1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590
|
//===- AffineStructuresTest.cpp - Tests for AffineStructures ----*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Analysis/AffineStructures.h"
#include <gmock/gmock.h>
#include <gtest/gtest.h>
#include <numeric>
namespace mlir {
enum class TestFunction { Sample, Empty };
/// If fn is TestFunction::Sample (default):
/// If hasSample is true, check that findIntegerSample returns a valid sample
/// for the FlatAffineConstraints fac.
/// If hasSample is false, check that findIntegerSample returns None.
///
/// If fn is TestFunction::Empty, check that isIntegerEmpty returns the
/// opposite of hasSample.
static void checkSample(bool hasSample, const FlatAffineConstraints &fac,
TestFunction fn = TestFunction::Sample) {
Optional<SmallVector<int64_t, 8>> maybeSample;
switch (fn) {
case TestFunction::Sample:
maybeSample = fac.findIntegerSample();
if (!hasSample) {
EXPECT_FALSE(maybeSample.hasValue());
if (maybeSample.hasValue()) {
for (auto x : *maybeSample)
llvm::errs() << x << ' ';
llvm::errs() << '\n';
}
} else {
ASSERT_TRUE(maybeSample.hasValue());
EXPECT_TRUE(fac.containsPoint(*maybeSample));
}
break;
case TestFunction::Empty:
EXPECT_EQ(!hasSample, fac.isIntegerEmpty());
break;
}
}
/// Construct a FlatAffineConstraints from a set of inequality and
/// equality constraints.
static FlatAffineConstraints
makeFACFromConstraints(unsigned ids, ArrayRef<SmallVector<int64_t, 4>> ineqs,
ArrayRef<SmallVector<int64_t, 4>> eqs,
unsigned syms = 0) {
FlatAffineConstraints fac(ineqs.size(), eqs.size(), ids + 1, ids - syms,
syms);
for (const auto &eq : eqs)
fac.addEquality(eq);
for (const auto &ineq : ineqs)
fac.addInequality(ineq);
return fac;
}
/// Check sampling for all the permutations of the dimensions for the given
/// constraint set. Since the GBR algorithm progresses dimension-wise, different
/// orderings may cause the algorithm to proceed differently. At least some of
///.these permutations should make it past the heuristics and test the
/// implementation of the GBR algorithm itself.
/// Use TestFunction fn to test.
static void checkPermutationsSample(bool hasSample, unsigned nDim,
ArrayRef<SmallVector<int64_t, 4>> ineqs,
ArrayRef<SmallVector<int64_t, 4>> eqs,
TestFunction fn = TestFunction::Sample) {
SmallVector<unsigned, 4> perm(nDim);
std::iota(perm.begin(), perm.end(), 0);
auto permute = [&perm](ArrayRef<int64_t> coeffs) {
SmallVector<int64_t, 4> permuted;
for (unsigned id : perm)
permuted.push_back(coeffs[id]);
permuted.push_back(coeffs.back());
return permuted;
};
do {
SmallVector<SmallVector<int64_t, 4>, 4> permutedIneqs, permutedEqs;
for (const auto &ineq : ineqs)
permutedIneqs.push_back(permute(ineq));
for (const auto &eq : eqs)
permutedEqs.push_back(permute(eq));
checkSample(hasSample,
makeFACFromConstraints(nDim, permutedIneqs, permutedEqs), fn);
} while (std::next_permutation(perm.begin(), perm.end()));
}
TEST(FlatAffineConstraintsTest, FindSampleTest) {
// Bounded sets with only inequalities.
// 0 <= 7x <= 5
checkSample(true, makeFACFromConstraints(1, {{7, 0}, {-7, 5}}, {}));
// 1 <= 5x and 5x <= 4 (no solution).
checkSample(false, makeFACFromConstraints(1, {{5, -1}, {-5, 4}}, {}));
// 1 <= 5x and 5x <= 9 (solution: x = 1).
checkSample(true, makeFACFromConstraints(1, {{5, -1}, {-5, 9}}, {}));
// Bounded sets with equalities.
// x >= 8 and 40 >= y and x = y.
checkSample(
true, makeFACFromConstraints(2, {{1, 0, -8}, {0, -1, 40}}, {{1, -1, 0}}));
// x <= 10 and y <= 10 and 10 <= z and x + 2y = 3z.
// solution: x = y = z = 10.
checkSample(true, makeFACFromConstraints(
3, {{-1, 0, 0, 10}, {0, -1, 0, 10}, {0, 0, 1, -10}},
{{1, 2, -3, 0}}));
// x <= 10 and y <= 10 and 11 <= z and x + 2y = 3z.
