1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621
  
     | 
    
      // RUN: mlir-opt %s -linalg-comprehensive-module-bufferize=test-analysis-only -split-input-file | FileCheck %s
//===----------------------------------------------------------------------===//
// Simple cases
//===----------------------------------------------------------------------===//
// -----
// CHECK-LABEL: func @extract_slice_fun
func @extract_slice_fun(%A : tensor<?xf32>, %B : tensor<?xf32> {linalg.inplaceable = true})
  -> (tensor<4xf32>, tensor<8xf32>)
{
  // tensor.extract_slice is not used in a write, it is not compelled to
  // bufferize out of place. Let callers decide whether they want to create
  // aliasing subviews at all call sites or whether they allocate.
  // This is true irrespective of whether the function argument is inplaceable.
  //     CHECK: tensor.extract_slice
  // CHECK-SAME: {__inplace_results_attr__ = ["true"]}
  %r0 = tensor.extract_slice %A[0][4][1] : tensor<?xf32> to tensor<4xf32>
  //     CHECK: tensor.extract_slice
  // CHECK-SAME: {__inplace_results_attr__ = ["true"]}
  %r1 = tensor.extract_slice %B[0][8][1] : tensor<?xf32> to tensor<8xf32>
  return %r0, %r1: tensor<4xf32>, tensor<8xf32>
}
// -----
// CHECK-LABEL: func @insert_slice_fun
func @insert_slice_fun(
    %A : tensor<?xf32>,
    %B : tensor<?xf32> {linalg.inplaceable = true},
    %C : tensor<4xf32>)
  -> (tensor<?xf32>, tensor<?xf32>)
{
  // must bufferize out of place.
  //     CHECK: tensor.insert_slice
  // CHECK-SAME: {__inplace_results_attr__ = ["false"]}
  %r0 = tensor.insert_slice %C into %A[0][4][1] : tensor<4xf32> into tensor<?xf32>
  // bufferizes inplace.
  //     CHECK: tensor.insert_slice
  // CHECK-SAME: {__inplace_results_attr__ = ["true"]}
  %r1 = tensor.insert_slice %C into %B[0][4][1] : tensor<4xf32> into tensor<?xf32>
  return %r0, %r1: tensor<?xf32>, tensor<?xf32>
}
// -----
// CHECK-LABEL: func @conflict_on_B
func @conflict_on_B(
    %A : tensor<4x4xf32> {linalg.inplaceable = true},
    %B : tensor<4x4xf32> {linalg.inplaceable = true})
  -> (tensor<4x4xf32>, tensor<4x4xf32>, tensor<4x4xf32>)
{
  // matmul output operand interferes with input operand.
  //     CHECK: linalg.matmul
  // CHECK-SAME: {__inplace_results_attr__ = ["false"]}
  %C = linalg.matmul  ins(%A, %B: tensor<4x4xf32>, tensor<4x4xf32>)
                     outs(%B: tensor<4x4xf32>)
    -> tensor<4x4xf32>
  // matmul output operand interferes with input operand.
  //     CHECK: linalg.matmul
  // CHECK-SAME: {__inplace_results_attr__ = ["false"]}
  %D = linalg.matmul  ins(%B, %A: tensor<4x4xf32>, tensor<4x4xf32>)
                     outs(%B: tensor<4x4xf32>)
    -> tensor<4x4xf32>
  // matmul output operand does not interferes with input operand.
  //     CHECK: linalg.matmul
  // CHECK-SAME: {__inplace_results_attr__ = ["true"]}
  %E = linalg.matmul  ins(%A, %A: tensor<4x4xf32>, tensor<4x4xf32>)
                     outs(%B: tensor<4x4xf32>)
    -> tensor<4x4xf32>
  return %C, %D, %E: tensor<4x4xf32>, tensor<4x4xf32>, tensor<4x4xf32>
}
//===----------------------------------------------------------------------===//
// Length-1 producer-consumer cases.
