1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851
  
     | 
    
      //===- ModuleTranslation.cpp - MLIR to LLVM conversion --------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the translation between an MLIR LLVM dialect module and
// the corresponding LLVMIR module. It only handles core LLVM IR operations.
//
//===----------------------------------------------------------------------===//
#include "mlir/Target/LLVMIR/ModuleTranslation.h"
#include "DebugTranslation.h"
#include "mlir/Dialect/LLVMIR/LLVMDialect.h"
#include "mlir/Dialect/LLVMIR/Transforms/LegalizeForExport.h"
#include "mlir/Dialect/OpenMP/OpenMPDialect.h"
#include "mlir/IR/Attributes.h"
#include "mlir/IR/BuiltinOps.h"
#include "mlir/IR/BuiltinTypes.h"
#include "mlir/IR/RegionGraphTraits.h"
#include "mlir/Support/LLVM.h"
#include "mlir/Target/LLVMIR/LLVMTranslationInterface.h"
#include "mlir/Target/LLVMIR/TypeToLLVM.h"
#include "llvm/ADT/TypeSwitch.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InlineAsm.h"
#include "llvm/IR/IntrinsicsNVPTX.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/MDBuilder.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Verifier.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/Cloning.h"
using namespace mlir;
using namespace mlir::LLVM;
using namespace mlir::LLVM::detail;
#include "mlir/Dialect/LLVMIR/LLVMConversionEnumsToLLVM.inc"
/// Builds a constant of a sequential LLVM type `type`, potentially containing
/// other sequential types recursively, from the individual constant values
/// provided in `constants`. `shape` contains the number of elements in nested
/// sequential types. Reports errors at `loc` and returns nullptr on error.
static llvm::Constant *
buildSequentialConstant(ArrayRef<llvm::Constant *> &constants,
                        ArrayRef<int64_t> shape, llvm::Type *type,
                        Location loc) {
  if (shape.empty()) {
    llvm::Constant *result = constants.front();
    constants = constants.drop_front();
    return result;
  }
  llvm::Type *elementType;
  if (auto *arrayTy = dyn_cast<llvm::ArrayType>(type)) {
    elementType = arrayTy->getElementType();
  } else if (auto *vectorTy = dyn_cast<llvm::VectorType>(type)) {
    elementType = vectorTy->getElementType();
  } else {
    emitError(loc) << "expected sequential LLVM types wrapping a scalar";
    return nullptr;
  }
  SmallVector<llvm::Constant *, 8> nested;
  nested.reserve(shape.front());
  for (int64_t i = 0; i < shape.front(); ++i) {
    nested.push_back(buildSequentialConstant(constants, shape.drop_front(),
                                             elementType, loc));
    if (!nested.back())
      return nullptr;
  }
  if (shape.size() == 1 && type->isVectorTy())
    return llvm::ConstantVector::get(nested);
  return llvm::ConstantArray::get(
      llvm::ArrayType::get(elementType, shape.front()), nested);
}
/// Returns the first non-sequential type nested in sequential types.
static llvm::Type *getInnermostElementType(llvm::Type *type) {
  do {
    if (auto *arrayTy = dyn_cast<llvm::ArrayType>(type)) {
      type = arrayTy->getElementType();
    } else if (auto *vectorTy = dyn_cast<llvm::VectorType>(type)) {
      type = vectorTy->getElementType();
    } else {
      return type;
    }
  } while (true);
}
/// Create an LLVM IR constant of `llvmType` from the MLIR attribute `attr`.
/// This currently supports integer, floating point, splat and dense element
/// attributes and combinations thereof. Also, an array attribute with two
/// elements is supported to represent a complex constant.  In case of error,
/// report it to `loc` and return nullptr.
llvm::Constant *mlir::LLVM::detail::getLLVMConstant(
    llvm::Type *llvmType, Attribute attr, Location loc,
    const ModuleTranslation &moduleTranslation, bool isTopLevel) {
  if (!attr)
    return llvm::UndefValue::get(llvmType);
  if (auto *structType = dyn_cast<::llvm::StructType>(llvmType)) {
    if (!isTopLevel) {
      emitError(loc, "nested struct types are not supported in constants");
      return nullptr;
    }
    auto arrayAttr = attr.cast<ArrayAttr>();
    llvm::Type *elementType = structType->getElementType(0);
    llvm::Constant *real = getLLVMConstant(elementType, arrayAttr[0], loc,
                                           moduleTranslation, false);
    if (!real)
      return nullptr;
    llvm::Constant *imag = getLLVMConstant(elementType, arrayAttr[1], loc,
                                           moduleTranslation, false);
    if (!imag)
      return nullptr;
    return llvm::ConstantStruct::get(structType, {real, imag});
  }
  // For integer types, we allow a mismatch in sizes as the index type in
  // MLIR might have a different size than the index type in the LLVM module.