// This implies x + 2y >= 33 and x + 2y <= 30, which has no solution.
checkSample(false, makeFACFromConstraints(
3, {{-1, 0, 0, 10}, {0, -1, 0, 10}, {0, 0, 1, -11}},
{{1, 2, -3, 0}}));
// 0 <= r and r <= 3 and 4q + r = 7.
// Solution: q = 1, r = 3.
checkSample(true,
makeFACFromConstraints(2, {{0, 1, 0}, {0, -1, 3}}, {{4, 1, -7}}));
// 4q + r = 7 and r = 0.
// Solution: q = 1, r = 3.
checkSample(false, makeFACFromConstraints(2, {}, {{4, 1, -7}, {0, 1, 0}}));
// The next two sets are large sets that should take a long time to sample
// with a naive branch and bound algorithm but can be sampled efficiently with
// the GBR algorithm.
//
// This is a triangle with vertices at (1/3, 0), (2/3, 0) and (10000, 10000).
checkSample(
true,
makeFACFromConstraints(
2, {{0, 1, 0}, {300000, -299999, -100000}, {-300000, 299998, 200000}},
{}));
// This is a tetrahedron with vertices at
// (1/3, 0, 0), (2/3, 0, 0), (2/3, 0, 10000), and (10000, 10000, 10000).
// The first three points form a triangular base on the xz plane with the
// apex at the fourth point, which is the only integer point.
checkPermutationsSample(
true, 3,
{
{0, 1, 0, 0}, // y >= 0
{0, -1, 1, 0}, // z >= y
{300000, -299998, -1,
-100000}, // -300000x + 299998y + 100000 + z <= 0.
{-150000, 149999, 0, 100000}, // -150000x + 149999y + 100000 >= 0.
},
{});
// Same thing with some spurious extra dimensions equated to constants.
checkSample(true,
makeFACFromConstraints(
5,
{
{0, 1, 0, 1, -1, 0},
{0, -1, 1, -1, 1, 0},
{300000, -299998, -1, -9, 21, -112000},
{-150000, 149999, 0, -15, 47, 68000},
},
{{0, 0, 0, 1, -1, 0}, // p = q.
{0, 0, 0, 1, 1, -2000}})); // p + q = 20000 => p = q = 10000.
// This is a tetrahedron with vertices at
// (1/3, 0, 0), (2/3, 0, 0), (2/3, 0, 100), (100, 100 - 1/3, 100).
checkPermutationsSample(false, 3,
{
{0, 1, 0, 0},
{0, -300, 299, 0},
{300 * 299, -89400, -299, -100 * 299},
{-897, 894, 0, 598},
},
{});
// Two tests involving equalities that are integer empty but not rational
// empty.
// This is a line segment from (0, 1/3) to (100, 100 + 1/3).
checkSample(false, makeFACFromConstraints(
2,
{
{1, 0, 0}, // x >= 0.
{-1, 0, 100} // -x + 100 >= 0, i.e., x <= 100.
},
{
{3, -3, 1} // 3x - 3y + 1 = 0, i.e., y = x + 1/3.
}));
// A thin parallelogram. 0 <= x <= 100 and x + 1/3 <= y <= x + 2/3.
checkSample(false, makeFACFromConstraints(2,
{
{1, 0, 0}, // x >= 0.
{-1, 0, 100}, // x <= 100.
{3, -3, 2}, // 3x - 3y >= -2.
{-3, 3, -1}, // 3x - 3y <= -1.
},
{}));
checkSample(true, makeFACFromConstraints(2,
{
{2, 0, 0}, // 2x >= 1.
{-2, 0, 99}, // 2x <= 99.
{0, 2, 0}, // 2y >= 0.
{0, -2, 99}, // 2y <= 99.
},
{}));
// 2D cone with apex at (10000, 10000) and
// edges passing through (1/3, 0) and (2/3, 0).
checkSample(
true,
makeFACFromConstraints(
2, {{300000, -299999, -100000}, {-300000, 299998, 200000}}, {}));
// Cartesian product of a tetrahedron and a 2D cone.
// The tetrahedron has vertices at
// (1/3, 0, 0), (2/3, 0, 0), (2/3, 0, 10000), and (10000, 10000, 10000).
// The first three points form a triangular base on the xz plane with the
// apex at the fourth point, which is the only integer point.
// The cone has apex at (10000, 10000) and
// edges passing through (1/3, 0) and (2/3, 0).
checkPermutationsSample(
true /* not empty */, 5,
{
// Tetrahedron contraints:
{0, 1, 0, 0, 0, 0}, // y >= 0
{0, -1, 1, 0, 0, 0}, // z >= y
// -300000x + 299998y + 100000 + z <= 0.
