File: codegen-strategy.mlir

package info (click to toggle)
llvm-toolchain-13 1%3A13.0.1-11
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 1,418,840 kB
  • sloc: cpp: 5,290,826; ansic: 996,570; asm: 544,593; python: 188,212; objc: 72,027; lisp: 30,291; f90: 25,395; sh: 24,898; javascript: 9,780; pascal: 9,398; perl: 7,484; ml: 5,432; awk: 3,523; makefile: 2,913; xml: 953; cs: 573; fortran: 539
file content (22 lines) | stat: -rw-r--r-- 1,730 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
// Test that both anchor-op name and MatmulOp-based codegen strategy produce the same result.
// RUN: mlir-opt %s -test-linalg-codegen-strategy="tile-sizes=2,4,8 vectorize vectorize-contraction-to=matrixintrinsics unroll-vector-transfers=true" | FileCheck %s
// RUN: mlir-opt %s -test-linalg-codegen-strategy="tile-sizes=2,4,8 tile-interchange=1,2,0 vectorize vectorize-contraction-to=matrixintrinsics unroll-vector-transfers=true" | FileCheck %s
// RUN: mlir-opt %s -test-linalg-codegen-strategy="tile-sizes=16,32,64 promote promote-full-tile-pad register-tile-sizes=2,4,8 vectorize vectorize-contraction-to=outerproduct split-transfers=true unroll-vector-transfers=false" | FileCheck %s --check-prefix=OUTER
// RUN: mlir-opt %s -test-linalg-codegen-strategy="anchor-op=linalg.matmul tile-sizes=2,4,8 vectorize vectorize-contraction-to=matrixintrinsics unroll-vector-transfers=true" | FileCheck %s
// RUN: mlir-opt %s -test-linalg-codegen-strategy="anchor-op=linalg.matmul tile-sizes=16,32,64 promote promote-full-tile-pad register-tile-sizes=2,4,8 vectorize vectorize-contraction-to=outerproduct split-transfers=true unroll-vector-transfers=false" | FileCheck %s --check-prefix=OUTER

// CHECK-LABEL: func @matmul(
// OUTER-LABEL: func @matmul(
func @matmul(%A: memref<1584x1584xf32>, %B: memref<1584x1584xf32>, %C: memref<1584x1584xf32>) {
  linalg.matmul
   ins(%A, %B: memref<1584x1584xf32>, memref<1584x1584xf32>)
   outs(%C: memref<1584x1584xf32>)

  //      CHECK: vector.matrix_multiply
  // CHECK-SAME: {lhs_columns = 8 : i32, lhs_rows = 2 : i32, rhs_columns = 4 : i32}
  // CHECK-SAME: (vector<16xf32>, vector<32xf32>) -> vector<8xf32>

  // OUTER: vector.outerproduct {{.*}} : vector<2xf32>, vector<4xf32>
  return
}