File: sparse_sum.mlir

package info (click to toggle)
llvm-toolchain-13 1%3A13.0.1-11
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 1,418,840 kB
  • sloc: cpp: 5,290,826; ansic: 996,570; asm: 544,593; python: 188,212; objc: 72,027; lisp: 30,291; f90: 25,395; sh: 24,898; javascript: 9,780; pascal: 9,398; perl: 7,484; ml: 5,432; awk: 3,523; makefile: 2,913; xml: 953; cs: 573; fortran: 539
file content (85 lines) | stat: -rw-r--r-- 2,661 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
// RUN: mlir-opt %s \
// RUN:   --sparsification --sparse-tensor-conversion \
// RUN:   --convert-vector-to-scf --convert-scf-to-std \
// RUN:   --func-bufferize --tensor-constant-bufferize --tensor-bufferize \
// RUN:   --std-bufferize --finalizing-bufferize  \
// RUN:   --convert-vector-to-llvm --convert-memref-to-llvm --convert-std-to-llvm | \
// RUN: TENSOR0="%mlir_integration_test_dir/data/test.mtx" \
// RUN: mlir-cpu-runner \
// RUN:  -e entry -entry-point-result=void  \
// RUN:  -shared-libs=%mlir_integration_test_dir/libmlir_c_runner_utils%shlibext | \
// RUN: FileCheck %s

!Filename = type !llvm.ptr<i8>

#SparseMatrix = #sparse_tensor.encoding<{
  dimLevelType = [ "compressed", "compressed" ]
}>

#trait_sum_reduce = {
  indexing_maps = [
    affine_map<(i,j) -> (i,j)>, // A
    affine_map<(i,j) -> ()>     // x (out)
  ],
  iterator_types = ["reduction", "reduction"],
  doc = "x += A(i,j)"
}

//
// Integration test that lowers a kernel annotated as sparse to
// actual sparse code, initializes a matching sparse storage scheme
// from file, and runs the resulting code with the JIT compiler.
//
module {
  //
  // A kernel that sum-reduces a matrix to a single scalar.
  //
  func @kernel_sum_reduce(%arga: tensor<?x?xf64, #SparseMatrix>,
                          %argx: tensor<f64>) -> tensor<f64> {
    %0 = linalg.generic #trait_sum_reduce
      ins(%arga: tensor<?x?xf64, #SparseMatrix>)
      outs(%argx: tensor<f64>) {
      ^bb(%a: f64, %x: f64):
        %0 = addf %x, %a : f64
        linalg.yield %0 : f64
    } -> tensor<f64>
    return %0 : tensor<f64>
  }

  func private @getTensorFilename(index) -> (!Filename)

  //
  // Main driver that reads matrix from file and calls the sparse kernel.
  //
  func @entry() {
    %d0 = constant 0.0 : f64
    %c0 = constant 0 : index

    // Setup memory for a single reduction scalar,
    // initialized to zero.
    %xdata = memref.alloc() : memref<f64>
    memref.store %d0, %xdata[] : memref<f64>
    %x = memref.tensor_load %xdata : memref<f64>

    // Read the sparse matrix from file, construct sparse storage.
    %fileName = call @getTensorFilename(%c0) : (index) -> (!Filename)
    %a = sparse_tensor.new %fileName : !llvm.ptr<i8> to tensor<?x?xf64, #SparseMatrix>

    // Call the kernel.
    %0 = call @kernel_sum_reduce(%a, %x)
      : (tensor<?x?xf64, #SparseMatrix>, tensor<f64>) -> tensor<f64>

    // Print the result for verification.
    //
    // CHECK: 28.2
    //
    %m = memref.buffer_cast %0 : memref<f64>
    %v = memref.load %m[] : memref<f64>
    vector.print %v : f64

    // Release the resources.
    memref.dealloc %xdata : memref<f64>

    return
  }
}