1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
|
// RUN: mlir-opt %s \
// RUN: --sparsification --sparse-tensor-conversion \
// RUN: --convert-vector-to-scf --convert-scf-to-std \
// RUN: --func-bufferize --tensor-constant-bufferize --tensor-bufferize \
// RUN: --std-bufferize --finalizing-bufferize \
// RUN: --convert-vector-to-llvm --convert-memref-to-llvm --convert-std-to-llvm | \
// RUN: TENSOR0="%mlir_integration_test_dir/data/mttkrp_b.tns" \
// RUN: mlir-cpu-runner \
// RUN: -e entry -entry-point-result=void \
// RUN: -shared-libs=%mlir_integration_test_dir/libmlir_c_runner_utils%shlibext | \
// RUN: FileCheck %s
!Filename = type !llvm.ptr<i8>
#SparseMatrix = #sparse_tensor.encoding<{
dimLevelType = [ "compressed", "compressed", "compressed" ]
}>
#mttkrp = {
indexing_maps = [
affine_map<(i,j,k,l) -> (i,k,l)>, // B
affine_map<(i,j,k,l) -> (k,j)>, // C
affine_map<(i,j,k,l) -> (l,j)>, // D
affine_map<(i,j,k,l) -> (i,j)> // A (out)
],
iterator_types = ["parallel", "parallel", "reduction", "reduction"],
doc = "A(i,j) += B(i,k,l) * D(l,j) * C(k,j)"
}
//
// Integration test that lowers a kernel annotated as sparse to
// actual sparse code, initializes a matching sparse storage scheme
// from file, and runs the resulting code with the JIT compiler.
//
module {
//
// Computes Matricized Tensor Times Khatri-Rao Product (MTTKRP) kernel. See
// http://tensor-compiler.org/docs/data_analytics/index.html.
//
func @kernel_mttkrp(%argb: tensor<?x?x?xf64, #SparseMatrix>,
%argc: tensor<?x?xf64>,
%argd: tensor<?x?xf64>,
%arga: tensor<?x?xf64>) -> tensor<?x?xf64> {
%0 = linalg.generic #mttkrp
ins(%argb, %argc, %argd:
tensor<?x?x?xf64, #SparseMatrix>, tensor<?x?xf64>, tensor<?x?xf64>)
outs(%arga: tensor<?x?xf64>) {
^bb(%b: f64, %c: f64, %d: f64, %a: f64):
%0 = mulf %b, %c : f64
%1 = mulf %d, %0 : f64
%2 = addf %a, %1 : f64
linalg.yield %2 : f64
} -> tensor<?x?xf64>
return %0 : tensor<?x?xf64>
}
func private @getTensorFilename(index) -> (!Filename)
//
// Main driver that reads matrix from file and calls the sparse kernel.
//
func @entry() {
%i0 = constant 0. : f64
%c0 = constant 0 : index
%c1 = constant 1 : index
%c2 = constant 2 : index
%c3 = constant 3 : index
%c4 = constant 4 : index
%c5 = constant 5 : index
%c256 = constant 256 : index
// Read the sparse B input from a file.
%fileName = call @getTensorFilename(%c0) : (index) -> (!Filename)
%b = sparse_tensor.new %fileName
: !llvm.ptr<i8> to tensor<?x?x?xf64, #SparseMatrix>
// Initialize dense C and D inputs and dense output A.
%cdata = memref.alloc(%c3, %c5) : memref<?x?xf64>
scf.for %i = %c0 to %c3 step %c1 {
scf.for %j = %c0 to %c5 step %c1 {
%k0 = muli %i, %c5 : index
%k1 = addi %k0, %j : index
%k2 = index_cast %k1 : index to i32
%k = sitofp %k2 : i32 to f64
memref.store %k, %cdata[%i, %j] : memref<?x?xf64>
}
}
%c = memref.tensor_load %cdata : memref<?x?xf64>
%ddata = memref.alloc(%c4, %c5) : memref<?x?xf64>
scf.for %i = %c0 to %c4 step %c1 {
scf.for %j = %c0 to %c5 step %c1 {
%k0 = muli %i, %c5 : index
%k1 = addi %k0, %j : index
%k2 = index_cast %k1 : index to i32
%k = sitofp %k2 : i32 to f64
memref.store %k, %ddata[%i, %j] : memref<?x?xf64>
}
}
%d = memref.tensor_load %ddata : memref<?x?xf64>
%adata = memref.alloc(%c2, %c5) : memref<?x?xf64>
scf.for %i = %c0 to %c2 step %c1 {
scf.for %j = %c0 to %c5 step %c1 {
memref.store %i0, %adata[%i, %j] : memref<?x?xf64>
}
}
%a = memref.tensor_load %adata : memref<?x?xf64>
// Call kernel.
%0 = call @kernel_mttkrp(%b, %c, %d, %a)
: (tensor<?x?x?xf64, #SparseMatrix>,
tensor<?x?xf64>, tensor<?x?xf64>, tensor<?x?xf64>) -> tensor<?x?xf64>
// Print the result for verification.
//
// CHECK: ( ( 16075, 21930, 28505, 35800, 43815 ),
// CHECK: ( 10000, 14225, 19180, 24865, 31280 ) )
//
%m = memref.buffer_cast %0 : memref<?x?xf64>
%v = vector.transfer_read %m[%c0, %c0], %i0
: memref<?x?xf64>, vector<2x5xf64>
vector.print %v : vector<2x5xf64>
// Release the resources.
memref.dealloc %adata : memref<?x?xf64>
memref.dealloc %cdata : memref<?x?xf64>
memref.dealloc %ddata : memref<?x?xf64>
return
}
}
|