File: sparse_mttkrp.mlir

package info (click to toggle)
llvm-toolchain-13 1%3A13.0.1-11
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 1,418,840 kB
  • sloc: cpp: 5,290,826; ansic: 996,570; asm: 544,593; python: 188,212; objc: 72,027; lisp: 30,291; f90: 25,395; sh: 24,898; javascript: 9,780; pascal: 9,398; perl: 7,484; ml: 5,432; awk: 3,523; makefile: 2,913; xml: 953; cs: 573; fortran: 539
file content (132 lines) | stat: -rw-r--r-- 4,533 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
// RUN: mlir-opt %s \
// RUN:   --sparsification --sparse-tensor-conversion \
// RUN:   --convert-vector-to-scf --convert-scf-to-std \
// RUN:   --func-bufferize --tensor-constant-bufferize --tensor-bufferize \
// RUN:   --std-bufferize --finalizing-bufferize  \
// RUN:   --convert-vector-to-llvm --convert-memref-to-llvm --convert-std-to-llvm | \
// RUN: TENSOR0="%mlir_integration_test_dir/data/mttkrp_b.tns" \
// RUN: mlir-cpu-runner \
// RUN:  -e entry -entry-point-result=void  \
// RUN:  -shared-libs=%mlir_integration_test_dir/libmlir_c_runner_utils%shlibext | \
// RUN: FileCheck %s

!Filename = type !llvm.ptr<i8>

#SparseMatrix = #sparse_tensor.encoding<{
  dimLevelType = [ "compressed", "compressed", "compressed" ]
}>

#mttkrp = {
  indexing_maps = [
    affine_map<(i,j,k,l) -> (i,k,l)>, // B
    affine_map<(i,j,k,l) -> (k,j)>,   // C
    affine_map<(i,j,k,l) -> (l,j)>,   // D
    affine_map<(i,j,k,l) -> (i,j)>    // A (out)
  ],
  iterator_types = ["parallel", "parallel", "reduction", "reduction"],
  doc = "A(i,j) += B(i,k,l) * D(l,j) * C(k,j)"
}

//
// Integration test that lowers a kernel annotated as sparse to
// actual sparse code, initializes a matching sparse storage scheme
// from file, and runs the resulting code with the JIT compiler.
//
module {
  //
  // Computes Matricized Tensor Times Khatri-Rao Product (MTTKRP) kernel. See
  // http://tensor-compiler.org/docs/data_analytics/index.html.
  //
  func @kernel_mttkrp(%argb: tensor<?x?x?xf64, #SparseMatrix>,
                      %argc: tensor<?x?xf64>,
                      %argd: tensor<?x?xf64>,
                      %arga: tensor<?x?xf64>) -> tensor<?x?xf64> {
    %0 = linalg.generic #mttkrp
      ins(%argb, %argc, %argd:
            tensor<?x?x?xf64, #SparseMatrix>, tensor<?x?xf64>, tensor<?x?xf64>)
      outs(%arga: tensor<?x?xf64>) {
      ^bb(%b: f64, %c: f64, %d: f64, %a: f64):
        %0 = mulf %b, %c : f64
        %1 = mulf %d, %0 : f64
        %2 = addf %a, %1 : f64
        linalg.yield %2 : f64
    } -> tensor<?x?xf64>
    return %0 : tensor<?x?xf64>
  }

  func private @getTensorFilename(index) -> (!Filename)

  //
  // Main driver that reads matrix from file and calls the sparse kernel.
  //
  func @entry() {
    %i0 = constant 0. : f64
    %c0 = constant 0 : index
    %c1 = constant 1 : index
    %c2 = constant 2 : index
    %c3 = constant 3 : index
    %c4 = constant 4 : index
    %c5 = constant 5 : index
    %c256 = constant 256 : index

    // Read the sparse B input from a file.
    %fileName = call @getTensorFilename(%c0) : (index) -> (!Filename)
    %b = sparse_tensor.new %fileName
          : !llvm.ptr<i8> to tensor<?x?x?xf64, #SparseMatrix>

    // Initialize dense C and D inputs and dense output A.
    %cdata = memref.alloc(%c3, %c5) : memref<?x?xf64>
    scf.for %i = %c0 to %c3 step %c1 {
      scf.for %j = %c0 to %c5 step %c1 {
        %k0 = muli %i, %c5 : index
        %k1 = addi %k0, %j : index
        %k2 = index_cast %k1 : index to i32
        %k = sitofp %k2 : i32 to f64
        memref.store %k, %cdata[%i, %j] : memref<?x?xf64>
      }
    }
    %c = memref.tensor_load %cdata : memref<?x?xf64>

    %ddata = memref.alloc(%c4, %c5) : memref<?x?xf64>
    scf.for %i = %c0 to %c4 step %c1 {
      scf.for %j = %c0 to %c5 step %c1 {
        %k0 = muli %i, %c5 : index
        %k1 = addi %k0, %j : index
        %k2 = index_cast %k1 : index to i32
        %k = sitofp %k2 : i32 to f64
        memref.store %k, %ddata[%i, %j] : memref<?x?xf64>
      }
    }
    %d = memref.tensor_load %ddata : memref<?x?xf64>

    %adata = memref.alloc(%c2, %c5) : memref<?x?xf64>
    scf.for %i = %c0 to %c2 step %c1 {
      scf.for %j = %c0 to %c5 step %c1 {
        memref.store %i0, %adata[%i, %j] : memref<?x?xf64>
      }
    }
    %a = memref.tensor_load %adata : memref<?x?xf64>

    // Call kernel.
    %0 = call @kernel_mttkrp(%b, %c, %d, %a)
      : (tensor<?x?x?xf64, #SparseMatrix>,
        tensor<?x?xf64>, tensor<?x?xf64>, tensor<?x?xf64>) -> tensor<?x?xf64>

    // Print the result for verification.
    //
    // CHECK: ( ( 16075, 21930, 28505, 35800, 43815 ),
    // CHECK:   ( 10000, 14225, 19180, 24865, 31280 ) )
    //
    %m = memref.buffer_cast %0 : memref<?x?xf64>
    %v = vector.transfer_read %m[%c0, %c0], %i0
          : memref<?x?xf64>, vector<2x5xf64>
    vector.print %v : vector<2x5xf64>

    // Release the resources.
    memref.dealloc %adata : memref<?x?xf64>
    memref.dealloc %cdata : memref<?x?xf64>
    memref.dealloc %ddata : memref<?x?xf64>

    return
  }
}