{300000, -299998, -1, 0, 0, -100000},
// -150000x + 149999y + 100000 >= 0.
{-150000, 149999, 0, 0, 0, 100000},
// Triangle constraints:
// 300000p - 299999q >= 100000
{0, 0, 0, 300000, -299999, -100000},
// -300000p + 299998q + 200000 >= 0
{0, 0, 0, -300000, 299998, 200000},
},
{});
// Cartesian product of same tetrahedron as above and {(p, q) : 1/3 <= p <=
// 2/3}. Since the second set is empty, the whole set is too.
checkPermutationsSample(
false /* empty */, 5,
{
// Tetrahedron contraints:
{0, 1, 0, 0, 0, 0}, // y >= 0
{0, -1, 1, 0, 0, 0}, // z >= y
// -300000x + 299998y + 100000 + z <= 0.
{300000, -299998, -1, 0, 0, -100000},
// -150000x + 149999y + 100000 >= 0.
{-150000, 149999, 0, 0, 0, 100000},
// Second set constraints:
// 3p >= 1
{0, 0, 0, 3, 0, -1},
// 3p <= 2
{0, 0, 0, -3, 0, 2},
},
{});
// Cartesian product of same tetrahedron as above and
// {(p, q, r) : 1 <= p <= 2 and p = 3q + 3r}.
// Since the second set is empty, the whole set is too.
checkPermutationsSample(
false /* empty */, 5,
{
// Tetrahedron contraints:
{0, 1, 0, 0, 0, 0, 0}, // y >= 0
{0, -1, 1, 0, 0, 0, 0}, // z >= y
// -300000x + 299998y + 100000 + z <= 0.
{300000, -299998, -1, 0, 0, 0, -100000},
// -150000x + 149999y + 100000 >= 0.
{-150000, 149999, 0, 0, 0, 0, 100000},
// Second set constraints:
// p >= 1
{0, 0, 0, 1, 0, 0, -1},
// p <= 2
{0, 0, 0, -1, 0, 0, 2},
},
{
{0, 0, 0, 1, -3, -3, 0}, // p = 3q + 3r
});
// Cartesian product of a tetrahedron and a 2D cone.
// The tetrahedron is empty and has vertices at
// (1/3, 0, 0), (2/3, 0, 0), (2/3, 0, 100), and (100, 100 - 1/3, 100).
// The cone has apex at (10000, 10000) and
// edges passing through (1/3, 0) and (2/3, 0).
// Since the tetrahedron is empty, the Cartesian product is too.
checkPermutationsSample(false /* empty */, 5,
{
// Tetrahedron contraints:
{0, 1, 0, 0, 0, 0},
{0, -300, 299, 0, 0, 0},
{300 * 299, -89400, -299, 0, 0, -100 * 299},
{-897, 894, 0, 0, 0, 598},
// Triangle constraints:
// 300000p - 299999q >= 100000
{0, 0, 0, 300000, -299999, -100000},
// -300000p + 299998q + 200000 >= 0
{0, 0, 0, -300000, 299998, 200000},
},
{});
// Cartesian product of same tetrahedron as above and
// {(p, q) : 1/3 <= p <= 2/3}.
checkPermutationsSample(false /* empty */, 5,
{
// Tetrahedron contraints:
{0, 1, 0, 0, 0, 0},
{0, -300, 299, 0, 0, 0},
{300 * 299, -89400, -299, 0, 0, -100 * 299},
{-897, 894, 0, 0, 0, 598},
// Second set constraints:
// 3p >= 1
{0, 0, 0, 3, 0, -1},
// 3p <= 2
{0, 0, 0, -3, 0, 2},
},
{});
checkSample(true, makeFACFromConstraints(3,
{
{2, 0, 0, -1}, // 2x >= 1
},
{{
{1, -1, 0, -1}, // y = x - 1
{0, 1, -1, 0}, // z = y
}}));
}
TEST(FlatAffineConstraintsTest, IsIntegerEmptyTest) {
// 1 <= 5x and 5x <= 4 (no solution).
EXPECT_TRUE(
makeFACFromConstraints(1, {{5, -1}, {-5, 4}}, {}).isIntegerEmpty());
// 1 <= 5x and 5x <= 9 (solution: x = 1).
EXPECT_FALSE(
makeFACFromConstraints(1, {{5, -1}, {-5, 9}}, {}).isIntegerEmpty());
// Unbounded sets.
