| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 
 | //===- AffineAnalysis.cpp - Affine structures analysis routines -----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements miscellaneous analysis routines for affine structures
// (expressions, maps, sets), and other utilities relying on such analysis.
//
//===----------------------------------------------------------------------===//
#include "mlir/Analysis/AffineAnalysis.h"
#include "mlir/Analysis/SliceAnalysis.h"
#include "mlir/Analysis/Utils.h"
#include "mlir/Dialect/Affine/IR/AffineOps.h"
#include "mlir/Dialect/Affine/IR/AffineValueMap.h"
#include "mlir/Dialect/StandardOps/IR/Ops.h"
#include "mlir/IR/AffineExprVisitor.h"
#include "mlir/IR/BuiltinOps.h"
#include "mlir/IR/IntegerSet.h"
#include "mlir/Support/MathExtras.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/TypeSwitch.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#define DEBUG_TYPE "affine-analysis"
using namespace mlir;
using llvm::dbgs;
/// Returns true if `value` (transitively) depends on iteration arguments of the
/// given `forOp`.
static bool dependsOnIterArgs(Value value, AffineForOp forOp) {
  // Compute the backward slice of the value.
  SetVector<Operation *> slice;
  getBackwardSlice(value, &slice,
                   [&](Operation *op) { return !forOp->isAncestor(op); });
  // Check that none of the operands of the operations in the backward slice are
  // loop iteration arguments, and neither is the value itself.
  auto argRange = forOp.getRegionIterArgs();
  llvm::SmallPtrSet<Value, 8> iterArgs(argRange.begin(), argRange.end());
  if (iterArgs.contains(value))
    return true;
  for (Operation *op : slice)
    for (Value operand : op->getOperands())
      if (iterArgs.contains(operand))
        return true;
  return false;
}
/// Get the value that is being reduced by `pos`-th reduction in the loop if
/// such a reduction can be performed by affine parallel loops. This assumes
/// floating-point operations are commutative. On success, `kind` will be the
/// reduction kind suitable for use in affine parallel loop builder. If the
/// reduction is not supported, returns null.
static Value getSupportedReduction(AffineForOp forOp, unsigned pos,
                                   AtomicRMWKind &kind) {
  auto yieldOp = cast<AffineYieldOp>(forOp.getBody()->back());
  Value yielded = yieldOp.operands()[pos];
  Operation *definition = yielded.getDefiningOp();
  if (!definition)
    return nullptr;
  if (!forOp.getRegionIterArgs()[pos].hasOneUse())
    return nullptr;
  if (!yielded.hasOneUse())
    return nullptr;
  Optional<AtomicRMWKind> maybeKind =
      TypeSwitch<Operation *, Optional<AtomicRMWKind>>(definition)
          .Case<AddFOp>([](Operation *) { return AtomicRMWKind::addf; })
          .Case<MulFOp>([](Operation *) { return AtomicRMWKind::mulf; })
          .Case<AddIOp>([](Operation *) { return AtomicRMWKind::addi; })
          .Case<MulIOp>([](Operation *) { return AtomicRMWKind::muli; })
          .Default([](Operation *) -> Optional<AtomicRMWKind> {
            // TODO: AtomicRMW supports other kinds of reductions this is
            // currently not detecting, add those when the need arises.
            return llvm::None;
          });
  if (!maybeKind)
    return nullptr;
  kind = *maybeKind;
  if (definition->getOperand(0) == forOp.getRegionIterArgs()[pos] &&
      !dependsOnIterArgs(definition->getOperand(1), forOp))
    return definition->getOperand(1);
  if (definition->getOperand(1) == forOp.getRegionIterArgs()[pos] &&
      !dependsOnIterArgs(definition->getOperand(0), forOp))
    return definition->getOperand(0);
  return nullptr;
}
/// Returns true if `forOp' is a parallel loop. If `parallelReductions` is
/// provided, populates it with descriptors of the parallelizable reductions and
/// treats them as not preventing parallelization.
bool mlir::isLoopParallel(AffineForOp forOp,
                          SmallVectorImpl<LoopReduction> *parallelReductions) {
  unsigned numIterArgs = forOp.getNumIterOperands();
  // Loop is not parallel if it has SSA loop-carried dependences and reduction
  // detection is not requested.
  if (numIterArgs > 0 && !parallelReductions)
    return false;
  // Find supported reductions of requested.
  if (parallelReductions) {
    parallelReductions->reserve(forOp.getNumIterOperands());
    for (unsigned i = 0; i < numIterArgs; ++i) {
      AtomicRMWKind kind;
      if (Value value = getSupportedReduction(forOp, i, kind))
        parallelReductions->emplace_back(LoopReduction{kind, i, value});
    }
    // Return later to allow for identifying all parallel reductions even if the
    // loop is not parallel.
    if (parallelReductions->size() != numIterArgs)
      return false;
  }
  // Check memory dependences.
  return isLoopMemoryParallel(forOp);
}
/// Returns true if `forOp' doesn't have memory dependences preventing
/// parallelization. This function doesn't check iter_args and should be used
/// only as a building block for full parallel-checking functions.
bool mlir::isLoopMemoryParallel(AffineForOp forOp) {
  // Collect all load and store ops in loop nest rooted at 'forOp'.
  SmallVector<Operation *, 8> loadAndStoreOps;
  auto walkResult = forOp.walk([&](Operation *op) -> WalkResult {
    if (isa<AffineReadOpInterface, AffineWriteOpInterface>(op))
      loadAndStoreOps.push_back(op);
    else if (!isa<AffineForOp, AffineYieldOp, AffineIfOp>(op) &&
             !MemoryEffectOpInterface::hasNoEffect(op))
      return WalkResult::interrupt();
    return WalkResult::advance();
  });
  // Stop early if the loop has unknown ops with side effects.
  if (walkResult.wasInterrupted())
    return false;
  // Dep check depth would be number of enclosing loops + 1.
  unsigned depth = getNestingDepth(forOp) + 1;
  // Check dependences between all pairs of ops in 'loadAndStoreOps'.
  for (auto *srcOp : loadAndStoreOps) {
    MemRefAccess srcAccess(srcOp);
    for (auto *dstOp : loadAndStoreOps) {
      MemRefAccess dstAccess(dstOp);
      FlatAffineConstraints dependenceConstraints;
      DependenceResult result = checkMemrefAccessDependence(
          srcAccess, dstAccess, depth, &dependenceConstraints,
          /*dependenceComponents=*/nullptr);
      if (result.value != DependenceResult::NoDependence)
        return false;
    }
  }
  return true;
}
/// Returns the sequence of AffineApplyOp Operations operation in
/// 'affineApplyOps', which are reachable via a search starting from 'operands',
/// and ending at operands which are not defined by AffineApplyOps.