//===----------------------------------------------------------------------===//
// -----
// CHECK-LABEL: func @extract_slice_extract_slice
func @extract_slice_extract_slice(
    %A : tensor<?xf32> {linalg.inplaceable = true}, %B : tensor<?xf32>)
  -> (tensor<2xf32>, tensor<2xf32>)
{
  // tensor.extract_slice is not used in a write, it is not compelled to
  // bufferize out of place. Let callers decide whether they want to create
  // aliasing subviews at all call sites or whether they allocate.
  // This is true irrespective of whether the function argument is inplaceable.
  // CHECK: {__inplace_results_attr__ = ["true"]}
  %r0 = tensor.extract_slice %A[0][4][1] : tensor<?xf32> to tensor<4xf32>
  // CHECK: {__inplace_results_attr__ = ["true"]}
  %r1 = tensor.extract_slice %r0[0][2][1] : tensor<4xf32> to tensor<2xf32>
  // CHECK: {__inplace_results_attr__ = ["true"]}
  %r2 = tensor.extract_slice %B[0][4][1] : tensor<?xf32> to tensor<4xf32>
  // CHECK: {__inplace_results_attr__ = ["true"]}
  %r3 = tensor.extract_slice %r2[0][2][1] : tensor<4xf32> to tensor<2xf32>
  return %r1, %r3: tensor<2xf32>, tensor<2xf32>
}
// -----
// CHECK-LABEL: func @insert_slice_insert_slice
func @insert_slice_insert_slice(
    %A : tensor<?xf32> {linalg.inplaceable = true},
    %A2 : tensor<4xf32> {linalg.inplaceable = true},
    %A3 : tensor<2xf32> {linalg.inplaceable = true},
    %B : tensor<?xf32>, %B2 : tensor<4xf32>, %B3 : tensor<2xf32>)
  -> (tensor<?xf32>, tensor<?xf32>)
{
  // CHECK: {__inplace_results_attr__ = ["true"]}
  %r0 = tensor.insert_slice %A3 into %A2[0][2][1] : tensor<2xf32> into tensor<4xf32>
  // CHECK: {__inplace_results_attr__ = ["true"]}
  %r1 = tensor.insert_slice %r0 into %A[0][4][1] : tensor<4xf32> into tensor<?xf32>
  // CHECK: {__inplace_results_attr__ = ["false"]}
  %r2 = tensor.insert_slice %B3 into %B2[0][2][1] : tensor<2xf32> into tensor<4xf32>
  // CHECK: {__inplace_results_attr__ = ["false"]}
  %r3 = tensor.insert_slice %r2 into %B[0][4][1] : tensor<4xf32> into tensor<?xf32>
  return %r1, %r3: tensor<?xf32>, tensor<?xf32>
}
// -----
// CHECK-LABEL: func @extract_slice_nonmatching_insert_slice
func @extract_slice_nonmatching_insert_slice(
    %A : tensor<?xf32> {linalg.inplaceable = true},
    %B : tensor<?xf32>, %idx: index)
  -> (tensor<?xf32>, tensor<?xf32>)
{
  // %r1 bufferizes inplace because %A is inplaceable.
  // %r0 is an overlapping tensor.extract_slice that does not match, it must be
  // out of place.
  //      CHECK: tensor.extract_slice
  // CHECK-SAME: {__inplace_results_attr__ = ["false"]}
  %r0 = tensor.extract_slice %A[0][4][1] : tensor<?xf32> to tensor<4xf32>
  // %r1 can bufferize inplace fine.
  //      CHECK: tensor.insert_slice
  // CHECK-SAME: {__inplace_results_attr__ = ["true"]}
  %r1 = tensor.insert_slice %r0 into %A[%idx][4][1] : tensor<4xf32> into tensor<?xf32>
  // %r3 does bufferizes inplace because %B is not inplaceable.
  // %r0 is an overlapping tensor.extract_slice that does not match, but does
  // not alias with the buffer coming from %r3 so it can actually bufferize
  // inplace.
  //      CHECK: tensor.extract_slice
  // CHECK-SAME: {__inplace_results_attr__ = ["true"]}
  %r2 = tensor.extract_slice %B[0][4][1] : tensor<?xf32> to tensor<4xf32>
  // %r3 cannot bufferize inplace since %B is not inplaceable.
