File: test-padtensor.mlir

package info (click to toggle)
llvm-toolchain-13 1%3A13.0.1-11
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 1,418,840 kB
  • sloc: cpp: 5,290,826; ansic: 996,570; asm: 544,593; python: 188,212; objc: 72,027; lisp: 30,291; f90: 25,395; sh: 24,898; javascript: 9,780; pascal: 9,398; perl: 7,484; ml: 5,432; awk: 3,523; makefile: 2,913; xml: 953; cs: 573; fortran: 539
file content (33 lines) | stat: -rw-r--r-- 1,505 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
// RUN: mlir-opt %s -linalg-bufferize -std-bufferize \
// RUN: -tensor-constant-bufferize -tensor-bufferize -func-bufferize \
// RUN: -finalizing-bufferize \
// RUN: -convert-linalg-to-loops -convert-scf-to-std -convert-linalg-to-llvm -convert-memref-to-llvm -convert-std-to-llvm | \
// RUN: mlir-cpu-runner -e main -entry-point-result=void \
// RUN:   -shared-libs=%mlir_integration_test_dir/libmlir_runner_utils%shlibext \
// RUN: | FileCheck %s


func @main() {
  %const = constant dense<[[[1.0, 2.0, 3.0], [2.0, 3.0, 4.0]]]> : tensor<1x2x3xf32>
  %dynamic = tensor.cast %const: tensor<1x2x3xf32> to tensor<1x?x3xf32>
  %offset = constant 2 : index
  %cst = constant 2.3 : f32
  %c0 = constant 0 : index
  %out = linalg.pad_tensor %dynamic low[%c0, %offset, %c0] high[%c0, %c0, %offset]  {
  ^bb0(%gen_arg1: index, %gen_arg2: index, %gen_arg3: index):  // no predecessors
    linalg.yield %cst : f32
  } : tensor<1x?x3xf32> to tensor<1x?x?xf32>
  %unranked = tensor.cast %out: tensor<1x?x?xf32> to tensor<*xf32>
  call @print_memref_f32(%unranked) : (tensor<*xf32>) -> ()

  //      CHECK: Unranked Memref base@ = {{0x[-9a-f]*}}
  // CHECK-SAME: rank = 3 offset = 0 sizes = [1, 4, 5] strides = [20, 5, 1] data =
  // CHECK-NEXT{LITERAL}: [[[2.3,    2.3,    2.3,    2.3,    2.3],
  // CHECK-NEXT: [2.3,    2.3,    2.3,    2.3,    2.3],
  // CHECK-NEXT: [1,    2,    3,    2.3,    2.3],
  // CHECK-NEXT: [2,    3,    4,    2.3,    2.3]]]

  return
}

func private @print_memref_f32(%ptr : tensor<*xf32>)