// TODO: Add a method to AffineApplyOp which forward substitutes the
// AffineApplyOp into any user AffineApplyOps.
void mlir::getReachableAffineApplyOps(
    ArrayRef<Value> operands, SmallVectorImpl<Operation *> &affineApplyOps) {
  struct State {
    // The ssa value for this node in the DFS traversal.
    Value value;
    // The operand index of 'value' to explore next during DFS traversal.
    unsigned operandIndex;
  };
  SmallVector<State, 4> worklist;
  for (auto operand : operands) {
    worklist.push_back({operand, 0});
  }
  while (!worklist.empty()) {
    State &state = worklist.back();
    auto *opInst = state.value.getDefiningOp();
    // Note: getDefiningOp will return nullptr if the operand is not an
    // Operation (i.e. block argument), which is a terminator for the search.
    if (!isa_and_nonnull<AffineApplyOp>(opInst)) {
      worklist.pop_back();
      continue;
    }
    if (state.operandIndex == 0) {
      // Pre-Visit: Add 'opInst' to reachable sequence.
      affineApplyOps.push_back(opInst);
    }
    if (state.operandIndex < opInst->getNumOperands()) {
      // Visit: Add next 'affineApplyOp' operand to worklist.
      // Get next operand to visit at 'operandIndex'.
      auto nextOperand = opInst->getOperand(state.operandIndex);
      // Increment 'operandIndex' in 'state'.
      ++state.operandIndex;
      // Add 'nextOperand' to worklist.
      worklist.push_back({nextOperand, 0});
    } else {
      // Post-visit: done visiting operands AffineApplyOp, pop off stack.
      worklist.pop_back();
    }
  }
}
// Builds a system of constraints with dimensional identifiers corresponding to
// the loop IVs of the forOps appearing in that order. Any symbols founds in
// the bound operands are added as symbols in the system. Returns failure for
// the yet unimplemented cases.
// TODO: Handle non-unit steps through local variables or stride information in
// FlatAffineConstraints. (For eg., by using iv - lb % step = 0 and/or by
// introducing a method in FlatAffineConstraints setExprStride(ArrayRef<int64_t>
// expr, int64_t stride)
LogicalResult mlir::getIndexSet(MutableArrayRef<Operation *> ops,
                                FlatAffineConstraints *domain) {
  SmallVector<Value, 4> indices;
  SmallVector<AffineForOp, 8> forOps;
  for (Operation *op : ops) {
    assert((isa<AffineForOp, AffineIfOp>(op)) &&
           "ops should have either AffineForOp or AffineIfOp");
    if (AffineForOp forOp = dyn_cast<AffineForOp>(op))
      forOps.push_back(forOp);
  }
  extractForInductionVars(forOps, &indices);
  // Reset while associated Values in 'indices' to the domain.
  domain->reset(forOps.size(), /*numSymbols=*/0, /*numLocals=*/0, indices);
  for (Operation *op : ops) {
    // Add constraints from forOp's bounds.
    if (AffineForOp forOp = dyn_cast<AffineForOp>(op)) {
      if (failed(domain->addAffineForOpDomain(forOp)))
        return failure();
    } else if (AffineIfOp ifOp = dyn_cast<AffineIfOp>(op)) {
      domain->addAffineIfOpDomain(ifOp);
    }
  }
  return success();
}
/// Computes the iteration domain for 'op' and populates 'indexSet', which
/// encapsulates the constraints involving loops surrounding 'op' and
/// potentially involving any Function symbols. The dimensional identifiers in
/// 'indexSet' correspond to the loops surrounding 'op' from outermost to
/// innermost.
static LogicalResult getOpIndexSet(Operation *op,
                                   FlatAffineConstraints *indexSet) {
  SmallVector<Operation *, 4> ops;
  getEnclosingAffineForAndIfOps(*op, &ops);
  return getIndexSet(ops, indexSet);
}
namespace {
// ValuePositionMap manages the mapping from Values which represent dimension
// and symbol identifiers from 'src' and 'dst' access functions to positions
// in new space where some Values are kept separate (using addSrc/DstValue)
// and some Values are merged (addSymbolValue).
// Position lookups return the absolute position in the new space which
// has the following format:
//
//   [src-dim-identifiers] [dst-dim-identifiers] [symbol-identifiers]
//
// Note: access function non-IV dimension identifiers (that have 'dimension'
// positions in the access function position space) are assigned as symbols
// in the output position space. Convenience access functions which lookup
// an Value in multiple maps are provided (i.e. getSrcDimOrSymPos) to handle
// the common case of resolving positions for all access function operands.
//
// TODO: Generalize this: could take a template parameter for the number of maps
// (3 in the current case), and lookups could take indices of maps to check. So
// getSrcDimOrSymPos would be "getPos(value, {0, 2})".
class ValuePositionMap {
public:
  void addSrcValue(Value value) {
    if (addValueAt(value, &srcDimPosMap, numSrcDims))
      ++numSrcDims;
  }
  void addDstValue(Value value) {
    if (addValueAt(value, &dstDimPosMap, numDstDims))
      ++numDstDims;
  }
  void addSymbolValue(Value value) {
    if (addValueAt(value, &symbolPosMap, numSymbols))
      ++numSymbols;
  }
  unsigned getSrcDimOrSymPos(Value value) const {
    return getDimOrSymPos(value, srcDimPosMap, 0);
  }
  unsigned getDstDimOrSymPos(Value value) const {
    return getDimOrSymPos(value, dstDimPosMap, numSrcDims);
  }
  unsigned getSymPos(Value value) const {
    auto it = symbolPosMap.find(value);
    assert(it != symbolPosMap.end());
    return numSrcDims + numDstDims + it->second;
  }
  unsigned getNumSrcDims() const { return numSrcDims; }
  unsigned getNumDstDims() const { return numDstDims; }
  unsigned getNumDims() const { return numSrcDims + numDstDims; }
  unsigned getNumSymbols() const { return numSymbols; }
private:
  bool addValueAt(Value value, DenseMap<Value, unsigned> *posMap,
                  unsigned position) {
    auto it = posMap->find(value);
    if (it == posMap->end()) {
      (*posMap)[value] = position;
      return true;
    }
    return false;
  }
  unsigned getDimOrSymPos(Value value,
                          const DenseMap<Value, unsigned> &dimPosMap,
                          unsigned dimPosOffset) const {
    auto it = dimPosMap.find(value);
    if (it != dimPosMap.end()) {
      return dimPosOffset + it->second;
    }
    it = symbolPosMap.find(value);
    assert(it != symbolPosMap.end());
    return numSrcDims + numDstDims + it->second;
  }
  unsigned numSrcDims = 0;
  unsigned numDstDims = 0;
  unsigned numSymbols = 0;
  DenseMap<Value, unsigned> srcDimPosMap;
  DenseMap<Value, unsigned> dstDimPosMap;
  DenseMap<Value, unsigned> symbolPosMap;
};
} // namespace
// Builds a map from Value to identifier position in a new merged identifier
// list, which is the result of merging dim/symbol lists from src/dst
// iteration domains, the format of which is as follows:
//
//   [src-dim-identifiers, dst-dim-identifiers, symbol-identifiers, const_term]
//
// This method populates 'valuePosMap' with mappings from operand Values in
// 'srcAccessMap'/'dstAccessMap' (as well as those in 'srcDomain'/'dstDomain')
// to the position of these values in the merged list.