  //      CHECK: tensor.insert_slice
  // CHECK-SAME: {__inplace_results_attr__ = ["false"]}
  %r3 = tensor.insert_slice %r2 into %B[%idx][4][1] : tensor<4xf32> into tensor<?xf32>
  return %r1, %r3: tensor<?xf32>, tensor<?xf32>
}
// -----
// CHECK-LABEL: func @extract_slice_matching_insert_slice
func @extract_slice_matching_insert_slice(
    %A : tensor<?xf32> {linalg.inplaceable = true},
    %B : tensor<?xf32>)
  -> (tensor<?xf32>, tensor<?xf32>)
{
  // %r1 bufferizes inplace because %A is inplaceable.
  // %r0 is a tensor.extract_slice that matches, it can also be bufferized
  // inplace.
  //      CHECK: tensor.extract_slice
  // CHECK-SAME: {__inplace_results_attr__ = ["true"]}
  %r0 = tensor.extract_slice %A[0][4][1] : tensor<?xf32> to tensor<4xf32>
  //      CHECK: tensor.insert_slice
  // CHECK-SAME: {__inplace_results_attr__ = ["true"]}
  %r1 = tensor.insert_slice %r0 into %A[0][4][1] : tensor<4xf32> into tensor<?xf32>
  // %r2 is a tensor.extract_slice that matches %r3, it can be bufferized
  // inplace.
  //      CHECK: tensor.extract_slice
  // CHECK-SAME: {__inplace_results_attr__ = ["true"]}
  %r2 = tensor.extract_slice %B[0][4][1] : tensor<?xf32> to tensor<4xf32>
  // tensor.insert_slice cannot bufferize inplace.
  // This should have been captured by a canonicalization pattern and it would
  // be unproductive to have special logic in bufferization to encode matching
  // insert_slice(extract_slice(A), A).
  //      CHECK: tensor.insert_slice
  // CHECK-SAME: {__inplace_results_attr__ = ["false"]}
  %r3 = tensor.insert_slice %r2 into %B[0][4][1] : tensor<4xf32> into tensor<?xf32>
  return %r1, %r3: tensor<?xf32>, tensor<?xf32>
}
// -----
// CHECK-LABEL: func @extract_slice_linalg_readonly_use
func @extract_slice_linalg_readonly_use(
    %A : tensor<?x?xf32>,
    %B : tensor<4x4xf32>,
    %C : tensor<4x4xf32> {linalg.inplaceable = true})
  ->  (tensor<4x4xf32>, tensor<4x4xf32>)
{
  // tensor.extract_slice is only used as a read, no interference irrespective
  // of user's inplace status.
  //     CHECK: tensor.extract_slice
  // CHECK-SAME: {__inplace_results_attr__ = ["true"]}
  %sA = tensor.extract_slice %A[0, 0][4, 4][1, 1] : tensor<?x?xf32> to tensor<4x4xf32>
  // matmul output operand is not inplaceable at the function boundary.
  //     CHECK: linalg.matmul
  // CHECK-SAME: {__inplace_results_attr__ = ["false"]}
  %D = linalg.matmul  ins(%sA, %B: tensor<4x4xf32>, tensor<4x4xf32>)
                     outs(%B: tensor<4x4xf32>)
    -> tensor<4x4xf32>
  // matmul output operand is inplaceable at the function boundary.
  //     CHECK: linalg.matmul
  // CHECK-SAME: {__inplace_results_attr__ = ["true"]}
  %E = linalg.matmul  ins(%sA, %B: tensor<4x4xf32>, tensor<4x4xf32>)
                     outs(%C: tensor<4x4xf32>)
    -> tensor<4x4xf32>
  return %D, %E: tensor<4x4xf32>, tensor<4x4xf32>
}
// -----
// CHECK-LABEL: func @extract_slice_to_linalg_write_use
func @extract_slice_to_linalg_write_use(
    %A : tensor<4x4xf32>,
    %B : tensor<?x?xf32>,
    %C : tensor<?x?xf32> {linalg.inplaceable = true})
  ->  (tensor<4x4xf32>, tensor<4x4xf32>)
{
  // Step 3. %sB forward propagates to a write in %D but it is not inplace.
