File: test-elementwise.mlir

package info (click to toggle)
llvm-toolchain-13 1%3A13.0.1-11
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 1,418,840 kB
  • sloc: cpp: 5,290,826; ansic: 996,570; asm: 544,593; python: 188,212; objc: 72,027; lisp: 30,291; f90: 25,395; sh: 24,898; javascript: 9,780; pascal: 9,398; perl: 7,484; ml: 5,432; awk: 3,523; makefile: 2,913; xml: 953; cs: 573; fortran: 539
file content (19 lines) | stat: -rw-r--r-- 905 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
// RUN: mlir-opt %s -convert-elementwise-to-linalg -std-bufferize -tensor-constant-bufferize -linalg-bufferize -tensor-bufferize -func-bufferize -convert-linalg-to-loops -convert-linalg-to-llvm --convert-memref-to-llvm -convert-std-to-llvm | \
// RUN: mlir-cpu-runner -e main -entry-point-result=void \
// RUN:   -shared-libs=%mlir_integration_test_dir/libmlir_runner_utils%shlibext \
// RUN: | FileCheck %s

func @main() {
  %a = constant dense<[1.0, 2.0, 3.0]> : tensor<3xf32>
  %b = constant dense<[10.0, 20.0, 30.0]> : tensor<3xf32>

  %addf = addf %a, %b : tensor<3xf32>
  %addf_unranked = tensor.cast %addf : tensor<3xf32> to tensor<*xf32>
  call @print_memref_f32(%addf_unranked) : (tensor<*xf32>) -> ()
  // CHECK: Unranked Memref base@ = {{.*}} rank = 1 offset = 0 sizes = [3] strides = [1] data =
  // CHECK-NEXT: [11,  22,  33]

  return
}

func private @print_memref_f32(%ptr : tensor<*xf32>)