static void buildDimAndSymbolPositionMaps(
    const FlatAffineConstraints &srcDomain,
    const FlatAffineConstraints &dstDomain, const AffineValueMap &srcAccessMap,
    const AffineValueMap &dstAccessMap, ValuePositionMap *valuePosMap,
    FlatAffineConstraints *dependenceConstraints) {
  // IsDimState is a tri-state boolean. It is used to distinguish three
  // different cases of the values passed to updateValuePosMap.
  // - When it is TRUE, we are certain that all values are dim values.
  // - When it is FALSE, we are certain that all values are symbol values.
  // - When it is UNKNOWN, we need to further check whether the value is from a
  // loop IV to determine its type (dim or symbol).
  // We need this enumeration because sometimes we cannot determine whether a
  // Value is a symbol or a dim by the information from the Value itself. If a
  // Value appears in an affine map of a loop, we can determine whether it is a
  // dim or not by the function `isForInductionVar`. But when a Value is in the
  // affine set of an if-statement, there is no way to identify its category
  // (dim/symbol) by itself. Fortunately, the Values to be inserted into
  // `valuePosMap` come from `srcDomain` and `dstDomain`, and they hold such
  // information of Value category: `srcDomain` and `dstDomain` organize Values
  // by their category, such that the position of each Value stored in
  // `srcDomain` and `dstDomain` marks which category that a Value belongs to.
  // Therefore, we can separate Values into dim and symbol groups before passing
  // them to the function `updateValuePosMap`. Specifically, when passing the
  // dim group, we set IsDimState to TRUE; otherwise, we set it to FALSE.
  // However, Values from the operands of `srcAccessMap` and `dstAccessMap` are
  // not explicitly categorized into dim or symbol, and we have to rely on
  // `isForInductionVar` to make the decision. IsDimState is set to UNKNOWN in
  // this case.
  enum IsDimState { TRUE, FALSE, UNKNOWN };
  // This function places each given Value (in `values`) under a respective
  // category in `valuePosMap`. Specifically, the placement rules are:
  // 1) If `isDim` is FALSE, then every value in `values` are inserted into
  // `valuePosMap` as symbols.
  // 2) If `isDim` is UNKNOWN and the value of the current iteration is NOT an
  // induction variable of a for-loop, we treat it as symbol as well.
  // 3) For other cases, we decide whether to add a value to the `src` or the
  // `dst` section of the dim category simply by the boolean value `isSrc`.
  auto updateValuePosMap = [&](ArrayRef<Value> values, bool isSrc,
                               IsDimState isDim) {
    for (unsigned i = 0, e = values.size(); i < e; ++i) {
      auto value = values[i];
      if (isDim == FALSE || (isDim == UNKNOWN && !isForInductionVar(value))) {
        assert(isValidSymbol(value) &&
               "access operand has to be either a loop IV or a symbol");
        valuePosMap->addSymbolValue(value);
      } else {
        if (isSrc)
          valuePosMap->addSrcValue(value);
        else
          valuePosMap->addDstValue(value);
      }
    }
  };
  // Collect values from the src and dst domains. For each domain, we separate
  // the collected values into dim and symbol parts.
  SmallVector<Value, 4> srcDimValues, dstDimValues, srcSymbolValues,
      dstSymbolValues;
  srcDomain.getIdValues(0, srcDomain.getNumDimIds(), &srcDimValues);
  dstDomain.getIdValues(0, dstDomain.getNumDimIds(), &dstDimValues);
  srcDomain.getIdValues(srcDomain.getNumDimIds(),
                        srcDomain.getNumDimAndSymbolIds(), &srcSymbolValues);
  dstDomain.getIdValues(dstDomain.getNumDimIds(),
                        dstDomain.getNumDimAndSymbolIds(), &dstSymbolValues);
  // Update value position map with dim values from src iteration domain.
  updateValuePosMap(srcDimValues, /*isSrc=*/true, /*isDim=*/TRUE);
  // Update value position map with dim values from dst iteration domain.
  updateValuePosMap(dstDimValues, /*isSrc=*/false, /*isDim=*/TRUE);
  // Update value position map with symbols from src iteration domain.
  updateValuePosMap(srcSymbolValues, /*isSrc=*/true, /*isDim=*/FALSE);
  // Update value position map with symbols from dst iteration domain.
  updateValuePosMap(dstSymbolValues, /*isSrc=*/false, /*isDim=*/FALSE);
  // Update value position map with identifiers from src access function.
  updateValuePosMap(srcAccessMap.getOperands(), /*isSrc=*/true,
                    /*isDim=*/UNKNOWN);
  // Update value position map with identifiers from dst access function.
  updateValuePosMap(dstAccessMap.getOperands(), /*isSrc=*/false,
                    /*isDim=*/UNKNOWN);
}
// Sets up dependence constraints columns appropriately, in the format:
// [src-dim-ids, dst-dim-ids, symbol-ids, local-ids, const_term]
static void initDependenceConstraints(
    const FlatAffineConstraints &srcDomain,
    const FlatAffineConstraints &dstDomain, const AffineValueMap &srcAccessMap,
    const AffineValueMap &dstAccessMap, const ValuePositionMap &valuePosMap,
    FlatAffineConstraints *dependenceConstraints) {
  // Calculate number of equalities/inequalities and columns required to
  // initialize FlatAffineConstraints for 'dependenceDomain'.
  unsigned numIneq =
      srcDomain.getNumInequalities() + dstDomain.getNumInequalities();
  AffineMap srcMap = srcAccessMap.getAffineMap();
  assert(srcMap.getNumResults() == dstAccessMap.getAffineMap().getNumResults());
  unsigned numEq = srcMap.getNumResults();
  unsigned numDims = srcDomain.getNumDimIds() + dstDomain.getNumDimIds();
  unsigned numSymbols = valuePosMap.getNumSymbols();
  unsigned numLocals = srcDomain.getNumLocalIds() + dstDomain.getNumLocalIds();
  unsigned numIds = numDims + numSymbols + numLocals;
  unsigned numCols = numIds + 1;
  // Set flat affine constraints sizes and reserving space for constraints.
  dependenceConstraints->reset(numIneq, numEq, numCols, numDims, numSymbols,
                               numLocals);
  // Set values corresponding to dependence constraint identifiers.