EXPECT_TRUE(makeFACFromConstraints(3,
{
{0, 2, 0, -1}, // 2y >= 1
{0, -2, 0, 1}, // 2y <= 1
{0, 0, 2, -1}, // 2z >= 1
},
{{2, 0, 0, -1}} // 2x = 1
)
.isIntegerEmpty());
EXPECT_FALSE(makeFACFromConstraints(3,
{
{2, 0, 0, -1}, // 2x >= 1
{-3, 0, 0, 3}, // 3x <= 3
{0, 0, 5, -6}, // 5z >= 6
{0, 0, -7, 17}, // 7z <= 17
{0, 3, 0, -2}, // 3y >= 2
},
{})
.isIntegerEmpty());
EXPECT_FALSE(makeFACFromConstraints(3,
{
{2, 0, 0, -1}, // 2x >= 1
},
{{
{1, -1, 0, -1}, // y = x - 1
{0, 1, -1, 0}, // z = y
}})
.isIntegerEmpty());
// FlatAffineConstraints::isEmpty() does not detect the following sets to be
// empty.
// 3x + 7y = 1 and 0 <= x, y <= 10.
// Since x and y are non-negative, 3x + 7y can never be 1.
EXPECT_TRUE(
makeFACFromConstraints(
2, {{1, 0, 0}, {-1, 0, 10}, {0, 1, 0}, {0, -1, 10}}, {{3, 7, -1}})
.isIntegerEmpty());
// 2x = 3y and y = x - 1 and x + y = 6z + 2 and 0 <= x, y <= 100.
// Substituting y = x - 1 in 3y = 2x, we obtain x = 3 and hence y = 2.
// Since x + y = 5 cannot be equal to 6z + 2 for any z, the set is empty.
EXPECT_TRUE(
makeFACFromConstraints(3,
{
{1, 0, 0, 0},
{-1, 0, 0, 100},
{0, 1, 0, 0},
{0, -1, 0, 100},
},
{{2, -3, 0, 0}, {1, -1, 0, -1}, {1, 1, -6, -2}})
.isIntegerEmpty());
// 2x = 3y and y = x - 1 + 6z and x + y = 6q + 2 and 0 <= x, y <= 100.
// 2x = 3y implies x is a multiple of 3 and y is even.
// Now y = x - 1 + 6z implies y = 2 mod 3. In fact, since y is even, we have
// y = 2 mod 6. Then since x = y + 1 + 6z, we have x = 3 mod 6, implying
// x + y = 5 mod 6, which contradicts x + y = 6q + 2, so the set is empty.
EXPECT_TRUE(makeFACFromConstraints(
4,
{
{1, 0, 0, 0, 0},
{-1, 0, 0, 0, 100},
{0, 1, 0, 0, 0},
{0, -1, 0, 0, 100},
},
{{2, -3, 0, 0, 0}, {1, -1, 6, 0, -1}, {1, 1, 0, -6, -2}})
.isIntegerEmpty());
// Set with symbols.
FlatAffineConstraints fac6 = makeFACFromConstraints(2,
{
{1, 1, 0},
},
{
{1, -1, 0},
},
1);
EXPECT_FALSE(fac6.isIntegerEmpty());
}
TEST(FlatAffineConstraintsTest, removeRedundantConstraintsTest) {
FlatAffineConstraints fac = makeFACFromConstraints(1,
{
{1, -2}, // x >= 2.
{-1, 2} // x <= 2.
},
{{1, -2}}); // x == 2.
fac.removeRedundantConstraints();
// Both inequalities are redundant given the equality. Both have been removed.
EXPECT_EQ(fac.getNumInequalities(), 0u);
EXPECT_EQ(fac.getNumEqualities(), 1u);
FlatAffineConstraints fac2 =
makeFACFromConstraints(2,
{
{1, 0, -3}, // x >= 3.
{0, 1, -2} // y >= 2 (redundant).
},
{{1, -1, 0}}); // x == y.
fac2.removeRedundantConstraints();
// The second inequality is redundant and should have been removed. The
// remaining inequality should be the first one.
EXPECT_EQ(fac2.getNumInequalities(), 1u);
EXPECT_THAT(fac2.getInequality(0), testing::ElementsAre(1, 0, -3));
EXPECT_EQ(fac2.getNumEqualities(), 1u);
FlatAffineConstraints fac3 =
makeFACFromConstraints(3, {},
{{1, -1, 0, 0}, // x == y.
{1, 0, -1, 0}, // x == z.
{0, 1, -1, 0}}); // y == z.
fac3.removeRedundantConstraints();
// One of the three equalities can be removed.
