
optPM.addPass(mlir::createCSEPass());
}
if (isLoweringToAffine) {
mlir::OpPassManager &optPM = pm.nest<mlir::FuncOp>();
// Partially lower the toy dialect with a few cleanups afterwards.
optPM.addPass(mlir::toy::createLowerToAffinePass());
optPM.addPass(mlir::createCanonicalizerPass());
optPM.addPass(mlir::createCSEPass());
// Add optimizations if enabled.
if (enableOpt) {
optPM.addPass(mlir::createLoopFusionPass());
optPM.addPass(mlir::createAffineScalarReplacementPass());
}
}
if (isLoweringToLLVM) {
// Finish lowering the toy IR to the LLVM dialect.
pm.addPass(mlir::toy::createLowerToLLVMPass());
}
if (mlir::failed(pm.run(*module)))
return 4;
return 0;
}
int dumpAST() {
if (inputType == InputType::MLIR) {
llvm::errs() << "Can't dump a Toy AST when the input is MLIR\n";
return 5;
}
auto moduleAST = parseInputFile(inputFilename);
if (!moduleAST)
return 1;
dump(*moduleAST);
return 0;
}
int dumpLLVMIR(mlir::ModuleOp module) {
// Register the translation to LLVM IR with the MLIR context.
mlir::registerLLVMDialectTranslation(*module->getContext());
// Convert the module to LLVM IR in a new LLVM IR context.
llvm::LLVMContext llvmContext;
auto llvmModule = mlir::translateModuleToLLVMIR(module, llvmContext);
if (!llvmModule) {
llvm::errs() << "Failed to emit LLVM IR\n";
return -1;
}
// Initialize LLVM targets.
llvm::InitializeNativeTarget();
llvm::InitializeNativeTargetAsmPrinter();
mlir::ExecutionEngine::setupTargetTriple(llvmModule.get());
/// Optionally run an optimization pipeline over the llvm module.
auto optPipeline = mlir::makeOptimizingTransformer(
/*optLevel=*/enableOpt ? 3 : 0, /*sizeLevel=*/0,
/*targetMachine=*/nullptr);
if (auto err = optPipeline(llvmModule.get())) {
llvm::errs() << "Failed to optimize LLVM IR " << err << "\n";
return -1;
}
llvm::errs() << *llvmModule << "\n";
return 0;
}
int runJit(mlir::ModuleOp module) {
// Initialize LLVM targets.
llvm::InitializeNativeTarget();
llvm::InitializeNativeTargetAsmPrinter();
// Register the translation from MLIR to LLVM IR, which must happen before we
// can JIT-compile.
mlir::registerLLVMDialectTranslation(*module->getContext());
// An optimization pipeline to use within the execution engine.
auto optPipeline = mlir::makeOptimizingTransformer(
/*optLevel=*/enableOpt ? 3 : 0, /*sizeLevel=*/0,
/*targetMachine=*/nullptr);
// Create an MLIR execution engine. The execution engine eagerly JIT-compiles
// the module.
auto maybeEngine = mlir::ExecutionEngine::create(
module, /*llvmModuleBuilder=*/nullptr, optPipeline);
assert(maybeEngine && "failed to construct an execution engine");
auto &engine = maybeEngine.get();
// Invoke the JIT-compiled function.
auto invocationResult = engine->invokePacked("main");
if (invocationResult) {
llvm::errs() << "JIT invocation failed\n";
return -1;
}
return 0;
}
int main(int argc, char **argv) {
// Register any command line options.
mlir::registerAsmPrinterCLOptions();
mlir::registerMLIRContextCLOptions();
mlir::registerPassManagerCLOptions();
cl::ParseCommandLineOptions(argc, argv, "toy compiler\n");
if (emitAction == Action::DumpAST)
return dumpAST();
// If we aren't dumping the AST, then we are compiling with/to MLIR.
mlir::MLIRContext context;
// Load our Dialect in this MLIR Context.
context.getOrLoadDialect<mlir::toy::ToyDialect>();
mlir::OwningModuleRef module;
if (int error = loadAndProcessMLIR(context, module))
return error;
// If we aren't exporting to non-mlir, then we are done.
bool isOutputingMLIR = emitAction <= Action::DumpMLIRLLVM;
if (isOutputingMLIR) {
module->dump();
return 0;
}
// Check to see if we are compiling to LLVM IR.
if (emitAction == Action::DumpLLVMIR)
return dumpLLVMIR(*module);
// Otherwise, we must be running the jit.
if (emitAction == Action::RunJIT)
return runJit(*module);
llvm::errs() << "No action specified (parsing only?), use -emit=<action>\n";
return -1;
}
|