  SmallVector<Value, 4> srcLoopIVs, dstLoopIVs;
  srcDomain.getIdValues(0, srcDomain.getNumDimIds(), &srcLoopIVs);
  dstDomain.getIdValues(0, dstDomain.getNumDimIds(), &dstLoopIVs);
  dependenceConstraints->setIdValues(0, srcLoopIVs.size(), srcLoopIVs);
  dependenceConstraints->setIdValues(
      srcLoopIVs.size(), srcLoopIVs.size() + dstLoopIVs.size(), dstLoopIVs);
  // Set values for the symbolic identifier dimensions. `isSymbolDetermined`
  // indicates whether we are certain that the `values` passed in are all
  // symbols. If `isSymbolDetermined` is true, then we treat every Value in
  // `values` as a symbol; otherwise, we let the function `isForInductionVar` to
  // distinguish whether a Value in `values` is a symbol or not.
  auto setSymbolIds = [&](ArrayRef<Value> values,
                          bool isSymbolDetermined = true) {
    for (auto value : values) {
      if (isSymbolDetermined || !isForInductionVar(value)) {
        assert(isValidSymbol(value) && "expected symbol");
        dependenceConstraints->setIdValue(valuePosMap.getSymPos(value), value);
      }
    }
  };
  // We are uncertain about whether all operands in `srcAccessMap` and
  // `dstAccessMap` are symbols, so we set `isSymbolDetermined` to false.
  setSymbolIds(srcAccessMap.getOperands(), /*isSymbolDetermined=*/false);
  setSymbolIds(dstAccessMap.getOperands(), /*isSymbolDetermined=*/false);
  SmallVector<Value, 8> srcSymbolValues, dstSymbolValues;
  srcDomain.getIdValues(srcDomain.getNumDimIds(),
                        srcDomain.getNumDimAndSymbolIds(), &srcSymbolValues);
  dstDomain.getIdValues(dstDomain.getNumDimIds(),
                        dstDomain.getNumDimAndSymbolIds(), &dstSymbolValues);
  // Since we only take symbol Values out of `srcDomain` and `dstDomain`,
  // `isSymbolDetermined` is kept to its default value: true.
  setSymbolIds(srcSymbolValues);
  setSymbolIds(dstSymbolValues);
  for (unsigned i = 0, e = dependenceConstraints->getNumDimAndSymbolIds();
       i < e; i++)
    assert(dependenceConstraints->getIds()[i].hasValue());
}
// Adds iteration domain constraints from 'srcDomain' and 'dstDomain' into
// 'dependenceDomain'.
// Uses 'valuePosMap' to determine the position in 'dependenceDomain' to which a
// srcDomain/dstDomain Value maps.
static void addDomainConstraints(const FlatAffineConstraints &srcDomain,
                                 const FlatAffineConstraints &dstDomain,
                                 const ValuePositionMap &valuePosMap,
                                 FlatAffineConstraints *dependenceDomain) {
  unsigned depNumDimsAndSymbolIds = dependenceDomain->getNumDimAndSymbolIds();
  SmallVector<int64_t, 4> cst(dependenceDomain->getNumCols());
  auto addDomain = [&](bool isSrc, bool isEq, unsigned localOffset) {
    const FlatAffineConstraints &domain = isSrc ? srcDomain : dstDomain;
    unsigned numCsts =
        isEq ? domain.getNumEqualities() : domain.getNumInequalities();
    unsigned numDimAndSymbolIds = domain.getNumDimAndSymbolIds();
    auto at = [&](unsigned i, unsigned j) -> int64_t {
      return isEq ? domain.atEq(i, j) : domain.atIneq(i, j);
    };
    auto map = [&](unsigned i) -> int64_t {
      return isSrc ? valuePosMap.getSrcDimOrSymPos(domain.getIdValue(i))
                   : valuePosMap.getDstDimOrSymPos(domain.getIdValue(i));
    };
    for (unsigned i = 0; i < numCsts; ++i) {
      // Zero fill.
      std::fill(cst.begin(), cst.end(), 0);
      // Set coefficients for identifiers corresponding to domain.
      for (unsigned j = 0; j < numDimAndSymbolIds; ++j)
        cst[map(j)] = at(i, j);
      // Local terms.
      for (unsigned j = 0, e = domain.getNumLocalIds(); j < e; j++)
        cst[depNumDimsAndSymbolIds + localOffset + j] =
            at(i, numDimAndSymbolIds + j);
      // Set constant term.
      cst[cst.size() - 1] = at(i, domain.getNumCols() - 1);
      // Add constraint.
      if (isEq)
        dependenceDomain->addEquality(cst);
      else
        dependenceDomain->addInequality(cst);
    }
  };
  // Add equalities from src domain.
  addDomain(/*isSrc=*/true, /*isEq=*/true, /*localOffset=*/0);
  // Add inequalities from src domain.
  addDomain(/*isSrc=*/true, /*isEq=*/false, /*localOffset=*/0);
  // Add equalities from dst domain.
  addDomain(/*isSrc=*/false, /*isEq=*/true,
            /*localOffset=*/srcDomain.getNumLocalIds());
  // Add inequalities from dst domain.
  addDomain(/*isSrc=*/false, /*isEq=*/false,
            /*localOffset=*/srcDomain.getNumLocalIds());
}
// Adds equality constraints that equate src and dst access functions
// represented by 'srcAccessMap' and 'dstAccessMap' for each result.
// Requires that 'srcAccessMap' and 'dstAccessMap' have the same results count.
