File: detensorize_while_failure.mlir

package info (click to toggle)
llvm-toolchain-13 1%3A13.0.1-11
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 1,418,840 kB
  • sloc: cpp: 5,290,826; ansic: 996,570; asm: 544,593; python: 188,212; objc: 72,027; lisp: 30,291; f90: 25,395; sh: 24,898; javascript: 9,780; pascal: 9,398; perl: 7,484; ml: 5,432; awk: 3,523; makefile: 2,913; xml: 953; cs: 573; fortran: 539
file content (111 lines) | stat: -rw-r--r-- 4,581 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
// RUN: mlir-opt %s -linalg-detensorize=aggressive-mode | FileCheck %s -check-prefix=DET-ALL
// RUN: mlir-opt %s -linalg-detensorize | FileCheck %s -check-prefix=DET-CF

#map0 = affine_map<() -> ()>
#map1 = affine_map<(i) -> ()>
#map2 = affine_map<(i) -> (i)>

#attrs = {
  indexing_maps = [#map0, #map0, #map0],
  iterator_types = []
}

#sum_reduction_attrs = {
  indexing_maps = [#map2, #map1],
  iterator_types = ["reduction"]
}


#broadcast_attrs = {
  indexing_maps = [#map1, #map2],
  iterator_types = ["parallel"]
}

func @main(%farg0: tensor<10xi32>, %farg1: tensor<i32>) -> tensor<i32> attributes {} {
  br ^bb1(%farg0 : tensor<10xi32>)

^bb1(%0: tensor<10xi32>):  // 2 preds: ^bb0, ^bb2
  %1 = linalg.init_tensor [] : tensor<i32>
  %2 = linalg.generic #sum_reduction_attrs
    ins(%0: tensor<10xi32>)
    outs(%1: tensor<i32>) {
      ^bb(%a: i32, %x: i32):
        %b = addi %x, %a : i32
        linalg.yield %b : i32
  } -> tensor<i32>

  %3 = linalg.init_tensor [] : tensor<i1>
  %4 = linalg.generic #attrs
    ins(%2, %farg1 : tensor<i32>, tensor<i32>)
    outs(%3 : tensor<i1>) {
    ^bb0(%arg0: i32, %arg1: i32, %arg2: i1):  // no predecessors
      %8 = cmpi slt, %arg0, %arg1 : i32
      linalg.yield %8 : i1
  } -> tensor<i1>
  %5 = tensor.extract %4[] : tensor<i1>
  cond_br %5, ^bb2(%2 : tensor<i32>), ^bb3(%2 : tensor<i32>)

^bb2(%6: tensor<i32>):  // pred: ^bb1
  %7 = linalg.init_tensor [10] : tensor<10xi32>
  %9 = linalg.generic #broadcast_attrs
       ins(%6: tensor<i32>)
      outs(%7: tensor<10xi32>) {
    ^bb(%a: i32, %b: i32) :
      linalg.yield %a : i32
  } -> tensor<10xi32>

  br ^bb1(%9 : tensor<10xi32>)

^bb3(%10: tensor<i32>):  // pred: ^bb1
  return %10 : tensor<i32>
}

// Test aggresively detensoring all detensorable ops.
//
// DET-ALL-LABEL: func @main
// DET-ALL-SAME:    (%{{.*}}: tensor<10xi32>, %{{.*}}: tensor<i32>)
// DET-ALL:         br ^[[bb1:.*]](%{{.*}} : tensor<10xi32>)
// DET-ALL:       ^[[bb1]](%{{.*}}: tensor<10xi32>)
// DET-ALL:         linalg.init_tensor [] : tensor<i32>
// DET-ALL:         linalg.generic {{{.*}}} ins(%{{.*}} : tensor<10xi32>) outs(%{{.*}} : tensor<i32>) {
// DET-ALL:         ^bb0(%{{.*}}: i32, %{{.*}}: i32):  // no predecessors
// DET-ALL:           %{{.*}} = addi %{{.*}}, %{{.*}}
// DET-ALL:           linalg.yield %{{.*}} : i32
// DET-ALL:         } -> tensor<i32>
// DET-ALL:         tensor.extract %{{.*}}[] : tensor<i32>
// DET-ALL:         tensor.extract %{{.*}}[] : tensor<i32>
// DET-ALL:         cmpi slt, %{{.*}}, %{{.*}} : i32
// DET-ALL:         tensor.extract %{{.*}}[] : tensor<i32>
// DET-ALL:         tensor.extract %{{.*}}[] : tensor<i32>
// DET-ALL:         cond_br %{{.*}}, ^[[bb2:.*]](%{{.*}} : i32), ^[[bb3:.*]](%{{.*}} : i32)
// DET-ALL:       ^[[bb2]](%{{.*}}: i32)
// DET-ALL:         tensor.from_elements %{{.*}} : tensor<1xi32>
// DET-ALL:         linalg.tensor_collapse_shape %{{.*}} [] : tensor<1xi32> into tensor<i32>
// DET-ALL:         linalg.init_tensor [10] : tensor<10xi32>
// DET-ALL:         linalg.generic {{{.*}}} ins(%{{.*}} : tensor<i32>) outs(%{{.*}} : tensor<10xi32>) {
// DET-ALL:         ^bb0(%{{.*}}: i32, %{{.*}}: i32):
// DET-ALL:           linalg.yield %{{.*}} : i32
// DET-ALL:         } -> tensor<10xi32>
// DET-ALL:         br ^[[bb1]](%{{.*}} : tensor<10xi32>)
// DET-ALL:       ^[[bb3]](%{{.*}}: i32)
// DET-ALL:         tensor.from_elements %{{.*}} : tensor<1xi32>
// DET-ALL:         linalg.tensor_collapse_shape %{{.*}} [] : tensor<1xi32> into tensor<i32>
// DET-ALL:         return %{{.*}} : tensor<i32>
// DET-ALL:       }

// Try to detensor pure control-flow. However, that fails since the potential
// detensorable component contains some ops that cannot be detensored.
//
// DET-CF-LABEL: func @main
// DET-CF-SAME:    (%{{.*}}: tensor<10xi32>, %{{.*}}: tensor<i32>)
// DET-CF:         br ^[[bb1:.*]](%{{.*}} : tensor<10xi32>)
// DET-CF:       ^bb1(%{{.*}}: tensor<10xi32>)
// DET-CF:         %{{.*}} = linalg.generic {{{.*}}} ins(%{{.*}} : tensor<10xi32>) outs(%{{.*}} : tensor<i32>) {
// DET-CF:         %{{.*}} = linalg.generic {{{.*}}} ins(%{{.*}}, %{{.*}} : tensor<i32>, tensor<i32>) outs(%{{.*}} : tensor<i1>) {
// DET-CF:         cond_br %{{.*}}, ^bb2(%{{.*}} : tensor<i32>), ^bb3(%{{.*}} : tensor<i32>)
// DET-CF:       ^bb2(%{{.*}}: tensor<i32>)
// DET-CF:         %{{.*}} = linalg.generic {{{.*}}} ins(%{{.*}} : tensor<i32>) outs(%{{.*}} : tensor<10xi32>) {
// DET-CF:         br ^bb1(%{{.*}} : tensor<10xi32>)
// DET-CF:       ^bb3(%{{.*}}: tensor<i32>)
// DET-CF:         return %{{.*}} : tensor<i32>
// DET-CF:       }