1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
|
//===- LinearTransform.cpp - MLIR LinearTransform Class -------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Analysis/LinearTransform.h"
#include "mlir/Analysis/AffineStructures.h"
namespace mlir {
LinearTransform::LinearTransform(Matrix &&oMatrix) : matrix(oMatrix) {}
LinearTransform::LinearTransform(const Matrix &oMatrix) : matrix(oMatrix) {}
// Set M(row, targetCol) to its remainder on division by M(row, sourceCol)
// by subtracting from column targetCol an appropriate integer multiple of
// sourceCol. This brings M(row, targetCol) to the range [0, M(row, sourceCol)).
// Apply the same column operation to otherMatrix, with the same integer
// multiple.
static void modEntryColumnOperation(Matrix &m, unsigned row, unsigned sourceCol,
unsigned targetCol, Matrix &otherMatrix) {
assert(m(row, sourceCol) != 0 && "Cannot divide by zero!");
assert((m(row, sourceCol) > 0 && m(row, targetCol) > 0) &&
"Operands must be positive!");
int64_t ratio = m(row, targetCol) / m(row, sourceCol);
m.addToColumn(sourceCol, targetCol, -ratio);
otherMatrix.addToColumn(sourceCol, targetCol, -ratio);
}
std::pair<unsigned, LinearTransform>
LinearTransform::makeTransformToColumnEchelon(Matrix m) {
// We start with an identity result matrix and perform operations on m
// until m is in column echelon form. We apply the same sequence of operations
// on resultMatrix to obtain a transform that takes m to column echelon
// form.
Matrix resultMatrix = Matrix::identity(m.getNumColumns());
unsigned echelonCol = 0;
// Invariant: in all rows above row, all columns from echelonCol onwards
// are all zero elements. In an iteration, if the curent row has any non-zero
// elements echelonCol onwards, we bring one to echelonCol and use it to
// make all elements echelonCol + 1 onwards zero.
for (unsigned row = 0; row < m.getNumRows(); ++row) {
// Search row for a non-empty entry, starting at echelonCol.
unsigned nonZeroCol = echelonCol;
for (unsigned e = m.getNumColumns(); nonZeroCol < e; ++nonZeroCol) {
if (m(row, nonZeroCol) == 0)
continue;
break;
}
// Continue to the next row with the same echelonCol if this row is all
// zeros from echelonCol onwards.
if (nonZeroCol == m.getNumColumns())
continue;
// Bring the non-zero column to echelonCol. This doesn't affect rows
// above since they are all zero at these columns.
if (nonZeroCol != echelonCol) {
m.swapColumns(nonZeroCol, echelonCol);
resultMatrix.swapColumns(nonZeroCol, echelonCol);
}
// Make m(row, echelonCol) non-negative.
if (m(row, echelonCol) < 0) {
m.negateColumn(echelonCol);
resultMatrix.negateColumn(echelonCol);
}
// Make all the entries in row after echelonCol zero.
for (unsigned i = echelonCol + 1, e = m.getNumColumns(); i < e; ++i) {
// We make m(row, i) non-negative, and then apply the Euclidean GCD
// algorithm to (row, i) and (row, echelonCol). At the end, one of them
// has value equal to the gcd of the two entries, and the other is zero.
if (m(row, i) < 0) {
m.negateColumn(i);
resultMatrix.negateColumn(i);
}
unsigned targetCol = i, sourceCol = echelonCol;
// At every step, we set m(row, targetCol) %= m(row, sourceCol), and
// swap the indices sourceCol and targetCol. (not the columns themselves)
// This modulo is implemented as a subtraction
// m(row, targetCol) -= quotient * m(row, sourceCol),
// where quotient = floor(m(row, targetCol) / m(row, sourceCol)),
// which brings m(row, targetCol) to the range [0, m(row, sourceCol)).
//
// We are only allowed column operations; we perform the above
// for every row, i.e., the above subtraction is done as a column
// operation. This does not affect any rows above us since they are
// guaranteed to be zero at these columns.
while (m(row, targetCol) != 0 && m(row, sourceCol) != 0) {
modEntryColumnOperation(m, row, sourceCol, targetCol, resultMatrix);
std::swap(targetCol, sourceCol);
}
// One of (row, echelonCol) and (row, i) is zero and the other is the gcd.
// Make it so that (row, echelonCol) holds the non-zero value.
if (m(row, echelonCol) == 0) {
m.swapColumns(i, echelonCol);
resultMatrix.swapColumns(i, echelonCol);
}
}
++echelonCol;
}
return {echelonCol, LinearTransform(std::move(resultMatrix))};
}
SmallVector<int64_t, 8>
LinearTransform::postMultiplyRow(ArrayRef<int64_t> rowVec) const {
assert(rowVec.size() == matrix.getNumRows() &&
"row vector dimension should match transform output dimension");
SmallVector<int64_t, 8> result(matrix.getNumColumns(), 0);
for (unsigned col = 0, e = matrix.getNumColumns(); col < e; ++col)
for (unsigned i = 0, e = matrix.getNumRows(); i < e; ++i)
result[col] += rowVec[i] * matrix(i, col);
return result;
}
SmallVector<int64_t, 8>
LinearTransform::preMultiplyColumn(ArrayRef<int64_t> colVec) const {
assert(matrix.getNumColumns() == colVec.size() &&
"column vector dimension should match transform input dimension");
SmallVector<int64_t, 8> result(matrix.getNumRows(), 0);
for (unsigned row = 0, e = matrix.getNumRows(); row < e; row++)
for (unsigned i = 0, e = matrix.getNumColumns(); i < e; i++)
result[row] += matrix(row, i) * colVec[i];
return result;
}
FlatAffineConstraints
LinearTransform::applyTo(const FlatAffineConstraints &fac) const {
FlatAffineConstraints result(fac.getNumIds());
for (unsigned i = 0, e = fac.getNumEqualities(); i < e; ++i) {
ArrayRef<int64_t> eq = fac.getEquality(i);
int64_t c = eq.back();
SmallVector<int64_t, 8> newEq = postMultiplyRow(eq.drop_back());
newEq.push_back(c);
result.addEquality(newEq);
}
for (unsigned i = 0, e = fac.getNumInequalities(); i < e; ++i) {
ArrayRef<int64_t> ineq = fac.getInequality(i);
int64_t c = ineq.back();
SmallVector<int64_t, 8> newIneq = postMultiplyRow(ineq.drop_back());
newIneq.push_back(c);
result.addInequality(newIneq);
}
return result;
}
} // namespace mlir
|