  // So this is only ever read and can bufferize inplace.
  //     CHECK: tensor.extract_slice
  // CHECK-SAME: {__inplace_results_attr__ = ["true"]}
  %sB = tensor.extract_slice %B[0, 0][4, 4][1, 1] : tensor<?x?xf32> to tensor<4x4xf32>
  // Step 2. %sB has a read interference in %E, it does not bufferize inplace.
  //     CHECK: linalg.matmul
  // CHECK-SAME: {__inplace_results_attr__ = ["false"]}
  %D = linalg.matmul  ins(%B, %C: tensor<?x?xf32>, tensor<?x?xf32>)
                     outs(%sB: tensor<4x4xf32>)
    -> tensor<4x4xf32>
  // Step 4. %sC forward propagates to an inplace write in %E.
  // %sC backward propagates to %C which is inplaceable.
  // As a consequence this is bufferized inplace.
  //     CHECK: tensor.extract_slice
  // CHECK-SAME: {__inplace_results_attr__ = ["true"]}
  %sC = tensor.extract_slice %C[0, 0][4, 4][1, 1] : tensor<?x?xf32> to tensor<4x4xf32>
  // Step 1. %sC backprops to the tensor.extract_slice producer which is not
  // considered an interference. This bufferizes inplace.
  //     CHECK: linalg.matmul
  // CHECK-SAME: {__inplace_results_attr__ = ["true"]}
  %E = linalg.matmul  ins(%A, %sB: tensor<4x4xf32>, tensor<4x4xf32>)
                     outs(%sC: tensor<4x4xf32>)
    -> tensor<4x4xf32>
  return %D, %E: tensor<4x4xf32>, tensor<4x4xf32>
}
//===----------------------------------------------------------------------===//
// Transitive cases
//===----------------------------------------------------------------------===//
// -----
// CHECK-LABEL: func @extract_slice_to_linalg_write_use
func @extract_slice_to_linalg_write_use(
    %A : tensor<4x4xf32>,
    %B : tensor<?x?xf32>,
    %C : tensor<?x?xf32> {linalg.inplaceable = true})
  ->  (tensor<4x4xf32>, tensor<4x4xf32>)
{
  // Step 4. %sB forward propagates to an inplace write in %D.
  // %sB backward propagates to %B which is not inplaceable.
  // As a consequence this is bufferized out of place.
  //     CHECK: tensor.extract_slice
  // CHECK-SAME: {__inplace_results_attr__ = ["false"]}
  %sB = tensor.extract_slice %B[0, 0][4, 4][1, 1] : tensor<?x?xf32> to tensor<4x4xf32>
  // Step 1. %sB backprops to the tensor.extract_slice producer which is not
  // considered an interference. This bufferizes inplace.
  //     CHECK: linalg.matmul
  // CHECK-SAME: {__inplace_results_attr__ = ["true"]}
  %D = linalg.matmul  ins(%B, %C: tensor<?x?xf32>, tensor<?x?xf32>)
                     outs(%sB: tensor<4x4xf32>)
    -> tensor<4x4xf32>
  // Step 3. %sC forward propagates to an inplace write in %E.
  // %sC backward propagates to %C which is inplaceable.
  // As a consequence this is bufferized inplace.
  //     CHECK: tensor.extract_slice
  // CHECK-SAME: {__inplace_results_attr__ = ["true"]}
  %sC = tensor.extract_slice %C[0, 0][4, 4][1, 1] : tensor<?x?xf32> to tensor<4x4xf32>
  // Step 1. %sC backprops to the tensor.extract_slice producer which is not
  // considered an interference. This bufferizes inplace.