EXPECT_EQ(fac3.getNumInequalities(), 0u);
EXPECT_EQ(fac3.getNumEqualities(), 2u);
FlatAffineConstraints fac4 = makeFACFromConstraints(
17,
{{0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1},
{0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 500},
{0, 0, 0, -16, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
{0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1},
{0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 998},
{0, 0, 0, 16, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 15},
{0, 0, 0, 0, -16, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
{0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1},
{0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 998},
{0, 0, 0, 0, 16, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 15},
{0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
{0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1},
{0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, -1},
{0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 500},
{0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 16, 0, 0, 0, 0, 0, 15},
{0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, -16, 0, 0, 0, 0, 0, 0},
{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -16, 0, 1, 0, 0, 0},
{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, -1},
{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 998},
{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 16, 0, -1, 0, 0, 15},
{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0},
{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 1},
{0, 0, 0, 0, 0, 0, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 8, 8},
{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, 8, 8},
{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, -8, -1},
{0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, -8, -1},
{0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0},
{0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0},
{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, -10},
{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 10},
{0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, -13},
{0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 13},
{0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -10},
{0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 10},
{1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -13},
{-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 13}},
{});
// The above is a large set of constraints without any redundant constraints,
// as verified by the Fourier-Motzkin based removeRedundantInequalities.
unsigned nIneq = fac4.getNumInequalities();
unsigned nEq = fac4.getNumEqualities();
fac4.removeRedundantInequalities();
ASSERT_EQ(fac4.getNumInequalities(), nIneq);
ASSERT_EQ(fac4.getNumEqualities(), nEq);
// Now we test that removeRedundantConstraints does not find any constraints
// to be redundant either.
fac4.removeRedundantConstraints();
EXPECT_EQ(fac4.getNumInequalities(), nIneq);
EXPECT_EQ(fac4.getNumEqualities(), nEq);
FlatAffineConstraints fac5 =
makeFACFromConstraints(2,
{
{128, 0, 127}, // [0]: 128x >= -127.
{-1, 0, 7}, // [1]: x <= 7.
{-128, 1, 0}, // [2]: y >= 128x.
{0, 1, 0} // [3]: y >= 0.
},
{});
// [0] implies that 128x >= 0, since x has to be an integer. (This should be
// caught by GCDTightenInqualities().)
// So [2] and [0] imply [3] since we have y >= 128x >= 0.
fac5.removeRedundantConstraints();
EXPECT_EQ(fac5.getNumInequalities(), 3u);
SmallVector<int64_t, 8> redundantConstraint = {0, 1, 0};
for (unsigned i = 0; i < 3; ++i) {
// Ensure that the removed constraint was the redundant constraint [3].
EXPECT_NE(fac5.getInequality(i), ArrayRef<int64_t>(redundantConstraint));
}
}
TEST(FlatAffineConstraintsTest, addConstantUpperBound) {
FlatAffineConstraints fac = makeFACFromConstraints(2, {}, {});
fac.addConstantUpperBound(0, 1);
EXPECT_EQ(fac.atIneq(0, 0), -1);
EXPECT_EQ(fac.atIneq(0, 1), 0);
EXPECT_EQ(fac.atIneq(0, 2), 1);
fac.addConstantUpperBound({1, 2, 3}, 1);
EXPECT_EQ(fac.atIneq(1, 0), -1);
EXPECT_EQ(fac.atIneq(1, 1), -2);
EXPECT_EQ(fac.atIneq(1, 2), -2);
}
TEST(FlatAffineConstraintsTest, addConstantLowerBound) {
FlatAffineConstraints fac = makeFACFromConstraints(2, {}, {});
fac.addConstantLowerBound(0, 1);
EXPECT_EQ(fac.atIneq(0, 0), 1);
EXPECT_EQ(fac.atIneq(0, 1), 0);
EXPECT_EQ(fac.atIneq(0, 2), -1);
fac.addConstantLowerBound({1, 2, 3}, 1);
EXPECT_EQ(fac.atIneq(1, 0), 1);
EXPECT_EQ(fac.atIneq(1, 1), 2);
EXPECT_EQ(fac.atIneq(1, 2), 2);
}
TEST(FlatAffineConstraintsTest, clearConstraints) {
FlatAffineConstraints fac = makeFACFromConstraints(1, {}, {});
fac.addInequality({1, 0});
EXPECT_EQ(fac.atIneq(0, 0), 1);
EXPECT_EQ(fac.atIneq(0, 1), 0);
fac.clearConstraints();
fac.addInequality({1, 0});
EXPECT_EQ(fac.atIneq(0, 0), 1);
EXPECT_EQ(fac.atIneq(0, 1), 0);
}
} // namespace mlir
|