// For example, given the following two accesses functions to a 2D memref:
//
//   Source access function:
//     (a0 * d0 + a1 * s0 + a2, b0 * d0 + b1 * s0 + b2)
//
//   Destination access function:
//     (c0 * d0 + c1 * s0 + c2, f0 * d0 + f1 * s0 + f2)
//
// This method constructs the following equality constraints in
// 'dependenceDomain', by equating the access functions for each result
// (i.e. each memref dim). Notice that 'd0' for the destination access function
// is mapped into 'd0' in the equality constraint:
//
//   d0      d1      s0         c
//   --      --      --         --
//   a0     -c0      (a1 - c1)  (a2 - c2) = 0
//   b0     -f0      (b1 - f1)  (b2 - f2) = 0
//
// Returns failure if any AffineExpr cannot be flattened (due to it being
// semi-affine). Returns success otherwise.
static LogicalResult
addMemRefAccessConstraints(const AffineValueMap &srcAccessMap,
                           const AffineValueMap &dstAccessMap,
                           const ValuePositionMap &valuePosMap,
                           FlatAffineConstraints *dependenceDomain) {
  AffineMap srcMap = srcAccessMap.getAffineMap();
  AffineMap dstMap = dstAccessMap.getAffineMap();
  assert(srcMap.getNumResults() == dstMap.getNumResults());
  unsigned numResults = srcMap.getNumResults();
  unsigned srcNumIds = srcMap.getNumDims() + srcMap.getNumSymbols();
  ArrayRef<Value> srcOperands = srcAccessMap.getOperands();
  unsigned dstNumIds = dstMap.getNumDims() + dstMap.getNumSymbols();
  ArrayRef<Value> dstOperands = dstAccessMap.getOperands();
  std::vector<SmallVector<int64_t, 8>> srcFlatExprs;
  std::vector<SmallVector<int64_t, 8>> destFlatExprs;
  FlatAffineConstraints srcLocalVarCst, destLocalVarCst;
  // Get flattened expressions for the source destination maps.
  if (failed(getFlattenedAffineExprs(srcMap, &srcFlatExprs, &srcLocalVarCst)) ||
      failed(getFlattenedAffineExprs(dstMap, &destFlatExprs, &destLocalVarCst)))
    return failure();
  unsigned domNumLocalIds = dependenceDomain->getNumLocalIds();
  unsigned srcNumLocalIds = srcLocalVarCst.getNumLocalIds();
  unsigned dstNumLocalIds = destLocalVarCst.getNumLocalIds();
  unsigned numLocalIdsToAdd = srcNumLocalIds + dstNumLocalIds;
  for (unsigned i = 0; i < numLocalIdsToAdd; i++) {
    dependenceDomain->addLocalId(dependenceDomain->getNumLocalIds());
  }
  unsigned numDims = dependenceDomain->getNumDimIds();
  unsigned numSymbols = dependenceDomain->getNumSymbolIds();
  unsigned numSrcLocalIds = srcLocalVarCst.getNumLocalIds();
  unsigned newLocalIdOffset = numDims + numSymbols + domNumLocalIds;
  // Equality to add.
  SmallVector<int64_t, 8> eq(dependenceDomain->getNumCols());
  for (unsigned i = 0; i < numResults; ++i) {
    // Zero fill.
    std::fill(eq.begin(), eq.end(), 0);
    // Flattened AffineExpr for src result 'i'.
    const auto &srcFlatExpr = srcFlatExprs[i];
    // Set identifier coefficients from src access function.
    for (unsigned j = 0, e = srcOperands.size(); j < e; ++j)
      eq[valuePosMap.getSrcDimOrSymPos(srcOperands[j])] = srcFlatExpr[j];
    // Local terms.
    for (unsigned j = 0, e = srcNumLocalIds; j < e; j++)
      eq[newLocalIdOffset + j] = srcFlatExpr[srcNumIds + j];
    // Set constant term.
    eq[eq.size() - 1] = srcFlatExpr[srcFlatExpr.size() - 1];
    // Flattened AffineExpr for dest result 'i'.
    const auto &destFlatExpr = destFlatExprs[i];
    // Set identifier coefficients from dst access function.
    for (unsigned j = 0, e = dstOperands.size(); j < e; ++j)
      eq[valuePosMap.getDstDimOrSymPos(dstOperands[j])] -= destFlatExpr[j];
    // Local terms.
    for (unsigned j = 0, e = dstNumLocalIds; j < e; j++)
      eq[newLocalIdOffset + numSrcLocalIds + j] = -destFlatExpr[dstNumIds + j];
    // Set constant term.
    eq[eq.size() - 1] -= destFlatExpr[destFlatExpr.size() - 1];
    // Add equality constraint.
    dependenceDomain->addEquality(eq);
  }
  // Add equality constraints for any operands that are defined by constant ops.
  auto addEqForConstOperands = [&](ArrayRef<Value> operands) {
    for (unsigned i = 0, e = operands.size(); i < e; ++i) {
      if (isForInductionVar(operands[i]))
        continue;
      auto symbol = operands[i];
      assert(isValidSymbol(symbol));
      // Check if the symbol is a constant.
      if (auto cOp = symbol.getDefiningOp<ConstantIndexOp>())
        dependenceDomain->setIdToConstant(valuePosMap.getSymPos(symbol),
                                          cOp.getValue());
    }
  };
  // Add equality constraints for any src symbols defined by constant ops.
  addEqForConstOperands(srcOperands);
  // Add equality constraints for any dst symbols defined by constant ops.
  addEqForConstOperands(dstOperands);
  // By construction (see flattener), local var constraints will not have any
  // equalities.
  assert(srcLocalVarCst.getNumEqualities() == 0 &&
         destLocalVarCst.getNumEqualities() == 0);
  // Add inequalities from srcLocalVarCst and destLocalVarCst into the
  // dependence domain.
  SmallVector<int64_t, 8> ineq(dependenceDomain->getNumCols());
  for (unsigned r = 0, e = srcLocalVarCst.getNumInequalities(); r < e; r++) {
    std::fill(ineq.begin(), ineq.end(), 0);
    // Set identifier coefficients from src local var constraints.
    for (unsigned j = 0, e = srcOperands.size(); j < e; ++j)
      ineq[valuePosMap.getSrcDimOrSymPos(srcOperands[j])] =
          srcLocalVarCst.atIneq(r, j);
    // Local terms.
    for (unsigned j = 0, e = srcNumLocalIds; j < e; j++)
      ineq[newLocalIdOffset + j] = srcLocalVarCst.atIneq(r, srcNumIds + j);
    // Set constant term.
    ineq[ineq.size() - 1] =
        srcLocalVarCst.atIneq(r, srcLocalVarCst.getNumCols() - 1);
    dependenceDomain->addInequality(ineq);
  }
  for (unsigned r = 0, e = destLocalVarCst.getNumInequalities(); r < e; r++) {
    std::fill(ineq.begin(), ineq.end(), 0);
    // Set identifier coefficients from dest local var constraints.
    for (unsigned j = 0, e = dstOperands.size(); j < e; ++j)
      ineq[valuePosMap.getDstDimOrSymPos(dstOperands[j])] =
          destLocalVarCst.atIneq(r, j);
    // Local terms.
    for (unsigned j = 0, e = dstNumLocalIds; j < e; j++)
      ineq[newLocalIdOffset + numSrcLocalIds + j] =
          destLocalVarCst.atIneq(r, dstNumIds + j);
    // Set constant term.
    ineq[ineq.size() - 1] =
        destLocalVarCst.atIneq(r, destLocalVarCst.getNumCols() - 1);
    dependenceDomain->addInequality(ineq);
  }
  return success();
}
// Returns the number of outer loop common to 'src/dstDomain'.