  //     CHECK: linalg.matmul
  // CHECK-SAME: {__inplace_results_attr__ = ["true"]}
  %E = linalg.matmul  ins(%A, %A: tensor<4x4xf32>, tensor<4x4xf32>)
                     outs(%sC: tensor<4x4xf32>)
    -> tensor<4x4xf32>
  return %D, %E: tensor<4x4xf32>, tensor<4x4xf32>
}
// -----
// CHECK-LABEL: func @nested_extract_slice_and_insert
func @nested_extract_slice_and_insert(
    %A : tensor<?x?xf32>,
    %B : tensor<?x?xf32> {linalg.inplaceable = true},
    %C : tensor<?x?xf32> {linalg.inplaceable = true},
    %idx : index)
  ->  (tensor<?x?xf32>, tensor<?x?xf32>, tensor<?x?xf32>)
{
  %f0 = constant 0.0 : f32
  // 2-level matching tensor.extract_slice / tensor.insert_slice into non
  // inplaceable %A.
  //   - %rA is not inplaceable because %A is not inplaceable at function boundary.
  //   - once %rA is deemed not inplaceable, nothing prevent %rsA to be inplaceable
  //   - this propagates to %FA and %ssA being inplaceable.
  //   - %sA would then bufferize to an inplace write (i.e. %FA) but %A is not
  //     inplaceable and so %sA is not inplaceable.
  //     CHECK: tensor.extract_slice
  // CHECK-SAME: {__inplace_results_attr__ = ["false"]}
  // CHECK-NEXT: tensor.extract_slice
  // CHECK-SAME: {__inplace_results_attr__ = ["true"]}
  // CHECK-NEXT: fill
  // CHECK-SAME: {__inplace_results_attr__ = ["true"]}
  // CHECK-NEXT: tensor.insert_slice
  // CHECK-SAME: {__inplace_results_attr__ = ["true"]}
  // CHECK-NEXT: tensor.insert_slice
  // CHECK-SAME: {__inplace_results_attr__ = ["false"]}
  %sA = tensor.extract_slice %A[0, 0][%idx, %idx][1, 1] : tensor<?x?xf32> to tensor<?x?xf32>
  %ssA = tensor.extract_slice %sA[0, 0][4, 4][1, 1] : tensor<?x?xf32> to tensor<4x4xf32>
  %FA = linalg.fill(%f0, %ssA) : f32, tensor<4x4xf32> -> tensor<4x4xf32>
  %rsA = tensor.insert_slice %FA into %sA[0, 0][4, 4][1, 1] : tensor<4x4xf32> into tensor<?x?xf32>
  %rA = tensor.insert_slice %rsA into %A[0, 0][%idx, %idx][1, 1] : tensor<?x?xf32> into tensor<?x?xf32>
  // 3-level matching tensor.extract_slice / tensor.insert_slice into
  // inplaceable %B.
  // CHECK-NEXT: tensor.extract_slice
  // CHECK-SAME: {__inplace_results_attr__ = ["true"]}
  // CHECK-NEXT: tensor.extract_slice
  // Atm, this 2nd tensor.extract_slice fails to bufferize inplace because
  // clobbering analysis conservatively test for equivalent buffers.
  // TODO: This is currently too restrictive and misses clobberings.
  // When available, use container-containee analysis.
  // CHECK-SAME: {__inplace_results_attr__ = ["false"]}
  // CHECK-NEXT: tensor.extract_slice
  // CHECK-SAME: {__inplace_results_attr__ = ["true"]}
  // CHECK-NEXT: fill
  // CHECK-SAME: {__inplace_results_attr__ = ["true"]}
  // CHECK-NEXT: tensor.insert_slice
  // CHECK-SAME: {__inplace_results_attr__ = ["true"]}
  // CHECK-NEXT: tensor.insert_slice
  // CHECK-SAME: {__inplace_results_attr__ = ["true"]}
  // CHECK-NEXT: tensor.insert_slice
  // CHECK-SAME: {__inplace_results_attr__ = ["true"]}
  %sB = tensor.extract_slice %B[0, 0][%idx, %idx][1, 1] : tensor<?x?xf32> to tensor<?x?xf32>
  %ssB = tensor.extract_slice %sB[0, 0][4, %idx][1, 1] : tensor<?x?xf32> to tensor<4x?xf32>
  %sssB = tensor.extract_slice %ssB[0, 0][4, 4][1, 1] : tensor<4x?xf32> to tensor<4x4xf32>
  %FB = linalg.fill(%f0, %sssB) : f32, tensor<4x4xf32> -> tensor<4x4xf32>
  %rssB = tensor.insert_slice %FB into %ssB[0, 0][4, 4][1, 1] : tensor<4x4xf32> into tensor<4x?xf32>
  %rsB = tensor.insert_slice %rssB into %sB[0, 0][4, %idx][1, 1] : tensor<4x?xf32> into tensor<?x?xf32>
  %rB = tensor.insert_slice %rsB into %B[0, 0][%idx, %idx][1, 1] : tensor<?x?xf32> into tensor<?x?xf32>
  // 2-level matching tensor.extract_slice / tensor.insert_slice into
  // inplaceable %C with a twist.
