File: detensorize_if.mlir

package info (click to toggle)
llvm-toolchain-13 1%3A13.0.1-11
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 1,418,840 kB
  • sloc: cpp: 5,290,826; ansic: 996,570; asm: 544,593; python: 188,212; objc: 72,027; lisp: 30,291; f90: 25,395; sh: 24,898; javascript: 9,780; pascal: 9,398; perl: 7,484; ml: 5,432; awk: 3,523; makefile: 2,913; xml: 953; cs: 573; fortran: 539
file content (196 lines) | stat: -rw-r--r-- 7,029 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
// RUN: mlir-opt %s -split-input-file -allow-unregistered-dialect -linalg-detensorize | FileCheck %s

#map0 = affine_map<() -> ()>

#attrs = {
  indexing_maps = [#map0, #map0, #map0],
  iterator_types = []
}

func @main() -> (tensor<i32>) attributes {} {
  %c0 = constant 0 : i32
  %0 = tensor.from_elements %c0 : tensor<1xi32>
  %reshaped0 = linalg.tensor_collapse_shape %0 [] : tensor<1xi32> into tensor<i32>
  %c10 = constant 10 : i32
  %1 = tensor.from_elements %c10 : tensor<1xi32>
  %reshaped1 = linalg.tensor_collapse_shape %1 [] : tensor<1xi32> into tensor<i32>
  br ^bb1(%reshaped0 : tensor<i32>)

^bb1(%2: tensor<i32>):  // 2 preds: ^bb0, ^bb2
  %3 = linalg.init_tensor [] : tensor<i1>
  %4 = linalg.generic #attrs
    ins(%2, %reshaped1 : tensor<i32>, tensor<i32>)
    outs(%3 : tensor<i1>) {
    ^bb0(%arg0: i32, %arg1: i32, %arg2: i1):  // no predecessors
      %8 = cmpi slt, %arg0, %arg1 : i32
      linalg.yield %8 : i1
  } -> tensor<i1>
  %5 = tensor.extract %4[] : tensor<i1>
  cond_br %5, ^bb2(%2 : tensor<i32>), ^bb3(%2 : tensor<i32>)

^bb2(%6: tensor<i32>):  // pred: ^bb1
  %7 = linalg.init_tensor [] : tensor<i32>
  %8 = linalg.generic #attrs
    ins(%6, %6 : tensor<i32>, tensor<i32>)
    outs(%7 : tensor<i32>) {
    ^bb0(%arg0: i32, %arg1: i32, %arg2: i32):  // no predecessors
      %9 = addi %arg0, %arg1 : i32
      linalg.yield %9 : i32
  } -> tensor<i32>
  br ^bb3(%8 : tensor<i32>)

^bb3(%10: tensor<i32>):  // pred: ^bb1
  return %10 : tensor<i32>
}

// CHECK-LABEL:  func @main()
// CHECK-NEXT:     constant 0
// CHECK-NEXT:     constant 10
// CHECK-NEXT:     br ^[[bb1:.*]](%{{.*}}: i32)
// CHECK-NEXT:   ^[[bb1]](%{{.*}}: i32):
// CHECK-NEXT:     cmpi slt, %{{.*}}, %{{.*}}
// CHECK-NEXT:     cond_br %{{.*}}, ^[[bb2:.*]](%{{.*}} : i32), ^bb3(%{{.*}} : i32)
// CHECK-NEXT:   ^[[bb2]](%{{.*}}: i32)
// CHECK-NEXT:     addi %{{.*}}, %{{.*}}
// CHECK-NEXT:     br ^[[bb3:.*]](%{{.*}} : i32)
// CHECK-NEXT:   ^[[bb3]](%{{.*}}: i32)
// CHECK-NEXT:     tensor.from_elements %{{.*}} : tensor<1xi32>
// CHECK-NEXT:     linalg.tensor_collapse_shape %{{.*}} [] : tensor<1xi32> into tensor<i32>
// CHECK-NEXT:     return %{{.*}}
// CHECK-NEXT:   }

// -----

// Similar to the above test with one change: one of the block after the
// if-condition passes/forwards its tensor argument to another block.

#map0 = affine_map<() -> ()>

#attrs = {
  indexing_maps = [#map0, #map0, #map0],
  iterator_types = []
}

func @main() -> (tensor<i32>) attributes {} {
  %c0 = constant 0 : i32
  %0 = tensor.from_elements %c0 : tensor<1xi32>
  %reshaped0 = linalg.tensor_collapse_shape %0 [] : tensor<1xi32> into tensor<i32>
  %c10 = constant 10 : i32
  %1 = tensor.from_elements %c10 : tensor<1xi32>
  %reshaped1 = linalg.tensor_collapse_shape %1 [] : tensor<1xi32> into tensor<i32>
  br ^bb1(%reshaped0 : tensor<i32>)

^bb1(%2: tensor<i32>):  // 2 preds: ^bb0, ^bb2
  %3 = linalg.init_tensor [] : tensor<i1>
  %4 = linalg.generic #attrs
    ins(%2, %reshaped1 : tensor<i32>, tensor<i32>)
    outs(%3 : tensor<i1>) {
    ^bb0(%arg0: i32, %arg1: i32, %arg2: i1):  // no predecessors
      %8 = cmpi slt, %arg0, %arg1 : i32
      linalg.yield %8 : i1
  } -> tensor<i1>
  %5 = tensor.extract %4[] : tensor<i1>
  cond_br %5, ^bb2(%2 : tensor<i32>), ^bb3(%2 : tensor<i32>)