// Loops common to 'src/dst' domains are added to 'commonLoops' if non-null.
static unsigned
getNumCommonLoops(const FlatAffineConstraints &srcDomain,
                  const FlatAffineConstraints &dstDomain,
                  SmallVectorImpl<AffineForOp> *commonLoops = nullptr) {
  // Find the number of common loops shared by src and dst accesses.
  unsigned minNumLoops =
      std::min(srcDomain.getNumDimIds(), dstDomain.getNumDimIds());
  unsigned numCommonLoops = 0;
  for (unsigned i = 0; i < minNumLoops; ++i) {
    if (!isForInductionVar(srcDomain.getIdValue(i)) ||
        !isForInductionVar(dstDomain.getIdValue(i)) ||
        srcDomain.getIdValue(i) != dstDomain.getIdValue(i))
      break;
    if (commonLoops != nullptr)
      commonLoops->push_back(getForInductionVarOwner(srcDomain.getIdValue(i)));
    ++numCommonLoops;
  }
  if (commonLoops != nullptr)
    assert(commonLoops->size() == numCommonLoops);
  return numCommonLoops;
}
/// Returns Block common to 'srcAccess.opInst' and 'dstAccess.opInst'.
static Block *getCommonBlock(const MemRefAccess &srcAccess,
                             const MemRefAccess &dstAccess,
                             const FlatAffineConstraints &srcDomain,
                             unsigned numCommonLoops) {
  // Get the chain of ancestor blocks to the given `MemRefAccess` instance. The
  // search terminates when either an op with the `AffineScope` trait or
  // `endBlock` is reached.
  auto getChainOfAncestorBlocks = [&](const MemRefAccess &access,
                                      SmallVector<Block *, 4> &ancestorBlocks,
                                      Block *endBlock = nullptr) {
    Block *currBlock = access.opInst->getBlock();
    // Loop terminates when the currBlock is nullptr or equals to the endBlock,
    // or its parent operation holds an affine scope.
    while (currBlock && currBlock != endBlock &&
           !currBlock->getParentOp()->hasTrait<OpTrait::AffineScope>()) {
      ancestorBlocks.push_back(currBlock);
      currBlock = currBlock->getParentOp()->getBlock();
    }
  };
  if (numCommonLoops == 0) {
    Block *block = srcAccess.opInst->getBlock();
    while (!llvm::isa<FuncOp>(block->getParentOp())) {
      block = block->getParentOp()->getBlock();
    }
    return block;
  }
  Value commonForIV = srcDomain.getIdValue(numCommonLoops - 1);
  AffineForOp forOp = getForInductionVarOwner(commonForIV);
  assert(forOp && "commonForValue was not an induction variable");
  // Find the closest common block including those in AffineIf.
  SmallVector<Block *, 4> srcAncestorBlocks, dstAncestorBlocks;
  getChainOfAncestorBlocks(srcAccess, srcAncestorBlocks, forOp.getBody());
  getChainOfAncestorBlocks(dstAccess, dstAncestorBlocks, forOp.getBody());
  Block *commonBlock = forOp.getBody();
  for (int i = srcAncestorBlocks.size() - 1, j = dstAncestorBlocks.size() - 1;
       i >= 0 && j >= 0 && srcAncestorBlocks[i] == dstAncestorBlocks[j];
       i--, j--)
    commonBlock = srcAncestorBlocks[i];
  return commonBlock;
}
// Returns true if the ancestor operation of 'srcAccess' appears before the
// ancestor operation of 'dstAccess' in the common ancestral block. Returns
// false otherwise.
// Note that because 'srcAccess' or 'dstAccess' may be nested in conditionals,
// the function is named 'srcAppearsBeforeDstInCommonBlock'. Note that
// 'numCommonLoops' is the number of contiguous surrounding outer loops.
static bool srcAppearsBeforeDstInAncestralBlock(
    const MemRefAccess &srcAccess, const MemRefAccess &dstAccess,
    const FlatAffineConstraints &srcDomain, unsigned numCommonLoops) {
  // Get Block common to 'srcAccess.opInst' and 'dstAccess.opInst'.
  auto *commonBlock =
      getCommonBlock(srcAccess, dstAccess, srcDomain, numCommonLoops);
  // Check the dominance relationship between the respective ancestors of the
  // src and dst in the Block of the innermost among the common loops.
  auto *srcInst = commonBlock->findAncestorOpInBlock(*srcAccess.opInst);
  assert(srcInst != nullptr);
  auto *dstInst = commonBlock->findAncestorOpInBlock(*dstAccess.opInst);
  assert(dstInst != nullptr);
  // Determine whether dstInst comes after srcInst.
  return srcInst->isBeforeInBlock(dstInst);
}
// Adds ordering constraints to 'dependenceDomain' based on number of loops
// common to 'src/dstDomain' and requested 'loopDepth'.
// Note that 'loopDepth' cannot exceed the number of common loops plus one.
// EX: Given a loop nest of depth 2 with IVs 'i' and 'j':
// *) If 'loopDepth == 1' then one constraint is added: i' >= i + 1
// *) If 'loopDepth == 2' then two constraints are added: i == i' and j' > j + 1
// *) If 'loopDepth == 3' then two constraints are added: i == i' and j == j'
static void addOrderingConstraints(const FlatAffineConstraints &srcDomain,
                                   const FlatAffineConstraints &dstDomain,
                                   unsigned loopDepth,
                                   FlatAffineConstraints *dependenceDomain) {
  unsigned numCols = dependenceDomain->getNumCols();
  SmallVector<int64_t, 4> eq(numCols);
  unsigned numSrcDims = srcDomain.getNumDimIds();
  unsigned numCommonLoops = getNumCommonLoops(srcDomain, dstDomain);
  unsigned numCommonLoopConstraints = std::min(numCommonLoops, loopDepth);
  for (unsigned i = 0; i < numCommonLoopConstraints; ++i) {
    std::fill(eq.begin(), eq.end(), 0);
    eq[i] = -1;
    eq[i + numSrcDims] = 1;
    if (i == loopDepth - 1) {
      eq[numCols - 1] = -1;
      dependenceDomain->addInequality(eq);
    } else {
      dependenceDomain->addEquality(eq);
    }
  }
}
// Computes distance and direction vectors in 'dependences', by adding
// variables to 'dependenceDomain' which represent the difference of the IVs,
// eliminating all other variables, and reading off distance vectors from
// equality constraints (if possible), and direction vectors from inequalities.
static void computeDirectionVector(
    const FlatAffineConstraints &srcDomain,
    const FlatAffineConstraints &dstDomain, unsigned loopDepth,
    FlatAffineConstraints *dependenceDomain,
    SmallVector<DependenceComponent, 2> *dependenceComponents) {
  // Find the number of common loops shared by src and dst accesses.