  if (auto intAttr = attr.dyn_cast<IntegerAttr>())
    return llvm::ConstantInt::get(
        llvmType,
        intAttr.getValue().sextOrTrunc(llvmType->getIntegerBitWidth()));
  if (auto floatAttr = attr.dyn_cast<FloatAttr>()) {
    if (llvmType !=
        llvm::Type::getFloatingPointTy(llvmType->getContext(),
                                       floatAttr.getValue().getSemantics())) {
      emitError(loc, "FloatAttr does not match expected type of the constant");
      return nullptr;
    }
    return llvm::ConstantFP::get(llvmType, floatAttr.getValue());
  }
  if (auto funcAttr = attr.dyn_cast<FlatSymbolRefAttr>())
    return llvm::ConstantExpr::getBitCast(
        moduleTranslation.lookupFunction(funcAttr.getValue()), llvmType);
  if (auto splatAttr = attr.dyn_cast<SplatElementsAttr>()) {
    llvm::Type *elementType;
    uint64_t numElements;
    if (auto *arrayTy = dyn_cast<llvm::ArrayType>(llvmType)) {
      elementType = arrayTy->getElementType();
      numElements = arrayTy->getNumElements();
    } else {
      auto *vectorTy = cast<llvm::FixedVectorType>(llvmType);
      elementType = vectorTy->getElementType();
      numElements = vectorTy->getNumElements();
    }
    // Splat value is a scalar. Extract it only if the element type is not
    // another sequence type. The recursion terminates because each step removes
    // one outer sequential type.
    bool elementTypeSequential =
        isa<llvm::ArrayType, llvm::VectorType>(elementType);
    llvm::Constant *child = getLLVMConstant(
        elementType,
        elementTypeSequential ? splatAttr : splatAttr.getSplatValue(), loc,
        moduleTranslation, false);
    if (!child)
      return nullptr;
    if (llvmType->isVectorTy())
      return llvm::ConstantVector::getSplat(
          llvm::ElementCount::get(numElements, /*Scalable=*/false), child);
    if (llvmType->isArrayTy()) {
      auto *arrayType = llvm::ArrayType::get(elementType, numElements);
      SmallVector<llvm::Constant *, 8> constants(numElements, child);
      return llvm::ConstantArray::get(arrayType, constants);
    }
  }
  if (auto elementsAttr = attr.dyn_cast<ElementsAttr>()) {
    assert(elementsAttr.getType().hasStaticShape());
    assert(!elementsAttr.getType().getShape().empty() &&
           "unexpected empty elements attribute shape");
    SmallVector<llvm::Constant *, 8> constants;
    constants.reserve(elementsAttr.getNumElements());
    llvm::Type *innermostType = getInnermostElementType(llvmType);
    for (auto n : elementsAttr.getValues<Attribute>()) {
      constants.push_back(
          getLLVMConstant(innermostType, n, loc, moduleTranslation, false));
      if (!constants.back())
        return nullptr;
    }
    ArrayRef<llvm::Constant *> constantsRef = constants;
    llvm::Constant *result = buildSequentialConstant(
        constantsRef, elementsAttr.getType().getShape(), llvmType, loc);
    assert(constantsRef.empty() && "did not consume all elemental constants");
    return result;
  }
  if (auto stringAttr = attr.dyn_cast<StringAttr>()) {
    return llvm::ConstantDataArray::get(
        moduleTranslation.getLLVMContext(),
        ArrayRef<char>{stringAttr.getValue().data(),
                       stringAttr.getValue().size()});
  }
  emitError(loc, "unsupported constant value");
  return nullptr;
}
ModuleTranslation::ModuleTranslation(Operation *module,
                                     std::unique_ptr<llvm::Module> llvmModule)
    : mlirModule(module), llvmModule(std::move(llvmModule)),
      debugTranslation(
          std::make_unique<DebugTranslation>(module, *this->llvmModule)),
      typeTranslator(this->llvmModule->getContext()),
      iface(module->getContext()) {
  assert(satisfiesLLVMModule(mlirModule) &&
         "mlirModule should honor LLVM's module semantics.");
}
ModuleTranslation::~ModuleTranslation() {
  if (ompBuilder)
    ompBuilder->finalize();
}
/// Get the SSA value passed to the current block from the terminator operation
/// of its predecessor.