  // Throw a wrench in the system: %rsC production sizes do not match %ssC.
  // CHECK-NEXT: tensor.extract_slice
  // CHECK-SAME: {__inplace_results_attr__ = ["true"]}
  // The tensor.insert_slice that would be candidate for matching does not actually
  // match. That tensor.insert_slice can still be bufferized inplace nonetheless
  // but this tensor.extract_slice, which bufferizes to an inplace write, cannot.
  // CHECK-NEXT: tensor.extract_slice
  // CHECK-SAME: {__inplace_results_attr__ = ["false"]}
  // CHECK-NEXT: fill
  // CHECK-SAME: {__inplace_results_attr__ = ["true"]}
  // CHECK-NEXT: tensor.insert_slice
  // CHECK-SAME: {__inplace_results_attr__ = ["true"]}
  // CHECK-NEXT: tensor.insert_slice
  // CHECK-SAME: {__inplace_results_attr__ = ["true"]}
  %sC = tensor.extract_slice %C[0, 0][%idx, %idx][1, 1] : tensor<?x?xf32> to tensor<?x?xf32>
  %ssC = tensor.extract_slice %sC[0, 0][4, 4][1, 1] : tensor<?x?xf32> to tensor<4x4xf32>
  %FC = linalg.fill(%f0, %ssC) : f32, tensor<4x4xf32> -> tensor<4x4xf32>
  %rsC = tensor.insert_slice %FC into %sC[0, 0][12345, 67890][1, 1] : tensor<4x4xf32> into tensor<?x?xf32>
  %rC = tensor.insert_slice %rsC into %C[0, 0][%idx, %idx][1, 1] : tensor<?x?xf32> into tensor<?x?xf32>
  return %rA, %rB, %rC: tensor<?x?xf32>, tensor<?x?xf32>, tensor<?x?xf32>
}
//===----------------------------------------------------------------------===//
// Simple loop cases
//===----------------------------------------------------------------------===//
// -----
// CHECK-LABEL: func @scf_for_yield_only
func @scf_for_yield_only(%A : tensor<?xf32>,
                         %B : tensor<?xf32> {linalg.inplaceable = true},
                         %lb : index, %ub : index, %step : index)
  -> (tensor<?xf32>, tensor<?xf32>)
{
  //      CHECK: scf.for
  // CHECK-NEXT: scf.yield
  // CHECK-NEXT: {__inplace_results_attr__ = ["false"]}
  %r0 = scf.for %i = %lb to %ub step %step iter_args(%t = %A) -> (tensor<?xf32>) {
    scf.yield %t : tensor<?xf32>
  }
  //      CHECK: scf.for
  // CHECK-NEXT: scf.yield
  // CHECK-NEXT: {__inplace_results_attr__ = ["true"]}
  %r1 = scf.for %i = %lb to %ub step %step iter_args(%t = %B) -> (tensor<?xf32>) {
    scf.yield %t : tensor<?xf32>
  }
  return %r0, %r1: tensor<?xf32>, tensor<?xf32>
}
// -----
// CHECK-LABEL: func @scf_for_with_tensor.insert_slice
func @scf_for_with_tensor.insert_slice(%A : tensor<?xf32>,
              %B : tensor<?xf32> {linalg.inplaceable = true},
              %C : tensor<4xf32>,
              %lb : index, %ub : index, %step : index)
  -> (tensor<?xf32>, tensor<?xf32>)
{
  //      CHECK: scf.for
  // scf.for bbArgs are always inplaceable seen from ops inside the body:
  //   1. Either the matching tensor is not inplaceable and an alloc occurs
  //      which makes bbArg inplaceable.
