File: AffineStructuresTest.cpp

package info (click to toggle)
llvm-toolchain-13 1%3A13.0.1-11
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 1,418,840 kB
  • sloc: cpp: 5,290,826; ansic: 996,570; asm: 544,593; python: 188,212; objc: 72,027; lisp: 30,291; f90: 25,395; sh: 24,898; javascript: 9,780; pascal: 9,398; perl: 7,484; ml: 5,432; awk: 3,523; makefile: 2,913; xml: 953; cs: 573; fortran: 539
file content (590 lines) | stat: -rw-r--r-- 24,540 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
//===- AffineStructuresTest.cpp - Tests for AffineStructures ----*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "mlir/Analysis/AffineStructures.h"

#include <gmock/gmock.h>
#include <gtest/gtest.h>

#include <numeric>

namespace mlir {

enum class TestFunction { Sample, Empty };

/// If fn is TestFunction::Sample (default):
/// If hasSample is true, check that findIntegerSample returns a valid sample
/// for the FlatAffineConstraints fac.
/// If hasSample is false, check that findIntegerSample returns None.
///
/// If fn is TestFunction::Empty, check that isIntegerEmpty returns the
/// opposite of hasSample.
static void checkSample(bool hasSample, const FlatAffineConstraints &fac,
                        TestFunction fn = TestFunction::Sample) {
  Optional<SmallVector<int64_t, 8>> maybeSample;
  switch (fn) {
  case TestFunction::Sample:
    maybeSample = fac.findIntegerSample();
    if (!hasSample) {
      EXPECT_FALSE(maybeSample.hasValue());
      if (maybeSample.hasValue()) {
        for (auto x : *maybeSample)
          llvm::errs() << x << ' ';
        llvm::errs() << '\n';
      }
    } else {
      ASSERT_TRUE(maybeSample.hasValue());
      EXPECT_TRUE(fac.containsPoint(*maybeSample));
    }
    break;
  case TestFunction::Empty:
    EXPECT_EQ(!hasSample, fac.isIntegerEmpty());
    break;
  }
}

/// Construct a FlatAffineConstraints from a set of inequality and
/// equality constraints.
static FlatAffineConstraints
makeFACFromConstraints(unsigned ids, ArrayRef<SmallVector<int64_t, 4>> ineqs,
                       ArrayRef<SmallVector<int64_t, 4>> eqs,
                       unsigned syms = 0) {
  FlatAffineConstraints fac(ineqs.size(), eqs.size(), ids + 1, ids - syms,
                            syms);
  for (const auto &eq : eqs)
    fac.addEquality(eq);
  for (const auto &ineq : ineqs)
    fac.addInequality(ineq);
  return fac;
}

/// Check sampling for all the permutations of the dimensions for the given
/// constraint set. Since the GBR algorithm progresses dimension-wise, different
/// orderings may cause the algorithm to proceed differently. At least some of
///.these permutations should make it past the heuristics and test the
/// implementation of the GBR algorithm itself.
/// Use TestFunction fn to test.
static void checkPermutationsSample(bool hasSample, unsigned nDim,
                                    ArrayRef<SmallVector<int64_t, 4>> ineqs,
                                    ArrayRef<SmallVector<int64_t, 4>> eqs,
                                    TestFunction fn = TestFunction::Sample) {
  SmallVector<unsigned, 4> perm(nDim);
  std::iota(perm.begin(), perm.end(), 0);
  auto permute = [&perm](ArrayRef<int64_t> coeffs) {
    SmallVector<int64_t, 4> permuted;
    for (unsigned id : perm)
      permuted.push_back(coeffs[id]);
    permuted.push_back(coeffs.back());
    return permuted;
  };
  do {
    SmallVector<SmallVector<int64_t, 4>, 4> permutedIneqs, permutedEqs;
    for (const auto &ineq : ineqs)
      permutedIneqs.push_back(permute(ineq));
    for (const auto &eq : eqs)
      permutedEqs.push_back(permute(eq));

    checkSample(hasSample,
                makeFACFromConstraints(nDim, permutedIneqs, permutedEqs), fn);
  } while (std::next_permutation(perm.begin(), perm.end()));
}

TEST(FlatAffineConstraintsTest, FindSampleTest) {
  // Bounded sets with only inequalities.