static Value getPHISourceValue(Block *current, Block *pred,
                               unsigned numArguments, unsigned index) {
  Operation &terminator = *pred->getTerminator();
  if (isa<LLVM::BrOp>(terminator))
    return terminator.getOperand(index);
  SuccessorRange successors = terminator.getSuccessors();
  assert(std::adjacent_find(successors.begin(), successors.end()) ==
             successors.end() &&
         "successors with arguments in LLVM branches must be different blocks");
  (void)successors;
  // For instructions that branch based on a condition value, we need to take
  // the operands for the branch that was taken.
  if (auto condBranchOp = dyn_cast<LLVM::CondBrOp>(terminator)) {
    // For conditional branches, we take the operands from either the "true" or
    // the "false" branch.
    return condBranchOp.getSuccessor(0) == current
               ? condBranchOp.trueDestOperands()[index]
               : condBranchOp.falseDestOperands()[index];
  }
  if (auto switchOp = dyn_cast<LLVM::SwitchOp>(terminator)) {
    // For switches, we take the operands from either the default case, or from
    // the case branch that was taken.
    if (switchOp.defaultDestination() == current)
      return switchOp.defaultOperands()[index];
    for (auto i : llvm::enumerate(switchOp.caseDestinations()))
      if (i.value() == current)
        return switchOp.getCaseOperands(i.index())[index];
  }
  llvm_unreachable("only branch or switch operations can be terminators of a "
                   "block that has successors");
}
/// Connect the PHI nodes to the results of preceding blocks.
void mlir::LLVM::detail::connectPHINodes(Region ®ion,
                                         const ModuleTranslation &state) {
  // Skip the first block, it cannot be branched to and its arguments correspond
  // to the arguments of the LLVM function.
  for (auto it = std::next(region.begin()), eit = region.end(); it != eit;
       ++it) {
    Block *bb = &*it;
    llvm::BasicBlock *llvmBB = state.lookupBlock(bb);
    auto phis = llvmBB->phis();
    auto numArguments = bb->getNumArguments();
    assert(numArguments == std::distance(phis.begin(), phis.end()));
    for (auto &numberedPhiNode : llvm::enumerate(phis)) {
      auto &phiNode = numberedPhiNode.value();
      unsigned index = numberedPhiNode.index();
      for (auto *pred : bb->getPredecessors()) {
        // Find the LLVM IR block that contains the converted terminator
        // instruction and use it in the PHI node. Note that this block is not
        // necessarily the same as state.lookupBlock(pred), some operations
        // (in particular, OpenMP operations using OpenMPIRBuilder) may have
        // split the blocks.
        llvm::Instruction *terminator =
            state.lookupBranch(pred->getTerminator());
        assert(terminator && "missing the mapping for a terminator");
        phiNode.addIncoming(
            state.lookupValue(getPHISourceValue(bb, pred, numArguments, index)),
            terminator->getParent());
      }
    }
  }
}
/// Sort function blocks topologically.
SetVector<Block *>
mlir::LLVM::detail::getTopologicallySortedBlocks(Region ®ion) {
  // For each block that has not been visited yet (i.e. that has no
  // predecessors), add it to the list as well as its successors.
  SetVector<Block *> blocks;
  for (Block &b : region) {
    if (blocks.count(&b) == 0) {
      llvm::ReversePostOrderTraversal<Block *> traversal(&b);
      blocks.insert(traversal.begin(), traversal.end());
    }
  }
  assert(blocks.size() == region.getBlocks().size() &&
         "some blocks are not sorted");
  return blocks;
}
llvm::Value *mlir::LLVM::detail::createIntrinsicCall(
    llvm::IRBuilderBase &builder, llvm::Intrinsic::ID intrinsic,
    ArrayRef<llvm::Value *> args, ArrayRef<llvm::Type *> tys) {
  llvm::Module *module = builder.GetInsertBlock()->getModule();
  llvm::Function *fn = llvm::Intrinsic::getDeclaration(module, intrinsic, tys);
  return builder.CreateCall(fn, args);
}
llvm::Value *
mlir::LLVM::detail::createNvvmIntrinsicCall(llvm::IRBuilderBase &builder,
                                            llvm::Intrinsic::ID intrinsic,
                                            ArrayRef<llvm::Value *> args) {
  llvm::Module *module = builder.GetInsertBlock()->getModule();
  llvm::Function *fn;
  if (llvm::Intrinsic::isOverloaded(intrinsic)) {
    if (intrinsic != llvm::Intrinsic::nvvm_wmma_m16n16k16_mma_row_row_f16_f16 &&
        intrinsic != llvm::Intrinsic::nvvm_wmma_m16n16k16_mma_row_row_f32_f32) {
      // NVVM load and store instrinsic names are overloaded on the
      // source/destination pointer type. Pointer is the first argument in the
      // corresponding NVVM Op.