  //   2. Or it is already inplaceable and so is bbArg.
  // CHECK-NEXT:   tensor.insert_slice
  // CHECK-SAME:     {__inplace_results_attr__ = ["true"]}
  // CHECK-NEXT:   tensor.insert_slice
  // CHECK-SAME:     {__inplace_results_attr__ = ["true"]}
  // CHECK-NEXT:   scf.yield
  // CHECK-NEXT: {__inplace_results_attr__ = ["false", "true"]}
  %r0:2 = scf.for %i = %lb to %ub step %step iter_args(%tA = %A, %tB = %B)
      -> (tensor<?xf32>, tensor<?xf32>)
  {
    %ttA = tensor.insert_slice %C into %tA[0][4][1] : tensor<4xf32> into tensor<?xf32>
    %ttB = tensor.insert_slice %C into %tB[0][4][1] : tensor<4xf32> into tensor<?xf32>
    scf.yield %ttA, %ttB : tensor<?xf32>, tensor<?xf32>
  }
  return %r0#0, %r0#1: tensor<?xf32>, tensor<?xf32>
}
// -----
func private @some_use(tensor<?xf32>) -> ()
// CHECK-LABEL: func @scf_for_deps
func @scf_for_deps(%A : tensor<?xf32> {linalg.inplaceable = true},
                   %B : tensor<?xf32> {linalg.inplaceable = true},
                   %lb : index, %ub : index, %step : index)
  -> (tensor<?xf32>, tensor<?xf32>)
{
  // %r0 must be out of place because one use of %t in the subsequent production 
  // of %r1 is read.
  //      CHECK: scf.for
  // CHECK-NEXT: call
  // CHECK-NEXT: scf.yield
  // CHECK-NEXT: {__inplace_results_attr__ = ["false"]}
  %r0 = scf.for %i = %lb to %ub step %step iter_args(%t = %A) -> (tensor<?xf32>) {
    call @some_use(%t) : (tensor<?xf32>) -> ()
    scf.yield %t : tensor<?xf32>
  }
  // %r1 bufferizes inplace fine.
  //      CHECK: scf.for
  // CHECK-NEXT: call
  // CHECK-NEXT: scf.yield
  // CHECK-NEXT: {__inplace_results_attr__ = ["true"]}
  %r1 = scf.for %i = %lb to %ub step %step iter_args(%t = %A) -> (tensor<?xf32>) {
    call @some_use(%t) : (tensor<?xf32>) -> ()
    scf.yield %t : tensor<?xf32>
  }
  // %r2 must be out of place because one use of %t in the subsequent production 
  // of %r3 is read.
  //      CHECK: linalg.tiled_loop
  // CHECK-NEXT: call
  // CHECK-NEXT: linalg.yield
  // CHECK-NEXT: {__inplace_results_attr__ = ["false"]}
  %r2 = linalg.tiled_loop (%i) = (%lb) to (%ub) step (%step)
        ins()
        outs(%t = %B: tensor<?xf32>) {
    call @some_use(%t) : (tensor<?xf32>) -> ()
    linalg.yield %t : tensor<?xf32>
  }
  // %r3 bufferizes inplace fine.
  //      CHECK: linalg.tiled_loop
  // CHECK-NEXT: call
  // CHECK-NEXT: linalg.yield
  // CHECK-NEXT: {__inplace_results_attr__ = ["true"]}
  %r3 = linalg.tiled_loop (%i) = (%lb) to (%ub) step (%step)
        ins()
        outs(%t = %B: tensor<?xf32>) {
    call @some_use(%t) : (tensor<?xf32>) -> ()
    linalg.yield %t : tensor<?xf32>
  }
  return %r1, %r3: tensor<?xf32>, tensor<?xf32>
}
// -----
//===----------------------------------------------------------------------===//
// Cross function boundary cases.