  // 0 <= 7x <= 5
  checkSample(true, makeFACFromConstraints(1, {{7, 0}, {-7, 5}}, {}));

  // 1 <= 5x and 5x <= 4 (no solution).
  checkSample(false, makeFACFromConstraints(1, {{5, -1}, {-5, 4}}, {}));

  // 1 <= 5x and 5x <= 9 (solution: x = 1).
  checkSample(true, makeFACFromConstraints(1, {{5, -1}, {-5, 9}}, {}));

  // Bounded sets with equalities.
  // x >= 8 and 40 >= y and x = y.
  checkSample(
      true, makeFACFromConstraints(2, {{1, 0, -8}, {0, -1, 40}}, {{1, -1, 0}}));

  // x <= 10 and y <= 10 and 10 <= z and x + 2y = 3z.
  // solution: x = y = z = 10.
  checkSample(true, makeFACFromConstraints(
                        3, {{-1, 0, 0, 10}, {0, -1, 0, 10}, {0, 0, 1, -10}},
                        {{1, 2, -3, 0}}));

  // x <= 10 and y <= 10 and 11 <= z and x + 2y = 3z.
  // This implies x + 2y >= 33 and x + 2y <= 30, which has no solution.
  checkSample(false, makeFACFromConstraints(
                         3, {{-1, 0, 0, 10}, {0, -1, 0, 10}, {0, 0, 1, -11}},
                         {{1, 2, -3, 0}}));

  // 0 <= r and r <= 3 and 4q + r = 7.
  // Solution: q = 1, r = 3.
  checkSample(true,
              makeFACFromConstraints(2, {{0, 1, 0}, {0, -1, 3}}, {{4, 1, -7}}));

  // 4q + r = 7 and r = 0.
  // Solution: q = 1, r = 3.
  checkSample(false, makeFACFromConstraints(2, {}, {{4, 1, -7}, {0, 1, 0}}));

  // The next two sets are large sets that should take a long time to sample
  // with a naive branch and bound algorithm but can be sampled efficiently with
  // the GBR algorithm.
  //
  // This is a triangle with vertices at (1/3, 0), (2/3, 0) and (10000, 10000).
  checkSample(
      true,
      makeFACFromConstraints(
          2, {{0, 1, 0}, {300000, -299999, -100000}, {-300000, 299998, 200000}},
          {}));

  // This is a tetrahedron with vertices at
  // (1/3, 0, 0), (2/3, 0, 0), (2/3, 0, 10000), and (10000, 10000, 10000).
  // The first three points form a triangular base on the xz plane with the
  // apex at the fourth point, which is the only integer point.
  checkPermutationsSample(
      true, 3,
      {
          {0, 1, 0, 0},  // y >= 0
          {0, -1, 1, 0}, // z >= y
          {300000, -299998, -1,
           -100000},                    // -300000x + 299998y + 100000 + z <= 0.
          {-150000, 149999, 0, 100000}, // -150000x + 149999y + 100000 >= 0.
      },
      {});

  // Same thing with some spurious extra dimensions equated to constants.
  checkSample(true,
              makeFACFromConstraints(
                  5,
                  {
                      {0, 1, 0, 1, -1, 0},
                      {0, -1, 1, -1, 1, 0},
                      {300000, -299998, -1, -9, 21, -112000},
                      {-150000, 149999, 0, -15, 47, 68000},
                  },
                  {{0, 0, 0, 1, -1, 0},       // p = q.
                   {0, 0, 0, 1, 1, -2000}})); // p + q = 20000 => p = q = 10000.

  // This is a tetrahedron with vertices at
  // (1/3, 0, 0), (2/3, 0, 0), (2/3, 0, 100), (100, 100 - 1/3, 100).
  checkPermutationsSample(false, 3,
                          {
                              {0, 1, 0, 0},
                              {0, -300, 299, 0},
                              {300 * 299, -89400, -299, -100 * 299},
                              {-897, 894, 0, 598},
                          },
                          {});

  // Two tests involving equalities that are integer empty but not rational
  // empty.