      fn = llvm::Intrinsic::getDeclaration(module, intrinsic,
                                           {args[0]->getType()});
    } else {
      fn = llvm::Intrinsic::getDeclaration(module, intrinsic, {});
    }
  } else {
    fn = llvm::Intrinsic::getDeclaration(module, intrinsic);
  }
  return builder.CreateCall(fn, args);
}
/// Given a single MLIR operation, create the corresponding LLVM IR operation
/// using the `builder`.
LogicalResult
ModuleTranslation::convertOperation(Operation &op,
                                    llvm::IRBuilderBase &builder) {
  const LLVMTranslationDialectInterface *opIface = iface.getInterfaceFor(&op);
  if (!opIface)
    return op.emitError("cannot be converted to LLVM IR: missing "
                        "`LLVMTranslationDialectInterface` registration for "
                        "dialect for op: ")
           << op.getName();
  if (failed(opIface->convertOperation(&op, builder, *this)))
    return op.emitError("LLVM Translation failed for operation: ")
           << op.getName();
  return convertDialectAttributes(&op);
}
/// Convert block to LLVM IR.  Unless `ignoreArguments` is set, emit PHI nodes
/// to define values corresponding to the MLIR block arguments.  These nodes
/// are not connected to the source basic blocks, which may not exist yet.  Uses
/// `builder` to construct the LLVM IR. Expects the LLVM IR basic block to have
/// been created for `bb` and included in the block mapping.  Inserts new
/// instructions at the end of the block and leaves `builder` in a state
/// suitable for further insertion into the end of the block.
LogicalResult ModuleTranslation::convertBlock(Block &bb, bool ignoreArguments,
                                              llvm::IRBuilderBase &builder) {
  builder.SetInsertPoint(lookupBlock(&bb));
  auto *subprogram = builder.GetInsertBlock()->getParent()->getSubprogram();
  // Before traversing operations, make block arguments available through
  // value remapping and PHI nodes, but do not add incoming edges for the PHI
  // nodes just yet: those values may be defined by this or following blocks.
  // This step is omitted if "ignoreArguments" is set.  The arguments of the
  // first block have been already made available through the remapping of
  // LLVM function arguments.
  if (!ignoreArguments) {
    auto predecessors = bb.getPredecessors();
    unsigned numPredecessors =
        std::distance(predecessors.begin(), predecessors.end());
    for (auto arg : bb.getArguments()) {
      auto wrappedType = arg.getType();
      if (!isCompatibleType(wrappedType))
        return emitError(bb.front().getLoc(),
                         "block argument does not have an LLVM type");
      llvm::Type *type = convertType(wrappedType);
      llvm::PHINode *phi = builder.CreatePHI(type, numPredecessors);
      mapValue(arg, phi);
    }
  }
  // Traverse operations.
  for (auto &op : bb) {
    // Set the current debug location within the builder.
    builder.SetCurrentDebugLocation(
        debugTranslation->translateLoc(op.getLoc(), subprogram));
    if (failed(convertOperation(op, builder)))
      return failure();
  }
  return success();
}
/// A helper method to get the single Block in an operation honoring LLVM's
/// module requirements.
static Block &getModuleBody(Operation *module) {
  return module->getRegion(0).front();
}
/// A helper method to decide if a constant must not be set as a global variable
/// initializer. For an external linkage variable, the variable with an
/// initializer is considered externally visible and defined in this module, the
/// variable without an initializer is externally available and is defined
/// elsewhere.
static bool shouldDropGlobalInitializer(llvm::GlobalValue::LinkageTypes linkage,
                                        llvm::Constant *cst) {
  return (linkage == llvm::GlobalVariable::ExternalLinkage && !cst) ||
         linkage == llvm::GlobalVariable::ExternalWeakLinkage;
}
/// Sets the runtime preemption specifier of `gv` to dso_local if
/// `dsoLocalRequested` is true, otherwise it is left unchanged.
static void addRuntimePreemptionSpecifier(bool dsoLocalRequested,
                                          llvm::GlobalValue *gv) {
  if (dsoLocalRequested)
    gv->setDSOLocal(true);
}
/// Create named global variables that correspond to llvm.mlir.global
/// definitions.
