File: fusion-elementwise-options.mlir

package info (click to toggle)
llvm-toolchain-13 1%3A13.0.1-11
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 1,418,840 kB
  • sloc: cpp: 5,290,826; ansic: 996,570; asm: 544,593; python: 188,212; objc: 72,027; lisp: 30,291; f90: 25,395; sh: 24,898; javascript: 9,780; pascal: 9,398; perl: 7,484; ml: 5,432; awk: 3,523; makefile: 2,913; xml: 953; cs: 573; fortran: 539
file content (62 lines) | stat: -rw-r--r-- 2,667 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
// RUN: mlir-opt %s -test-linalg-elementwise-fusion-patterns -split-input-file | FileCheck %s

#map0 = affine_map<(d0, d1) -> (d0, d1)>
#binary2Dpointwise = {
  indexing_maps = [#map0, #map0, #map0],
  iterator_types = ["parallel", "parallel"]
}
#ternary2Dpointwise = {
  indexing_maps = [#map0, #map0, #map0, #map0],
  iterator_types = ["parallel", "parallel"]
}
func @test_fusion_limit(
    %arg0 : tensor<?x?xf32>, %arg1 : tensor<?x?xf32>, %arg2 : tensor<?x?xf32>,
    %arg3 : tensor<?x?xf32>, %arg4 : tensor<?x?xf32>, %arg5 : tensor<?x?xf32>)
    -> tensor<?x?xf32> {
  %c0 = constant 0 : index
  %c1 = constant 1 : index
  %d0 = tensor.dim %arg0, %c0 : tensor<?x?xf32>
  %d1 = tensor.dim %arg0, %c1 : tensor<?x?xf32>
  %init = linalg.init_tensor [%d0, %d1] : tensor<?x?xf32>
  %0 = linalg.generic #binary2Dpointwise
      ins(%arg0, %arg1 : tensor<?x?xf32>, tensor<?x?xf32>)
      outs(%init : tensor<?x?xf32>) {
    ^bb0(%arg6 : f32, %arg7 : f32, %arg8 : f32):
       %1 = mulf %arg6, %arg7 : f32
       linalg.yield %1 : f32
    } -> tensor<?x?xf32>
  %2 = linalg.generic #binary2Dpointwise
      ins(%arg2, %arg3 : tensor<?x?xf32>, tensor<?x?xf32>)
      outs(%init : tensor<?x?xf32>) {
    ^bb0(%arg6 : f32, %arg7 : f32, %arg8 : f32):
       %3 = mulf %arg6, %arg7 : f32
       linalg.yield %3 : f32
    } -> tensor<?x?xf32>
  %4 = linalg.generic #binary2Dpointwise
      ins(%arg4, %arg5 : tensor<?x?xf32>, tensor<?x?xf32>)
      outs(%init : tensor<?x?xf32>) {
    ^bb0(%arg6 : f32, %arg7 : f32, %arg8 : f32):
       %5 = mulf %arg6, %arg7 : f32
       linalg.yield %5 : f32
    } -> tensor<?x?xf32>
  %6 = linalg.generic #ternary2Dpointwise
      ins(%0, %2, %4 : tensor<?x?xf32>, tensor<?x?xf32>, tensor<?x?xf32>)
      outs(%init : tensor<?x?xf32>) {
    ^bb0(%arg6 : f32, %arg7 : f32, %arg8 : f32, %arg9 : f32):
       %7 = addf %arg6, %arg7 : f32
       %8 = addf %7, %arg8 : f32
       linalg.yield %8 : f32
    } -> tensor<?x?xf32>
  return %6 : tensor<?x?xf32>
}
// CHECK-LABEL: func @test_fusion_limit
//  CHECK-SAME:   %[[ARG0:[a-zA-z0-9_]+]]: tensor<?x?xf32>
//  CHECK-SAME:   %[[ARG1:[a-zA-z0-9_]+]]: tensor<?x?xf32>
//  CHECK-SAME:   %[[ARG2:[a-zA-z0-9_]+]]: tensor<?x?xf32>
//  CHECK-SAME:   %[[ARG3:[a-zA-z0-9_]+]]: tensor<?x?xf32>
//  CHECK-SAME:   %[[ARG4:[a-zA-z0-9_]+]]: tensor<?x?xf32>
//  CHECK-SAME:   %[[ARG5:[a-zA-z0-9_]+]]: tensor<?x?xf32>
//       CHECK:   %[[OP1:.+]] = linalg.generic {{.+}} ins(%[[ARG2]], %[[ARG3]]
//       CHECK:   %[[OP2:.+]] = linalg.generic {{.+}} ins(%[[ARG4]], %[[ARG5]]
//       CHECK:   %[[OP3:.+]] = linalg.generic {{.+}} ins(%[[ARG0]], %[[ARG1]], %[[OP1]], %[[OP2]]
//       CHECK:   return %[[OP3]]