File: LinearTransform.cpp

package info (click to toggle)
llvm-toolchain-13 1%3A13.0.1-11
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 1,418,840 kB
  • sloc: cpp: 5,290,826; ansic: 996,570; asm: 544,593; python: 188,212; objc: 72,027; lisp: 30,291; f90: 25,395; sh: 24,898; javascript: 9,780; pascal: 9,398; perl: 7,484; ml: 5,432; awk: 3,523; makefile: 2,913; xml: 953; cs: 573; fortran: 539
file content (165 lines) | stat: -rw-r--r-- 6,524 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
//===- LinearTransform.cpp - MLIR LinearTransform Class -------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "mlir/Analysis/LinearTransform.h"
#include "mlir/Analysis/AffineStructures.h"

namespace mlir {

LinearTransform::LinearTransform(Matrix &&oMatrix) : matrix(oMatrix) {}
LinearTransform::LinearTransform(const Matrix &oMatrix) : matrix(oMatrix) {}

// Set M(row, targetCol) to its remainder on division by M(row, sourceCol)
// by subtracting from column targetCol an appropriate integer multiple of
// sourceCol. This brings M(row, targetCol) to the range [0, M(row, sourceCol)).
// Apply the same column operation to otherMatrix, with the same integer
// multiple.
static void modEntryColumnOperation(Matrix &m, unsigned row, unsigned sourceCol,
                                    unsigned targetCol, Matrix &otherMatrix) {
  assert(m(row, sourceCol) != 0 && "Cannot divide by zero!");
  assert((m(row, sourceCol) > 0 && m(row, targetCol) > 0) &&
         "Operands must be positive!");
  int64_t ratio = m(row, targetCol) / m(row, sourceCol);
  m.addToColumn(sourceCol, targetCol, -ratio);
  otherMatrix.addToColumn(sourceCol, targetCol, -ratio);
}

std::pair<unsigned, LinearTransform>
LinearTransform::makeTransformToColumnEchelon(Matrix m) {
  // We start with an identity result matrix and perform operations on m
  // until m is in column echelon form. We apply the same sequence of operations
  // on resultMatrix to obtain a transform that takes m to column echelon
  // form.
  Matrix resultMatrix = Matrix::identity(m.getNumColumns());

  unsigned echelonCol = 0;
  // Invariant: in all rows above row, all columns from echelonCol onwards
  // are all zero elements. In an iteration, if the curent row has any non-zero
  // elements echelonCol onwards, we bring one to echelonCol and use it to
  // make all elements echelonCol + 1 onwards zero.
  for (unsigned row = 0; row < m.getNumRows(); ++row) {
    // Search row for a non-empty entry, starting at echelonCol.
    unsigned nonZeroCol = echelonCol;
    for (unsigned e = m.getNumColumns(); nonZeroCol < e; ++nonZeroCol) {
      if (m(row, nonZeroCol) == 0)
        continue;
      break;
    }

    // Continue to the next row with the same echelonCol if this row is all
    // zeros from echelonCol onwards.
    if (nonZeroCol == m.getNumColumns())
      continue;

    // Bring the non-zero column to echelonCol. This doesn't affect rows
    // above since they are all zero at these columns.
    if (nonZeroCol != echelonCol) {
      m.swapColumns(nonZeroCol, echelonCol);
      resultMatrix.swapColumns(nonZeroCol, echelonCol);
    }

    // Make m(row, echelonCol) non-negative.
    if (m(row, echelonCol) < 0) {
      m.negateColumn(echelonCol);
      resultMatrix.negateColumn(echelonCol);
    }

    // Make all the entries in row after echelonCol zero.
    for (unsigned i = echelonCol + 1, e = m.getNumColumns(); i < e; ++i) {
      // We make m(row, i) non-negative, and then apply the Euclidean GCD
      // algorithm to (row, i) and (row, echelonCol). At the end, one of them
      // has value equal to the gcd of the two entries, and the other is zero.

      if (m(row, i) < 0) {
        m.negateColumn(i);
        resultMatrix.negateColumn(i);
      }

      unsigned targetCol = i, sourceCol = echelonCol;
      // At every step, we set m(row, targetCol) %= m(row, sourceCol), and
      // swap the indices sourceCol and targetCol. (not the columns themselves)
      // This modulo is implemented as a subtraction
      // m(row, targetCol) -= quotient * m(row, sourceCol),
      // where quotient = floor(m(row, targetCol) / m(row, sourceCol)),
      // which brings m(row, targetCol) to the range [0, m(row, sourceCol)).
      //
      // We are only allowed column operations; we perform the above
      // for every row, i.e., the above subtraction is done as a column
      // operation. This does not affect any rows above us since they are
      // guaranteed to be zero at these columns.
      while (m(row, targetCol) != 0 && m(row, sourceCol) != 0) {
        modEntryColumnOperation(m, row, sourceCol, targetCol, resultMatrix);
        std::swap(targetCol, sourceCol);
      }

      // One of (row, echelonCol) and (row, i) is zero and the other is the gcd.
      // Make it so that (row, echelonCol) holds the non-zero value.
      if (m(row, echelonCol) == 0) {
        m.swapColumns(i, echelonCol);
        resultMatrix.swapColumns(i, echelonCol);
      }
    }

    ++echelonCol;
  }

  return {echelonCol, LinearTransform(std::move(resultMatrix))};
}

SmallVector<int64_t, 8>
LinearTransform::postMultiplyRow(ArrayRef<int64_t> rowVec) const {
  assert(rowVec.size() == matrix.getNumRows() &&
         "row vector dimension should match transform output dimension");

  SmallVector<int64_t, 8> result(matrix.getNumColumns(), 0);
  for (unsigned col = 0, e = matrix.getNumColumns(); col < e; ++col)
    for (unsigned i = 0, e = matrix.getNumRows(); i < e; ++i)
      result[col] += rowVec[i] * matrix(i, col);
  return result;
}

SmallVector<int64_t, 8>
LinearTransform::preMultiplyColumn(ArrayRef<int64_t> colVec) const {
  assert(matrix.getNumColumns() == colVec.size() &&
         "column vector dimension should match transform input dimension");

  SmallVector<int64_t, 8> result(matrix.getNumRows(), 0);
  for (unsigned row = 0, e = matrix.getNumRows(); row < e; row++)
    for (unsigned i = 0, e = matrix.getNumColumns(); i < e; i++)
      result[row] += matrix(row, i) * colVec[i];
  return result;
}

FlatAffineConstraints
LinearTransform::applyTo(const FlatAffineConstraints &fac) const {
  FlatAffineConstraints result(fac.getNumIds());

  for (unsigned i = 0, e = fac.getNumEqualities(); i < e; ++i) {
    ArrayRef<int64_t> eq = fac.getEquality(i);

    int64_t c = eq.back();

    SmallVector<int64_t, 8> newEq = postMultiplyRow(eq.drop_back());
    newEq.push_back(c);
    result.addEquality(newEq);
  }

  for (unsigned i = 0, e = fac.getNumInequalities(); i < e; ++i) {
    ArrayRef<int64_t> ineq = fac.getInequality(i);

    int64_t c = ineq.back();

    SmallVector<int64_t, 8> newIneq = postMultiplyRow(ineq.drop_back());
    newIneq.push_back(c);
    result.addInequality(newIneq);
  }

  return result;
}

} // namespace mlir