  SmallVector<AffineForOp, 4> commonLoops;
  unsigned numCommonLoops =
      getNumCommonLoops(srcDomain, dstDomain, &commonLoops);
  if (numCommonLoops == 0)
    return;
  // Compute direction vectors for requested loop depth.
  unsigned numIdsToEliminate = dependenceDomain->getNumIds();
  // Add new variables to 'dependenceDomain' to represent the direction
  // constraints for each shared loop.
  for (unsigned j = 0; j < numCommonLoops; ++j) {
    dependenceDomain->addDimId(j);
  }
  // Add equality constraints for each common loop, setting newly introduced
  // variable at column 'j' to the 'dst' IV minus the 'src IV.
  SmallVector<int64_t, 4> eq;
  eq.resize(dependenceDomain->getNumCols());
  unsigned numSrcDims = srcDomain.getNumDimIds();
  // Constraint variables format:
  // [num-common-loops][num-src-dim-ids][num-dst-dim-ids][num-symbols][constant]
  for (unsigned j = 0; j < numCommonLoops; ++j) {
    std::fill(eq.begin(), eq.end(), 0);
    eq[j] = 1;
    eq[j + numCommonLoops] = 1;
    eq[j + numCommonLoops + numSrcDims] = -1;
    dependenceDomain->addEquality(eq);
  }
  // Eliminate all variables other than the direction variables just added.
  dependenceDomain->projectOut(numCommonLoops, numIdsToEliminate);
  // Scan each common loop variable column and set direction vectors based
  // on eliminated constraint system.
  dependenceComponents->resize(numCommonLoops);
  for (unsigned j = 0; j < numCommonLoops; ++j) {
    (*dependenceComponents)[j].op = commonLoops[j].getOperation();
    auto lbConst = dependenceDomain->getConstantLowerBound(j);
    (*dependenceComponents)[j].lb =
        lbConst.getValueOr(std::numeric_limits<int64_t>::min());
    auto ubConst = dependenceDomain->getConstantUpperBound(j);
    (*dependenceComponents)[j].ub =
        ubConst.getValueOr(std::numeric_limits<int64_t>::max());
  }
}
// Populates 'accessMap' with composition of AffineApplyOps reachable from
// indices of MemRefAccess.
void MemRefAccess::getAccessMap(AffineValueMap *accessMap) const {
  // Get affine map from AffineLoad/Store.
  AffineMap map;
  if (auto loadOp = dyn_cast<AffineReadOpInterface>(opInst))
    map = loadOp.getAffineMap();
  else
    map = cast<AffineWriteOpInterface>(opInst).getAffineMap();
  SmallVector<Value, 8> operands(indices.begin(), indices.end());
  fullyComposeAffineMapAndOperands(&map, &operands);
  map = simplifyAffineMap(map);
  canonicalizeMapAndOperands(&map, &operands);
  accessMap->reset(map, operands);
}
// Builds a flat affine constraint system to check if there exists a dependence
// between memref accesses 'srcAccess' and 'dstAccess'.
// Returns 'NoDependence' if the accesses can be definitively shown not to
// access the same element.
// Returns 'HasDependence' if the accesses do access the same element.
// Returns 'Failure' if an error or unsupported case was encountered.
// If a dependence exists, returns in 'dependenceComponents' a direction
// vector for the dependence, with a component for each loop IV in loops
// common to both accesses (see Dependence in AffineAnalysis.h for details).
//
// The memref access dependence check is comprised of the following steps:
// *) Compute access functions for each access. Access functions are computed
//    using AffineValueMaps initialized with the indices from an access, then
//    composed with AffineApplyOps reachable from operands of that access,
//    until operands of the AffineValueMap are loop IVs or symbols.
// *) Build iteration domain constraints for each access. Iteration domain
//    constraints are pairs of inequality constraints representing the
//    upper/lower loop bounds for each AffineForOp in the loop nest associated
//    with each access.
// *) Build dimension and symbol position maps for each access, which map
//    Values from access functions and iteration domains to their position
//    in the merged constraint system built by this method.
//
// This method builds a constraint system with the following column format:
//
//  [src-dim-identifiers, dst-dim-identifiers, symbols, constant]
//
// For example, given the following MLIR code with "source" and "destination"
// accesses to the same memref label, and symbols %M, %N, %K:
//
//   affine.for %i0 = 0 to 100 {
//     affine.for %i1 = 0 to 50 {
//       %a0 = affine.apply
//         (d0, d1) -> (d0 * 2 - d1 * 4 + s1, d1 * 3 - s0) (%i0, %i1)[%M, %N]
//       // Source memref access.
//       store %v0, %m[%a0#0, %a0#1] : memref<4x4xf32>
//     }
//   }
//
//   affine.for %i2 = 0 to 100 {
//     affine.for %i3 = 0 to 50 {
//       %a1 = affine.apply
//         (d0, d1) -> (d0 * 7 + d1 * 9 - s1, d1 * 11 + s0) (%i2, %i3)[%K, %M]
//       // Destination memref access.
//       %v1 = load %m[%a1#0, %a1#1] : memref<4x4xf32>
//     }
//   }
//
// The access functions would be the following:
//
//   src: (%i0 * 2 - %i1 * 4 + %N, %i1 * 3 - %M)
//   dst: (%i2 * 7 + %i3 * 9 - %M, %i3 * 11 - %K)
//
// The iteration domains for the src/dst accesses would be the following:
//
//   src: 0 <= %i0 <= 100, 0 <= %i1 <= 50
//   dst: 0 <= %i2 <= 100, 0 <= %i3 <= 50
//
// The symbols by both accesses would be assigned to a canonical position order
// which will be used in the dependence constraint system:
//
//   symbol name: %M  %N  %K
//   symbol  pos:  0   1   2
//
// Equality constraints are built by equating each result of src/destination
// access functions. For this example, the following two equality constraints
// will be added to the dependence constraint system:
//
//   [src_dim0, src_dim1, dst_dim0, dst_dim1, sym0, sym1, sym2, const]
//      2         -4        -7        -9       1      1     0     0    = 0
//      0          3         0        -11     -1      0     1     0    = 0
//
// Inequality constraints from the iteration domain will be meged into
// the dependence constraint system
//
//   [src_dim0, src_dim1, dst_dim0, dst_dim1, sym0, sym1, sym2, const]
//       1         0         0         0        0     0     0     0    >= 0
//      -1         0         0         0        0     0     0     100  >= 0
//       0         1         0         0        0     0     0     0    >= 0
//       0        -1         0         0        0     0     0     50   >= 0
//       0         0         1         0        0     0     0     0    >= 0
//       0         0        -1         0        0     0     0     100  >= 0
//       0         0         0         1        0     0     0     0    >= 0
//       0         0         0        -1        0     0     0     50   >= 0
//
//
// TODO: Support AffineExprs mod/floordiv/ceildiv.