LogicalResult ModuleTranslation::convertGlobals() {
  for (auto op : getModuleBody(mlirModule).getOps<LLVM::GlobalOp>()) {
    llvm::Type *type = convertType(op.getType());
    llvm::Constant *cst = nullptr;
    if (op.getValueOrNull()) {
      // String attributes are treated separately because they cannot appear as
      // in-function constants and are thus not supported by getLLVMConstant.
      if (auto strAttr = op.getValueOrNull().dyn_cast_or_null<StringAttr>()) {
        cst = llvm::ConstantDataArray::getString(
            llvmModule->getContext(), strAttr.getValue(), /*AddNull=*/false);
        type = cst->getType();
      } else if (!(cst = getLLVMConstant(type, op.getValueOrNull(), op.getLoc(),
                                         *this))) {
        return failure();
      }
    }
    auto linkage = convertLinkageToLLVM(op.linkage());
    auto addrSpace = op.addr_space();
    // LLVM IR requires constant with linkage other than external or weak
    // external to have initializers. If MLIR does not provide an initializer,
    // default to undef.
    bool dropInitializer = shouldDropGlobalInitializer(linkage, cst);
    if (!dropInitializer && !cst)
      cst = llvm::UndefValue::get(type);
    else if (dropInitializer && cst)
      cst = nullptr;
    auto *var = new llvm::GlobalVariable(
        *llvmModule, type, op.constant(), linkage, cst, op.sym_name(),
        /*InsertBefore=*/nullptr, llvm::GlobalValue::NotThreadLocal, addrSpace);
    if (op.unnamed_addr().hasValue())
      var->setUnnamedAddr(convertUnnamedAddrToLLVM(*op.unnamed_addr()));
    if (op.section().hasValue())
      var->setSection(*op.section());
    addRuntimePreemptionSpecifier(op.dso_local(), var);
    Optional<uint64_t> alignment = op.alignment();
    if (alignment.hasValue())
      var->setAlignment(llvm::MaybeAlign(alignment.getValue()));
    globalsMapping.try_emplace(op, var);
  }
  // Convert global variable bodies. This is done after all global variables
  // have been created in LLVM IR because a global body may refer to another
  // global or itself. So all global variables need to be mapped first.
  for (auto op : getModuleBody(mlirModule).getOps<LLVM::GlobalOp>()) {
    if (Block *initializer = op.getInitializerBlock()) {
      llvm::IRBuilder<> builder(llvmModule->getContext());
      for (auto &op : initializer->without_terminator()) {
        if (failed(convertOperation(op, builder)) ||
            !isa<llvm::Constant>(lookupValue(op.getResult(0))))
          return emitError(op.getLoc(), "unemittable constant value");
      }
      ReturnOp ret = cast<ReturnOp>(initializer->getTerminator());
      llvm::Constant *cst =
          cast<llvm::Constant>(lookupValue(ret.getOperand(0)));
      auto *global = cast<llvm::GlobalVariable>(lookupGlobal(op));
      if (!shouldDropGlobalInitializer(global->getLinkage(), cst))
        global->setInitializer(cst);
    }
  }
  return success();
}
/// Attempts to add an attribute identified by `key`, optionally with the given
/// `value` to LLVM function `llvmFunc`. Reports errors at `loc` if any. If the
/// attribute has a kind known to LLVM IR, create the attribute of this kind,
/// otherwise keep it as a string attribute. Performs additional checks for
/// attributes known to have or not have a value in order to avoid assertions
/// inside LLVM upon construction.
static LogicalResult checkedAddLLVMFnAttribute(Location loc,
                                               llvm::Function *llvmFunc,
                                               StringRef key,
                                               StringRef value = StringRef()) {
  auto kind = llvm::Attribute::getAttrKindFromName(key);
  if (kind == llvm::Attribute::None) {
    llvmFunc->addFnAttr(key, value);
    return success();
  }
  if (llvm::Attribute::isIntAttrKind(kind)) {
    if (value.empty())
      return emitError(loc) << "LLVM attribute '" << key << "' expects a value";
    int result;
    if (!value.getAsInteger(/*Radix=*/0, result))
      llvmFunc->addFnAttr(
          llvm::Attribute::get(llvmFunc->getContext(), kind, result));
    else
      llvmFunc->addFnAttr(key, value);
    return success();
  }
  if (!value.empty())
    return emitError(loc) << "LLVM attribute '" << key
                          << "' does not expect a value, found '" << value
                          << "'";
  llvmFunc->addFnAttr(kind);
  return success();
}
/// Attaches the attributes listed in the given array attribute to `llvmFunc`.