//===----------------------------------------------------------------------===//
func private @foo(tensor<64xf32>)
// CHECK-LABEL: dependence_through_call
func @dependence_through_call(%I : tensor<64xf32> {linalg.inplaceable = true}) {
  %f1 = constant 1.000000e+00 : f32
  %f2 = constant 2.000000e+00 : f32
  // 2. %B already bufferizes inplace, %A would alias and have a different
  // value. The calls to `foo` are determined to read conservatively, so %A
  // cannot bufferize inplace.
  //     CHECK: fill
  // CHECK-SAME: {__inplace_results_attr__ = ["false"]}
  %A = linalg.fill(%f1, %I) : f32, tensor<64xf32> -> tensor<64xf32>
  // 1. Bufferizes inplace: no alias to %A is yet possible.
  //     CHECK: fill
  // CHECK-SAME: {__inplace_results_attr__ = ["true"]}
  %B = linalg.fill(%f2, %I) : f32, tensor<64xf32> -> tensor<64xf32>
  call @foo(%A) : (tensor<64xf32>) -> ()
  call @foo(%B) : (tensor<64xf32>) -> ()
  return
}
// -----
func private @foo(tensor<64xf32>)
func private @bar(%A : tensor<64xf32>) {
  call @foo(%A) : (tensor<64xf32>) -> ()
  return
}
func @read_dependence_through_scf_and_call(
    %I : tensor<64xf32> {linalg.inplaceable = true},
    %I2 : tensor<64xf32> {linalg.inplaceable = true}) {
  %c0 = constant 0 : index
  %c1 = constant 1 : index
  %c10 = constant 10 : index
  %f1 = constant 1.000000e+00 : f32
  %f2 = constant 2.000000e+00 : f32
  // 5. %B bufferizes inplace, %A would alias and have a different value.
  // The calls to `foo` are determined to read conservatively, so %A cannot
  // bufferize inplace.
  //     CHECK: fill
  // CHECK-SAME: {__inplace_results_attr__ = ["false"]}
  %A = linalg.fill(%f1, %I) : f32, tensor<64xf32> -> tensor<64xf32>
  // 4. Bufferizes inplace: no alias to %A is yet possible.
  //     CHECK: fill
  // CHECK-SAME: {__inplace_results_attr__ = ["true"]}
  %B = linalg.fill(%f2, %I) : f32, tensor<64xf32> -> tensor<64xf32>
  // 3. Does not read or write, bufferizes inplace.
  //     CHECK: scf.for
  //     CHECK: {__inplace_results_attr__ = ["true", "true"]}
  %r:2 = scf.for %i = %c0 to %c10 step %c1 iter_args(%0 = %A, %1 = %B)
    -> (tensor<64xf32>, tensor<64xf32>)
  {
    scf.yield %0, %1 : tensor<64xf32>, tensor<64xf32>
  }
  call @foo(%r#0) : (tensor<64xf32>) -> ()
  call @foo(%r#1) : (tensor<64xf32>) -> ()
  // 2. %B2 already bufferizes inplace, %A2 would alias and have a different
  // value. The calls to `foo` are determined to read conservatively, so %A2
  // cannot bufferize inplace.
  //     CHECK: fill
  // CHECK-SAME: {__inplace_results_attr__ = ["false"]}
  %A2 = linalg.fill(%f1, %I2) : f32, tensor<64xf32> -> tensor<64xf32>
  // 1. Bufferizes inplace: no alias to %A2 is yet possible.
  //     CHECK: fill
  // CHECK-SAME: {__inplace_results_attr__ = ["true"]}
  %B2 = linalg.fill(%f2, %I2) : f32, tensor<64xf32> -> tensor<64xf32>
  call @bar(%A2) : (tensor<64xf32>) -> ()
  call @bar(%B2) : (tensor<64xf32>) -> ()
  return
}
 
     |