  // This is a line segment from (0, 1/3) to (100, 100 + 1/3).
  checkSample(false, makeFACFromConstraints(
                         2,
                         {
                             {1, 0, 0},   // x >= 0.
                             {-1, 0, 100} // -x + 100 >= 0, i.e., x <= 100.
                         },
                         {
                             {3, -3, 1} // 3x - 3y + 1 = 0, i.e., y = x + 1/3.
                         }));

  // A thin parallelogram. 0 <= x <= 100 and x + 1/3 <= y <= x + 2/3.
  checkSample(false, makeFACFromConstraints(2,
                                            {
                                                {1, 0, 0},    // x >= 0.
                                                {-1, 0, 100}, // x <= 100.
                                                {3, -3, 2},   // 3x - 3y >= -2.
                                                {-3, 3, -1},  // 3x - 3y <= -1.
                                            },
                                            {}));

  checkSample(true, makeFACFromConstraints(2,
                                           {
                                               {2, 0, 0},   // 2x >= 1.
                                               {-2, 0, 99}, // 2x <= 99.
                                               {0, 2, 0},   // 2y >= 0.
                                               {0, -2, 99}, // 2y <= 99.
                                           },
                                           {}));
  // 2D cone with apex at (10000, 10000) and
  // edges passing through (1/3, 0) and (2/3, 0).
  checkSample(
      true,
      makeFACFromConstraints(
          2, {{300000, -299999, -100000}, {-300000, 299998, 200000}}, {}));

  // Cartesian product of a tetrahedron and a 2D cone.
  // The tetrahedron has vertices at
  // (1/3, 0, 0), (2/3, 0, 0), (2/3, 0, 10000), and (10000, 10000, 10000).
  // The first three points form a triangular base on the xz plane with the
  // apex at the fourth point, which is the only integer point.
  // The cone has apex at (10000, 10000) and
  // edges passing through (1/3, 0) and (2/3, 0).
  checkPermutationsSample(
      true /* not empty */, 5,
      {
          // Tetrahedron contraints:
          {0, 1, 0, 0, 0, 0},  // y >= 0
          {0, -1, 1, 0, 0, 0}, // z >= y
                               // -300000x + 299998y + 100000 + z <= 0.
          {300000, -299998, -1, 0, 0, -100000},
          // -150000x + 149999y + 100000 >= 0.
          {-150000, 149999, 0, 0, 0, 100000},

          // Triangle constraints:
          // 300000p - 299999q >= 100000
          {0, 0, 0, 300000, -299999, -100000},
          // -300000p + 299998q + 200000 >= 0
          {0, 0, 0, -300000, 299998, 200000},
      },
      {});

  // Cartesian product of same tetrahedron as above and {(p, q) : 1/3 <= p <=
  // 2/3}. Since the second set is empty, the whole set is too.
  checkPermutationsSample(
      false /* empty */, 5,
      {
          // Tetrahedron contraints:
          {0, 1, 0, 0, 0, 0},  // y >= 0
          {0, -1, 1, 0, 0, 0}, // z >= y
                               // -300000x + 299998y + 100000 + z <= 0.
          {300000, -299998, -1, 0, 0, -100000},
          // -150000x + 149999y + 100000 >= 0.
          {-150000, 149999, 0, 0, 0, 100000},

          // Second set constraints:
          // 3p >= 1
          {0, 0, 0, 3, 0, -1},
          // 3p <= 2
          {0, 0, 0, -3, 0, 2},
      },
      {});

  // Cartesian product of same tetrahedron as above and
  // {(p, q, r) : 1 <= p <= 2 and p = 3q + 3r}.
  // Since the second set is empty, the whole set is too.
  checkPermutationsSample(
      false /* empty */, 5,
      {
          // Tetrahedron contraints:
          {0, 1, 0, 0, 0, 0, 0},  // y >= 0
          {0, -1, 1, 0, 0, 0, 0}, // z >= y
                                  // -300000x + 299998y + 100000 + z <= 0.
          {300000, -299998, -1, 0, 0, 0, -100000},
          // -150000x + 149999y + 100000 >= 0.
          {-150000, 149999, 0, 0, 0, 0, 100000},

          // Second set constraints:
          // p >= 1
          {0, 0, 0, 1, 0, 0, -1},
          // p <= 2
          {0, 0, 0, -1, 0, 0, 2},
      },
      {
          {0, 0, 0, 1, -3, -3, 0}, // p = 3q + 3r
      });