/// Reports error to `loc` if any and returns immediately. Expects `attributes`
/// to be an array attribute containing either string attributes, treated as
/// value-less LLVM attributes, or array attributes containing two string
/// attributes, with the first string being the name of the corresponding LLVM
/// attribute and the second string beings its value. Note that even integer
/// attributes are expected to have their values expressed as strings.
static LogicalResult
forwardPassthroughAttributes(Location loc, Optional<ArrayAttr> attributes,
                             llvm::Function *llvmFunc) {
  if (!attributes)
    return success();
  for (Attribute attr : *attributes) {
    if (auto stringAttr = attr.dyn_cast<StringAttr>()) {
      if (failed(
              checkedAddLLVMFnAttribute(loc, llvmFunc, stringAttr.getValue())))
        return failure();
      continue;
    }
    auto arrayAttr = attr.dyn_cast<ArrayAttr>();
    if (!arrayAttr || arrayAttr.size() != 2)
      return emitError(loc)
             << "expected 'passthrough' to contain string or array attributes";
    auto keyAttr = arrayAttr[0].dyn_cast<StringAttr>();
    auto valueAttr = arrayAttr[1].dyn_cast<StringAttr>();
    if (!keyAttr || !valueAttr)
      return emitError(loc)
             << "expected arrays within 'passthrough' to contain two strings";
    if (failed(checkedAddLLVMFnAttribute(loc, llvmFunc, keyAttr.getValue(),
                                         valueAttr.getValue())))
      return failure();
  }
  return success();
}
LogicalResult ModuleTranslation::convertOneFunction(LLVMFuncOp func) {
  // Clear the block, branch value mappings, they are only relevant within one
  // function.
  blockMapping.clear();
  valueMapping.clear();
  branchMapping.clear();
  llvm::Function *llvmFunc = lookupFunction(func.getName());
  // Translate the debug information for this function.
  debugTranslation->translate(func, *llvmFunc);
  // Add function arguments to the value remapping table.
  // If there was noalias info then we decorate each argument accordingly.
  unsigned int argIdx = 0;
  for (auto kvp : llvm::zip(func.getArguments(), llvmFunc->args())) {
    llvm::Argument &llvmArg = std::get<1>(kvp);
    BlockArgument mlirArg = std::get<0>(kvp);
    if (auto attr = func.getArgAttrOfType<UnitAttr>(
            argIdx, LLVMDialect::getNoAliasAttrName())) {
      // NB: Attribute already verified to be boolean, so check if we can indeed
      // attach the attribute to this argument, based on its type.
      auto argTy = mlirArg.getType();
      if (!argTy.isa<LLVM::LLVMPointerType>())
        return func.emitError(
            "llvm.noalias attribute attached to LLVM non-pointer argument");
      llvmArg.addAttr(llvm::Attribute::AttrKind::NoAlias);
    }
    if (auto attr = func.getArgAttrOfType<IntegerAttr>(
            argIdx, LLVMDialect::getAlignAttrName())) {
      // NB: Attribute already verified to be int, so check if we can indeed
      // attach the attribute to this argument, based on its type.
      auto argTy = mlirArg.getType();
      if (!argTy.isa<LLVM::LLVMPointerType>())
        return func.emitError(
            "llvm.align attribute attached to LLVM non-pointer argument");
      llvmArg.addAttrs(
          llvm::AttrBuilder().addAlignmentAttr(llvm::Align(attr.getInt())));
    }
    if (auto attr = func.getArgAttrOfType<UnitAttr>(argIdx, "llvm.sret")) {
      auto argTy = mlirArg.getType();
      if (!argTy.isa<LLVM::LLVMPointerType>())
        return func.emitError(
            "llvm.sret attribute attached to LLVM non-pointer argument");
      llvmArg.addAttrs(llvm::AttrBuilder().addStructRetAttr(
          llvmArg.getType()->getPointerElementType()));
    }
    if (auto attr = func.getArgAttrOfType<UnitAttr>(argIdx, "llvm.byval")) {
      auto argTy = mlirArg.getType();
      if (!argTy.isa<LLVM::LLVMPointerType>())
        return func.emitError(
            "llvm.byval attribute attached to LLVM non-pointer argument");
      llvmArg.addAttrs(llvm::AttrBuilder().addByValAttr(
          llvmArg.getType()->getPointerElementType()));
    }
    mapValue(mlirArg, &llvmArg);
    argIdx++;
  }
  // Check the personality and set it.