DependenceResult mlir::checkMemrefAccessDependence(
    const MemRefAccess &srcAccess, const MemRefAccess &dstAccess,
    unsigned loopDepth, FlatAffineConstraints *dependenceConstraints,
    SmallVector<DependenceComponent, 2> *dependenceComponents, bool allowRAR) {
  LLVM_DEBUG(llvm::dbgs() << "Checking for dependence at depth: "
                          << Twine(loopDepth) << " between:\n";);
  LLVM_DEBUG(srcAccess.opInst->dump(););
  LLVM_DEBUG(dstAccess.opInst->dump(););
  // Return 'NoDependence' if these accesses do not access the same memref.
  if (srcAccess.memref != dstAccess.memref)
    return DependenceResult::NoDependence;
  // Return 'NoDependence' if one of these accesses is not an
  // AffineWriteOpInterface.
  if (!allowRAR && !isa<AffineWriteOpInterface>(srcAccess.opInst) &&
      !isa<AffineWriteOpInterface>(dstAccess.opInst))
    return DependenceResult::NoDependence;
  // Get composed access function for 'srcAccess'.
  AffineValueMap srcAccessMap;
  srcAccess.getAccessMap(&srcAccessMap);
  // Get composed access function for 'dstAccess'.
  AffineValueMap dstAccessMap;
  dstAccess.getAccessMap(&dstAccessMap);
  // Get iteration domain for the 'srcAccess' operation.
  FlatAffineConstraints srcDomain;
  if (failed(getOpIndexSet(srcAccess.opInst, &srcDomain)))
    return DependenceResult::Failure;
  // Get iteration domain for 'dstAccess' operation.
  FlatAffineConstraints dstDomain;
  if (failed(getOpIndexSet(dstAccess.opInst, &dstDomain)))
    return DependenceResult::Failure;
  // Return 'NoDependence' if loopDepth > numCommonLoops and if the ancestor
  // operation of 'srcAccess' does not properly dominate the ancestor
  // operation of 'dstAccess' in the same common operation block.
  // Note: this check is skipped if 'allowRAR' is true, because because RAR
  // deps can exist irrespective of lexicographic ordering b/w src and dst.
  unsigned numCommonLoops = getNumCommonLoops(srcDomain, dstDomain);
  assert(loopDepth <= numCommonLoops + 1);
  if (!allowRAR && loopDepth > numCommonLoops &&
      !srcAppearsBeforeDstInAncestralBlock(srcAccess, dstAccess, srcDomain,
                                           numCommonLoops)) {
    return DependenceResult::NoDependence;
  }
  // Build dim and symbol position maps for each access from access operand
  // Value to position in merged constraint system.
  ValuePositionMap valuePosMap;
  buildDimAndSymbolPositionMaps(srcDomain, dstDomain, srcAccessMap,
                                dstAccessMap, &valuePosMap,
                                dependenceConstraints);
  initDependenceConstraints(srcDomain, dstDomain, srcAccessMap, dstAccessMap,
                            valuePosMap, dependenceConstraints);
  assert(valuePosMap.getNumDims() ==
         srcDomain.getNumDimIds() + dstDomain.getNumDimIds());
  // Create memref access constraint by equating src/dst access functions.
  // Note that this check is conservative, and will fail in the future when
  // local variables for mod/div exprs are supported.
  if (failed(addMemRefAccessConstraints(srcAccessMap, dstAccessMap, valuePosMap,
                                        dependenceConstraints)))
    return DependenceResult::Failure;
  // Add 'src' happens before 'dst' ordering constraints.
  addOrderingConstraints(srcDomain, dstDomain, loopDepth,
                         dependenceConstraints);
  // Add src and dst domain constraints.
  addDomainConstraints(srcDomain, dstDomain, valuePosMap,
                       dependenceConstraints);
  // Return 'NoDependence' if the solution space is empty: no dependence.
  if (dependenceConstraints->isEmpty()) {
    return DependenceResult::NoDependence;
  }
  // Compute dependence direction vector and return true.
  if (dependenceComponents != nullptr) {
    computeDirectionVector(srcDomain, dstDomain, loopDepth,
                           dependenceConstraints, dependenceComponents);
  }
  LLVM_DEBUG(llvm::dbgs() << "Dependence polyhedron:\n");
  LLVM_DEBUG(dependenceConstraints->dump());
  return DependenceResult::HasDependence;
}
/// Gathers dependence components for dependences between all ops in loop nest
/// rooted at 'forOp' at loop depths in range [1, maxLoopDepth].
void mlir::getDependenceComponents(
    AffineForOp forOp, unsigned maxLoopDepth,
    std::vector<SmallVector<DependenceComponent, 2>> *depCompsVec) {
  // Collect all load and store ops in loop nest rooted at 'forOp'.
  SmallVector<Operation *, 8> loadAndStoreOps;
  forOp->walk([&](Operation *op) {
    if (isa<AffineReadOpInterface, AffineWriteOpInterface>(op))
      loadAndStoreOps.push_back(op);
  });
  unsigned numOps = loadAndStoreOps.size();
  for (unsigned d = 1; d <= maxLoopDepth; ++d) {
    for (unsigned i = 0; i < numOps; ++i) {
      auto *srcOp = loadAndStoreOps[i];
      MemRefAccess srcAccess(srcOp);
      for (unsigned j = 0; j < numOps; ++j) {
        auto *dstOp = loadAndStoreOps[j];
        MemRefAccess dstAccess(dstOp);
        FlatAffineConstraints dependenceConstraints;
        SmallVector<DependenceComponent, 2> depComps;
        // TODO: Explore whether it would be profitable to pre-compute and store
        // deps instead of repeatedly checking.
        DependenceResult result = checkMemrefAccessDependence(
            srcAccess, dstAccess, d, &dependenceConstraints, &depComps);
        if (hasDependence(result))
          depCompsVec->push_back(depComps);
      }
    }
  }
}
 |