  // Cartesian product of a tetrahedron and a 2D cone.
  // The tetrahedron is empty and has vertices at
  // (1/3, 0, 0), (2/3, 0, 0), (2/3, 0, 100), and (100, 100 - 1/3, 100).
  // The cone has apex at (10000, 10000) and
  // edges passing through (1/3, 0) and (2/3, 0).
  // Since the tetrahedron is empty, the Cartesian product is too.
  checkPermutationsSample(false /* empty */, 5,
                          {
                              // Tetrahedron contraints:
                              {0, 1, 0, 0, 0, 0},
                              {0, -300, 299, 0, 0, 0},
                              {300 * 299, -89400, -299, 0, 0, -100 * 299},
                              {-897, 894, 0, 0, 0, 598},

                              // Triangle constraints:
                              // 300000p - 299999q >= 100000
                              {0, 0, 0, 300000, -299999, -100000},
                              // -300000p + 299998q + 200000 >= 0
                              {0, 0, 0, -300000, 299998, 200000},
                          },
                          {});

  // Cartesian product of same tetrahedron as above and
  // {(p, q) : 1/3 <= p <= 2/3}.
  checkPermutationsSample(false /* empty */, 5,
                          {
                              // Tetrahedron contraints:
                              {0, 1, 0, 0, 0, 0},
                              {0, -300, 299, 0, 0, 0},
                              {300 * 299, -89400, -299, 0, 0, -100 * 299},
                              {-897, 894, 0, 0, 0, 598},

                              // Second set constraints:
                              // 3p >= 1
                              {0, 0, 0, 3, 0, -1},
                              // 3p <= 2
                              {0, 0, 0, -3, 0, 2},
                          },
                          {});

  checkSample(true, makeFACFromConstraints(3,
                                           {
                                               {2, 0, 0, -1}, // 2x >= 1
                                           },
                                           {{
                                               {1, -1, 0, -1}, // y = x - 1
                                               {0, 1, -1, 0},  // z = y
                                           }}));
}

TEST(FlatAffineConstraintsTest, IsIntegerEmptyTest) {
  // 1 <= 5x and 5x <= 4 (no solution).
  EXPECT_TRUE(
      makeFACFromConstraints(1, {{5, -1}, {-5, 4}}, {}).isIntegerEmpty());
  // 1 <= 5x and 5x <= 9 (solution: x = 1).
  EXPECT_FALSE(
      makeFACFromConstraints(1, {{5, -1}, {-5, 9}}, {}).isIntegerEmpty());

  // Unbounded sets.
  EXPECT_TRUE(makeFACFromConstraints(3,
                                     {
                                         {0, 2, 0, -1}, // 2y >= 1
                                         {0, -2, 0, 1}, // 2y <= 1
                                         {0, 0, 2, -1}, // 2z >= 1
                                     },
                                     {{2, 0, 0, -1}} // 2x = 1
                                     )
                  .isIntegerEmpty());

  EXPECT_FALSE(makeFACFromConstraints(3,
                                      {
                                          {2, 0, 0, -1},  // 2x >= 1
                                          {-3, 0, 0, 3},  // 3x <= 3
                                          {0, 0, 5, -6},  // 5z >= 6
                                          {0, 0, -7, 17}, // 7z <= 17
                                          {0, 3, 0, -2},  // 3y >= 2
                                      },
                                      {})
                   .isIntegerEmpty());

  EXPECT_FALSE(makeFACFromConstraints(3,
                                      {
                                          {2, 0, 0, -1}, // 2x >= 1
                                      },
                                      {{
                                          {1, -1, 0, -1}, // y = x - 1
                                          {0, 1, -1, 0},  // z = y
                                      }})
                   .isIntegerEmpty());

  // FlatAffineConstraints::isEmpty() does not detect the following sets to be
  // empty.