  if (func.personality().hasValue()) {
    llvm::Type *ty = llvm::Type::getInt8PtrTy(llvmFunc->getContext());
    if (llvm::Constant *pfunc =
            getLLVMConstant(ty, func.personalityAttr(), func.getLoc(), *this))
      llvmFunc->setPersonalityFn(pfunc);
  }
  // First, create all blocks so we can jump to them.
  llvm::LLVMContext &llvmContext = llvmFunc->getContext();
  for (auto &bb : func) {
    auto *llvmBB = llvm::BasicBlock::Create(llvmContext);
    llvmBB->insertInto(llvmFunc);
    mapBlock(&bb, llvmBB);
  }
  // Then, convert blocks one by one in topological order to ensure defs are
  // converted before uses.
  auto blocks = detail::getTopologicallySortedBlocks(func.getBody());
  for (Block *bb : blocks) {
    llvm::IRBuilder<> builder(llvmContext);
    if (failed(convertBlock(*bb, bb->isEntryBlock(), builder)))
      return failure();
  }
  // After all blocks have been traversed and values mapped, connect the PHI
  // nodes to the results of preceding blocks.
  detail::connectPHINodes(func.getBody(), *this);
  // Finally, convert dialect attributes attached to the function.
  return convertDialectAttributes(func);
}
LogicalResult ModuleTranslation::convertDialectAttributes(Operation *op) {
  for (NamedAttribute attribute : op->getDialectAttrs())
    if (failed(iface.amendOperation(op, attribute, *this)))
      return failure();
  return success();
}
/// Check whether the module contains only supported ops directly in its body.
static LogicalResult checkSupportedModuleOps(Operation *m) {
  for (Operation &o : getModuleBody(m).getOperations())
    if (!isa<LLVM::LLVMFuncOp, LLVM::GlobalOp, LLVM::MetadataOp>(&o) &&
        !o.hasTrait<OpTrait::IsTerminator>())
      return o.emitOpError("unsupported module-level operation");
  return success();
}
LogicalResult ModuleTranslation::convertFunctionSignatures() {
  // Declare all functions first because there may be function calls that form a
  // call graph with cycles, or global initializers that reference functions.
  for (auto function : getModuleBody(mlirModule).getOps<LLVMFuncOp>()) {
    llvm::FunctionCallee llvmFuncCst = llvmModule->getOrInsertFunction(
        function.getName(),
        cast<llvm::FunctionType>(convertType(function.getType())));
    llvm::Function *llvmFunc = cast<llvm::Function>(llvmFuncCst.getCallee());
    llvmFunc->setLinkage(convertLinkageToLLVM(function.linkage()));
    mapFunction(function.getName(), llvmFunc);
    addRuntimePreemptionSpecifier(function.dso_local(), llvmFunc);
    // Forward the pass-through attributes to LLVM.
    if (failed(forwardPassthroughAttributes(function.getLoc(),
                                            function.passthrough(), llvmFunc)))
      return failure();
  }
  return success();
}
LogicalResult ModuleTranslation::convertFunctions() {
  // Convert functions.
  for (auto function : getModuleBody(mlirModule).getOps<LLVMFuncOp>()) {
    // Ignore external functions.
