File: dense_output.mlir

package info (click to toggle)
llvm-toolchain-13 1%3A13.0.1-11
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 1,418,840 kB
  • sloc: cpp: 5,290,826; ansic: 996,570; asm: 544,593; python: 188,212; objc: 72,027; lisp: 30,291; f90: 25,395; sh: 24,898; javascript: 9,780; pascal: 9,398; perl: 7,484; ml: 5,432; awk: 3,523; makefile: 2,913; xml: 953; cs: 573; fortran: 539
file content (100 lines) | stat: -rw-r--r-- 3,529 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
// RUN: mlir-opt %s \
// RUN:   --sparsification --sparse-tensor-conversion \
// RUN:   --convert-vector-to-scf --convert-scf-to-std \
// RUN:   --func-bufferize --tensor-constant-bufferize --tensor-bufferize \
// RUN:   --std-bufferize --finalizing-bufferize  \
// RUN:   --convert-vector-to-llvm --convert-memref-to-llvm --convert-std-to-llvm | \
// RUN: TENSOR0="%mlir_integration_test_dir/data/test.mtx" \
// RUN: TENSOR1="%mlir_integration_test_dir/data/zero.mtx" \
// RUN: mlir-cpu-runner \
// RUN:  -e entry -entry-point-result=void  \
// RUN:  -shared-libs=%mlir_integration_test_dir/libmlir_c_runner_utils%shlibext | \
// RUN: FileCheck %s

!Filename = type !llvm.ptr<i8>

#DenseMatrix = #sparse_tensor.encoding<{
  dimLevelType = [ "dense", "dense" ],
  dimOrdering = affine_map<(i,j) -> (i,j)>
}>

#SparseMatrix = #sparse_tensor.encoding<{
  dimLevelType = [ "dense", "compressed" ],
  dimOrdering = affine_map<(i,j) -> (i,j)>
}>

#trait_assign = {
  indexing_maps = [
    affine_map<(i,j) -> (i,j)>, // A
    affine_map<(i,j) -> (i,j)>  // X (out)
  ],
  iterator_types = ["parallel", "parallel"],
  doc = "X(i,j) = A(i,j)"
}

//
// Integration test that demonstrates assigning a sparse tensor
// to an all-dense annotated "sparse" tensor, which effectively
// result in inserting the nonzero elements into a linearized array.
//
// Note that there is a subtle difference between a non-annotated
// tensor and an all-dense annotated tensor. Both tensors are assumed
// dense, but the former remains an n-dimensional memref whereas the
// latter is linearized into a one-dimensional memref that is further
// lowered into a storage scheme that is backed by the runtime support
// library.
module {
  //
  // A kernel that assigns elements from A to an initially zero X.
  //
  func @dense_output(%arga: tensor<?x?xf64, #SparseMatrix>,
                     %argx: tensor<?x?xf64, #DenseMatrix>
		     {linalg.inplaceable = true})
       -> tensor<?x?xf64, #DenseMatrix> {
    %0 = linalg.generic #trait_assign
       ins(%arga: tensor<?x?xf64, #SparseMatrix>)
      outs(%argx: tensor<?x?xf64, #DenseMatrix>) {
      ^bb(%a: f64, %x: f64):
        linalg.yield %a : f64
    } -> tensor<?x?xf64, #DenseMatrix>
    return %0 : tensor<?x?xf64, #DenseMatrix>
  }

  func private @getTensorFilename(index) -> (!Filename)

  //
  // Main driver that reads matrix from file and calls the kernel.
  //
  func @entry() {
    %d0 = constant 0.0 : f64
    %c0 = constant 0 : index
    %c1 = constant 1 : index

    // Read the sparse matrix from file, construct sparse storage.
    %fileName = call @getTensorFilename(%c0) : (index) -> (!Filename)
    %a = sparse_tensor.new %fileName
      : !llvm.ptr<i8> to tensor<?x?xf64, #SparseMatrix>

    // Initialize all-dense annotated "sparse" matrix to all zeros.
    %fileZero = call @getTensorFilename(%c1) : (index) -> (!Filename)
    %x = sparse_tensor.new %fileZero
      : !llvm.ptr<i8> to tensor<?x?xf64, #DenseMatrix>

    // Call the kernel.
    %0 = call @dense_output(%a, %x)
      : (tensor<?x?xf64, #SparseMatrix>,
         tensor<?x?xf64, #DenseMatrix>) -> tensor<?x?xf64, #DenseMatrix>

    //
    // Print the linearized 5x5 result for verification.
    //
    // CHECK: ( 1, 0, 0, 1.4, 0, 0, 2, 0, 0, 2.5, 0, 0, 3, 0, 0, 4.1, 0, 0, 4, 0, 0, 5.2, 0, 0, 5 )
    //
    %m = sparse_tensor.values %0
      : tensor<?x?xf64, #DenseMatrix> to memref<?xf64>
    %v = vector.load %m[%c0] : memref<?xf64>, vector<25xf64>
    vector.print %v : vector<25xf64>

    return
  }
}