  // 3x + 7y = 1 and 0 <= x, y <= 10.
  // Since x and y are non-negative, 3x + 7y can never be 1.
  EXPECT_TRUE(
      makeFACFromConstraints(
          2, {{1, 0, 0}, {-1, 0, 10}, {0, 1, 0}, {0, -1, 10}}, {{3, 7, -1}})
          .isIntegerEmpty());

  // 2x = 3y and y = x - 1 and x + y = 6z + 2 and 0 <= x, y <= 100.
  // Substituting y = x - 1 in 3y = 2x, we obtain x = 3 and hence y = 2.
  // Since x + y = 5 cannot be equal to 6z + 2 for any z, the set is empty.
  EXPECT_TRUE(
      makeFACFromConstraints(3,
                             {
                                 {1, 0, 0, 0},
                                 {-1, 0, 0, 100},
                                 {0, 1, 0, 0},
                                 {0, -1, 0, 100},
                             },
                             {{2, -3, 0, 0}, {1, -1, 0, -1}, {1, 1, -6, -2}})
          .isIntegerEmpty());

  // 2x = 3y and y = x - 1 + 6z and x + y = 6q + 2 and 0 <= x, y <= 100.
  // 2x = 3y implies x is a multiple of 3 and y is even.
  // Now y = x - 1 + 6z implies y = 2 mod 3. In fact, since y is even, we have
  // y = 2 mod 6. Then since x = y + 1 + 6z, we have x = 3 mod 6, implying
  // x + y = 5 mod 6, which contradicts x + y = 6q + 2, so the set is empty.
  EXPECT_TRUE(makeFACFromConstraints(
                  4,
                  {
                      {1, 0, 0, 0, 0},
                      {-1, 0, 0, 0, 100},
                      {0, 1, 0, 0, 0},
                      {0, -1, 0, 0, 100},
                  },
                  {{2, -3, 0, 0, 0}, {1, -1, 6, 0, -1}, {1, 1, 0, -6, -2}})
                  .isIntegerEmpty());

  // Set with symbols.
  FlatAffineConstraints fac6 = makeFACFromConstraints(2,
                                                      {
                                                          {1, 1, 0},
                                                      },
                                                      {
                                                          {1, -1, 0},
                                                      },
                                                      1);
  EXPECT_FALSE(fac6.isIntegerEmpty());
}

TEST(FlatAffineConstraintsTest, removeRedundantConstraintsTest) {
  FlatAffineConstraints fac = makeFACFromConstraints(1,
                                                     {
                                                         {1, -2}, // x >= 2.
                                                         {-1, 2}  // x <= 2.
                                                     },
                                                     {{1, -2}}); // x == 2.
  fac.removeRedundantConstraints();

  // Both inequalities are redundant given the equality. Both have been removed.
  EXPECT_EQ(fac.getNumInequalities(), 0u);
  EXPECT_EQ(fac.getNumEqualities(), 1u);

  FlatAffineConstraints fac2 =
      makeFACFromConstraints(2,
                             {
                                 {1, 0, -3}, // x >= 3.
                                 {0, 1, -2}  // y >= 2 (redundant).
                             },
                             {{1, -1, 0}}); // x == y.
  fac2.removeRedundantConstraints();

  // The second inequality is redundant and should have been removed. The
  // remaining inequality should be the first one.
  EXPECT_EQ(fac2.getNumInequalities(), 1u);
  EXPECT_THAT(fac2.getInequality(0), testing::ElementsAre(1, 0, -3));
  EXPECT_EQ(fac2.getNumEqualities(), 1u);

  FlatAffineConstraints fac3 =
      makeFACFromConstraints(3, {},
                             {{1, -1, 0, 0},   // x == y.
                              {1, 0, -1, 0},   // x == z.
                              {0, 1, -1, 0}}); // y == z.
  fac3.removeRedundantConstraints();

  // One of the three equalities can be removed.
  EXPECT_EQ(fac3.getNumInequalities(), 0u);
  EXPECT_EQ(fac3.getNumEqualities(), 2u);

  FlatAffineConstraints fac4 = makeFACFromConstraints(
      17,
      {{0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1},
       {0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 500},
       {0, 0, 0, -16, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
       {0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1},
       {0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 998},
       {0, 0, 0, 16, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 15},
       {0, 0, 0, 0, -16, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
       {0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1},
       {0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 998},
       {0, 0, 0, 0, 16, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 15},
       {0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
       {0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1},
       {0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, -1},
       {0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 500},
       {0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 16, 0, 0, 0, 0, 0, 15},
       {0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, -16, 0, 0, 0, 0, 0, 0},
       {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -16, 0, 1, 0, 0, 0},
       {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, -1},
       {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 998},
       {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 16, 0, -1, 0, 0, 15},
       {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0},
       {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 1},
       {0, 0, 0, 0, 0, 0, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 8, 8},
       {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, 8, 8},
       {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, -8, -1},
       {0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, -8, -1},
       {0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0},
       {0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0},
       {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, -10},
       {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 10},
       {0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, -13},
       {0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 13},
       {0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -10},
       {0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 10},
       {1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -13},
       {-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 13}},
      {});