    if (function.isExternal())
      continue;
    if (failed(convertOneFunction(function)))
      return failure();
  }
  return success();
}
llvm::MDNode *
ModuleTranslation::getAccessGroup(Operation &opInst,
                                  SymbolRefAttr accessGroupRef) const {
  auto metadataName = accessGroupRef.getRootReference();
  auto accessGroupName = accessGroupRef.getLeafReference();
  auto metadataOp = SymbolTable::lookupNearestSymbolFrom<LLVM::MetadataOp>(
      opInst.getParentOp(), metadataName);
  auto *accessGroupOp =
      SymbolTable::lookupNearestSymbolFrom(metadataOp, accessGroupName);
  return accessGroupMetadataMapping.lookup(accessGroupOp);
}
LogicalResult ModuleTranslation::createAccessGroupMetadata() {
  mlirModule->walk([&](LLVM::MetadataOp metadatas) {
    metadatas.walk([&](LLVM::AccessGroupMetadataOp op) {
      llvm::LLVMContext &ctx = llvmModule->getContext();
      llvm::MDNode *accessGroup = llvm::MDNode::getDistinct(ctx, {});
      accessGroupMetadataMapping.insert({op, accessGroup});
    });
  });
  return success();
}
void ModuleTranslation::setAccessGroupsMetadata(Operation *op,
                                                llvm::Instruction *inst) {
  auto accessGroups =
      op->getAttrOfType<ArrayAttr>(LLVMDialect::getAccessGroupsAttrName());
  if (accessGroups && !accessGroups.empty()) {
    llvm::Module *module = inst->getModule();
    SmallVector<llvm::Metadata *> metadatas;
    for (SymbolRefAttr accessGroupRef :
         accessGroups.getAsRange<SymbolRefAttr>())
      metadatas.push_back(getAccessGroup(*op, accessGroupRef));
    llvm::MDNode *unionMD = nullptr;
    if (metadatas.size() == 1)
      unionMD = llvm::cast<llvm::MDNode>(metadatas.front());
    else if (metadatas.size() >= 2)
      unionMD = llvm::MDNode::get(module->getContext(), metadatas);
    inst->setMetadata(module->getMDKindID("llvm.access.group"), unionMD);
  }
}
llvm::Type *ModuleTranslation::convertType(Type type) {
  return typeTranslator.translateType(type);
}
/// A helper to look up remapped operands in the value remapping table.`
SmallVector<llvm::Value *, 8>
ModuleTranslation::lookupValues(ValueRange values) {
  SmallVector<llvm::Value *, 8> remapped;
  remapped.reserve(values.size());
  for (Value v : values)
    remapped.push_back(lookupValue(v));
  return remapped;
}
const llvm::DILocation *
ModuleTranslation::translateLoc(Location loc, llvm::DILocalScope *scope) {
  return debugTranslation->translateLoc(loc, scope);
}
llvm::NamedMDNode *
ModuleTranslation::getOrInsertNamedModuleMetadata(StringRef name) {
  return llvmModule->getOrInsertNamedMetadata(name);
}
void ModuleTranslation::StackFrame::anchor() {}
static std::unique_ptr<llvm::Module>
prepareLLVMModule(Operation *m, llvm::LLVMContext &llvmContext,
                  StringRef name) {
  m->getContext()->getOrLoadDialect<LLVM::LLVMDialect>();
  auto llvmModule = std::make_unique<llvm::Module>(name, llvmContext);
  if (auto dataLayoutAttr =
          m->getAttr(LLVM::LLVMDialect::getDataLayoutAttrName()))
    llvmModule->setDataLayout(dataLayoutAttr.cast<StringAttr>().getValue());
  if (auto targetTripleAttr =
          m->getAttr(LLVM::LLVMDialect::getTargetTripleAttrName()))
    llvmModule->setTargetTriple(targetTripleAttr.cast<StringAttr>().getValue());
  // Inject declarations for `malloc` and `free` functions that can be used in
  // memref allocation/deallocation coming from standard ops lowering.
  llvm::IRBuilder<> builder(llvmContext);
  llvmModule->getOrInsertFunction("malloc", builder.getInt8PtrTy(),
                                  builder.getInt64Ty());
  llvmModule->getOrInsertFunction("free", builder.getVoidTy(),
                                  builder.getInt8PtrTy());
  return llvmModule;
}
std::unique_ptr<llvm::Module>
mlir::translateModuleToLLVMIR(Operation *module, llvm::LLVMContext &llvmContext,
                              StringRef name) {
  if (!satisfiesLLVMModule(module))
    return nullptr;
  if (failed(checkSupportedModuleOps(module)))
    return nullptr;
  std::unique_ptr<llvm::Module> llvmModule =
      prepareLLVMModule(module, llvmContext, name);
  LLVM::ensureDistinctSuccessors(module);
  ModuleTranslation translator(module, std::move(llvmModule));
  if (failed(translator.convertFunctionSignatures()))
    return nullptr;
  if (failed(translator.convertGlobals()))
    return nullptr;
  if (failed(translator.createAccessGroupMetadata()))
    return nullptr;
  if (failed(translator.convertFunctions()))
    return nullptr;
  if (llvm::verifyModule(*translator.llvmModule, &llvm::errs()))
    return nullptr;
  return std::move(translator.llvmModule);
}
 
     |