^bb2(%6: tensor<i32>):  // pred: ^bb1
  %7 = linalg.init_tensor [] : tensor<i32>
  %8 = linalg.generic #attrs
    ins(%6, %6 : tensor<i32>, tensor<i32>)
    outs(%7 : tensor<i32>) {
    ^bb0(%arg0: i32, %arg1: i32, %arg2: i32):  // no predecessors
      %9 = addi %arg0, %arg1 : i32
      linalg.yield %9 : i32
  } -> tensor<i32>
  br ^bb3(%8 : tensor<i32>)

^bb3(%10: tensor<i32>):  // pred: ^bb1
  br ^bb4(%10 : tensor<i32>)

^bb4(%11: tensor<i32>):  // pred: ^bb1
  return %11 : tensor<i32>
}

// CHECK-LABEL:  func @main()
// CHECK-NEXT:     constant 0
// CHECK-NEXT:     constant 10
// CHECK-NEXT:     br ^[[bb1:.*]](%{{.*}}: i32)
// CHECK-NEXT:   ^[[bb1]](%{{.*}}: i32):
// CHECK-NEXT:     cmpi slt, %{{.*}}, %{{.*}}
// CHECK-NEXT:     cond_br %{{.*}}, ^[[bb2:.*]](%{{.*}} : i32), ^bb3(%{{.*}} : i32)
// CHECK-NEXT:   ^[[bb2]](%{{.*}}: i32)
// CHECK-NEXT:     addi %{{.*}}, %{{.*}}
// CHECK-NEXT:     br ^[[bb3:.*]](%{{.*}} : i32)
// CHECK-NEXT:   ^[[bb3]](%{{.*}}: i32)
// CHECK-NEXT:     br ^[[bb4:.*]](%{{.*}} : i32)
// CHECK-NEXT:   ^[[bb4]](%{{.*}}: i32)
// CHECK-NEXT:     tensor.from_elements %{{.*}} : tensor<1xi32>
// CHECK-NEXT:     linalg.tensor_collapse_shape %{{.*}} [] : tensor<1xi32> into tensor<i32>
// CHECK-NEXT:     return %{{.*}}
// CHECK-NEXT:   }

// -----

#map0 = affine_map<() -> ()>

#attrs = {
  indexing_maps = [#map0, #map0, #map0],
  iterator_types = []
}

func @main() -> (tensor<i32>) attributes {} {
  %c0 = constant 0 : i32
  %0 = tensor.from_elements %c0 : tensor<1xi32>
  %reshaped0 = linalg.tensor_collapse_shape %0 [] : tensor<1xi32> into tensor<i32>
  %c10 = constant 10 : i32
  %1 = tensor.from_elements %c10 : tensor<1xi32>
  %reshaped1 = linalg.tensor_collapse_shape %1 [] : tensor<1xi32> into tensor<i32>
  br ^bb1(%reshaped0 : tensor<i32>)

^bb1(%2: tensor<i32>):  // 2 preds: ^bb0, ^bb2
  %3 = linalg.init_tensor [] : tensor<i1>
  %4 = linalg.generic #attrs
    ins(%2, %reshaped1 : tensor<i32>, tensor<i32>)
    outs(%3 : tensor<i1>) {
    ^bb0(%arg0: i32, %arg1: i32, %arg2: i1):  // no predecessors
      %8 = cmpi slt, %arg0, %arg1 : i32
      linalg.yield %8 : i1
  } -> tensor<i1>
  %5 = tensor.extract %4[] : tensor<i1>
  // This cond_br intentionally has bb2 as it's target for both branches. This
  // is to make sure that the "forward phase" of the cost-model correctly adds
  // the users of a block argument (in this case bb2's argument) to the work
  // list.
  cond_br %5, ^bb2(%2 : tensor<i32>), ^bb2(%2 : tensor<i32>)

^bb2(%6: tensor<i32>):  // pred: ^bb1
  %12 = tensor.from_elements %c10 : tensor<1xi32>
  %reshaped12 = linalg.tensor_collapse_shape %12 [] : tensor<1xi32> into tensor<i32>
  %7 = linalg.init_tensor [] : tensor<i32>
  %8 = linalg.generic #attrs
    ins(%6, %reshaped12 : tensor<i32>, tensor<i32>)
    outs(%7 : tensor<i32>) {
    ^bb0(%arg0: i32, %arg1: i32, %arg2: i32):  // no predecessors
      %9 = addi %arg0, %arg1 : i32
      linalg.yield %9 : i32
  } -> tensor<i32>
  br ^bb3(%8 : tensor<i32>)

^bb3(%10: tensor<i32>):  // pred: ^bb1
  return %10 : tensor<i32>
}

// CHECK-LABEL:  func @main()
// CHECK-NEXT:     constant 0
// CHECK-NEXT:     constant 10
// CHECK-NEXT:     br ^[[bb1:.*]](%{{.*}}: i32)
// CHECK-NEXT:   ^[[bb1]](%{{.*}}: i32):
// CHECK-NEXT:     cmpi slt, %{{.*}}, %{{.*}}
// CHECK-NEXT:     cond_br %{{.*}}, ^[[bb2:.*]](%{{.*}} : i32), ^bb2(%{{.*}} : i32)
// CHECK-NEXT:   ^[[bb2]](%{{.*}}: i32)
// CHECK-NEXT:     addi %{{.*}}, %{{.*}}
// CHECK-NEXT:     br ^[[bb3:.*]](%{{.*}} : i32)
// CHECK-NEXT:   ^[[bb3]](%{{.*}}: i32)
// CHECK-NEXT:     tensor.from_elements %{{.*}} : tensor<1xi32>
// CHECK-NEXT:     linalg.tensor_collapse_shape %{{.*}} [] : tensor<1xi32> into tensor<i32>
// CHECK-NEXT:     return %{{.*}}
// CHECK-NEXT:   }