  // The above is a large set of constraints without any redundant constraints,
  // as verified by the Fourier-Motzkin based removeRedundantInequalities.
  unsigned nIneq = fac4.getNumInequalities();
  unsigned nEq = fac4.getNumEqualities();
  fac4.removeRedundantInequalities();
  ASSERT_EQ(fac4.getNumInequalities(), nIneq);
  ASSERT_EQ(fac4.getNumEqualities(), nEq);
  // Now we test that removeRedundantConstraints does not find any constraints
  // to be redundant either.
  fac4.removeRedundantConstraints();
  EXPECT_EQ(fac4.getNumInequalities(), nIneq);
  EXPECT_EQ(fac4.getNumEqualities(), nEq);

  FlatAffineConstraints fac5 =
      makeFACFromConstraints(2,
                             {
                                 {128, 0, 127}, // [0]: 128x >= -127.
                                 {-1, 0, 7},    // [1]: x <= 7.
                                 {-128, 1, 0},  // [2]: y >= 128x.
                                 {0, 1, 0}      // [3]: y >= 0.
                             },
                             {});
  // [0] implies that 128x >= 0, since x has to be an integer. (This should be
  // caught by GCDTightenInqualities().)
  // So [2] and [0] imply [3] since we have y >= 128x >= 0.
  fac5.removeRedundantConstraints();
  EXPECT_EQ(fac5.getNumInequalities(), 3u);
  SmallVector<int64_t, 8> redundantConstraint = {0, 1, 0};
  for (unsigned i = 0; i < 3; ++i) {
    // Ensure that the removed constraint was the redundant constraint [3].
    EXPECT_NE(fac5.getInequality(i), ArrayRef<int64_t>(redundantConstraint));
  }
}

TEST(FlatAffineConstraintsTest, addConstantUpperBound) {
  FlatAffineConstraints fac = makeFACFromConstraints(2, {}, {});
  fac.addConstantUpperBound(0, 1);
  EXPECT_EQ(fac.atIneq(0, 0), -1);
  EXPECT_EQ(fac.atIneq(0, 1), 0);
  EXPECT_EQ(fac.atIneq(0, 2), 1);

  fac.addConstantUpperBound({1, 2, 3}, 1);
  EXPECT_EQ(fac.atIneq(1, 0), -1);
  EXPECT_EQ(fac.atIneq(1, 1), -2);
  EXPECT_EQ(fac.atIneq(1, 2), -2);
}

TEST(FlatAffineConstraintsTest, addConstantLowerBound) {
  FlatAffineConstraints fac = makeFACFromConstraints(2, {}, {});
  fac.addConstantLowerBound(0, 1);
  EXPECT_EQ(fac.atIneq(0, 0), 1);
  EXPECT_EQ(fac.atIneq(0, 1), 0);
  EXPECT_EQ(fac.atIneq(0, 2), -1);

  fac.addConstantLowerBound({1, 2, 3}, 1);
  EXPECT_EQ(fac.atIneq(1, 0), 1);
  EXPECT_EQ(fac.atIneq(1, 1), 2);
  EXPECT_EQ(fac.atIneq(1, 2), 2);
}

TEST(FlatAffineConstraintsTest, clearConstraints) {
  FlatAffineConstraints fac = makeFACFromConstraints(1, {}, {});

  fac.addInequality({1, 0});
  EXPECT_EQ(fac.atIneq(0, 0), 1);
  EXPECT_EQ(fac.atIneq(0, 1), 0);

  fac.clearConstraints();

  fac.addInequality({1, 0});
  EXPECT_EQ(fac.atIneq(0, 0), 1);
  EXPECT_EQ(fac.atIneq(0, 1), 0);
}

} // namespace mlir