1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
|
//===- InlineSizeEstimatorAnalysis.cpp - IR to native size from ML model --===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This implements feature and label extraction for offline supervised learning
// of a IR to native size model.
//
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/InlineSizeEstimatorAnalysis.h"
#ifdef LLVM_HAVE_TF_API
#include "llvm/Analysis/Utils/TFUtils.h"
#endif
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/PassManager.h"
#include "llvm/MC/MCAsmLayout.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <deque>
using namespace llvm;
AnalysisKey InlineSizeEstimatorAnalysis::Key;
#define DEBUG_TYPE "inline-size-estimator"
#ifdef LLVM_HAVE_TF_API
cl::opt<std::string> TFIR2NativeModelPath(
"ml-inliner-ir2native-model", cl::Hidden,
cl::desc("Path to saved model evaluating native size from IR."));
namespace {
unsigned getMaxInstructionID() {
#define LAST_OTHER_INST(NR) return NR;
#include "llvm/IR/Instruction.def"
}
class IRToNativeSizeLearning {
public:
enum class NamedFeatureIndex : size_t {
InitialSize,
Blocks,
Calls,
IsLocal,
IsLinkOnceODR,
IsLinkOnce,
Loops,
MaxLoopDepth,
MaxDomTreeLevel,
NumNamedFeatures
};
static const size_t NumNamedFeatures =
static_cast<size_t>(NamedFeatureIndex::NumNamedFeatures);
struct FunctionFeatures {
static const size_t FeatureCount;
std::array<int32_t, NumNamedFeatures> NamedFeatures = {0};
std::vector<int32_t> InstructionHistogram;
std::vector<int32_t> InstructionPairHistogram;
void fillTensor(int32_t *Ptr) const;
int32_t &operator[](NamedFeatureIndex Pos) {
return NamedFeatures[static_cast<size_t>(Pos)];
}
};
IRToNativeSizeLearning() = default;
static FunctionFeatures getFunctionFeatures(Function &F,
FunctionAnalysisManager &FAM);
};
// This is a point in time - we determined including these pairs of
// consecutive instructions (in the IR layout available at inline time) as
// features improves the model performance. We want to move away from manual
// feature selection.
// The array is given in opcode pairs rather than labels because 1) labels
// weren't readily available, and 2) the successions were hand - extracted.
//
// This array must be sorted.
static const std::array<std::pair<size_t, size_t>, 137>
ImportantInstructionSuccessions{
{{1, 1}, {1, 4}, {1, 5}, {1, 7}, {1, 8}, {1, 9}, {1, 11},
{1, 12}, {1, 13}, {1, 14}, {1, 18}, {1, 20}, {1, 22}, {1, 24},
{1, 25}, {1, 26}, {1, 27}, {1, 28}, {1, 29}, {1, 30}, {1, 31},
{1, 32}, {1, 33}, {1, 34}, {1, 39}, {1, 40}, {1, 42}, {1, 45},
{2, 1}, {2, 2}, {2, 13}, {2, 28}, {2, 29}, {2, 32}, {2, 33},
{2, 34}, {2, 38}, {2, 48}, {2, 49}, {2, 53}, {2, 55}, {2, 56},
{13, 2}, {13, 13}, {13, 26}, {13, 33}, {13, 34}, {13, 56}, {15, 27},
{28, 2}, {28, 48}, {28, 53}, {29, 2}, {29, 33}, {29, 56}, {31, 31},
{31, 33}, {31, 34}, {31, 49}, {32, 1}, {32, 2}, {32, 13}, {32, 15},
{32, 28}, {32, 29}, {32, 32}, {32, 33}, {32, 34}, {32, 39}, {32, 40},
{32, 48}, {32, 49}, {32, 53}, {32, 56}, {33, 1}, {33, 2}, {33, 32},
{33, 33}, {33, 34}, {33, 49}, {33, 53}, {33, 56}, {34, 1}, {34, 2},
{34, 32}, {34, 33}, {34, 34}, {34, 49}, {34, 53}, {34, 56}, {38, 34},
{39, 57}, {40, 34}, {47, 15}, {47, 49}, {48, 2}, {48, 34}, {48, 56},
{49, 1}, {49, 2}, {49, 28}, {49, 32}, {49, 33}, {49, 34}, {49, 39},
{49, 49}, {49, 56}, {53, 1}, {53, 2}, {53, 28}, {53, 34}, {53, 53},
{53, 57}, {55, 1}, {55, 28}, {55, 34}, {55, 53}, {55, 55}, {55, 56},
{56, 1}, {56, 2}, {56, 7}, {56, 13}, {56, 32}, {56, 33}, {56, 34},
{56, 49}, {56, 53}, {56, 56}, {56, 64}, {57, 34}, {57, 56}, {57, 57},
{64, 1}, {64, 64}, {65, 1}, {65, 65}}};
// We have: 9 calculated features (the features here); 1 feature for each
// instruction opcode; and 1 feature for each manually-identified sequence.
// For the latter 2, we build a histogram: we count the number of
// occurrences of each instruction opcode or succession of instructions,
// respectively.
// Note that instruction opcodes start from 1. For convenience, we also have an
// always 0 feature for the '0' opcode, hence the extra 1.
const size_t IRToNativeSizeLearning::FunctionFeatures::FeatureCount =
ImportantInstructionSuccessions.size() + getMaxInstructionID() + 1 +
IRToNativeSizeLearning::NumNamedFeatures;
size_t getSize(Function &F, TargetTransformInfo &TTI) {
size_t Ret = 0;
for (const auto &BB : F)
for (const auto &I : BB)
Ret += *(TTI.getInstructionCost(
&I, TargetTransformInfo::TargetCostKind::TCK_CodeSize).getValue());
return Ret;
}
size_t getSize(Function &F, FunctionAnalysisManager &FAM) {
auto &TTI = FAM.getResult<TargetIRAnalysis>(F);
return getSize(F, TTI);
}
unsigned getMaxDominatorTreeDepth(const Function &F,
const DominatorTree &Tree) {
unsigned Ret = 0;
for (const auto &BB : F)
if (const auto *TN = Tree.getNode(&BB))
Ret = std::max(Ret, TN->getLevel());
return Ret;
}
} // namespace
IRToNativeSizeLearning::FunctionFeatures
IRToNativeSizeLearning::getFunctionFeatures(Function &F,
FunctionAnalysisManager &FAM) {
assert(llvm::is_sorted(ImportantInstructionSuccessions) &&
"expected function features are sorted");
auto &DomTree = FAM.getResult<DominatorTreeAnalysis>(F);
FunctionFeatures FF;
size_t InstrCount = getMaxInstructionID() + 1;
FF.InstructionHistogram.resize(InstrCount);
FF.InstructionPairHistogram.resize(ImportantInstructionSuccessions.size());
int StartID = 0;
int LastID = StartID;
auto getPairIndex = [](size_t a, size_t b) {
auto I = llvm::find(ImportantInstructionSuccessions, std::make_pair(a, b));
if (I == ImportantInstructionSuccessions.end())
return -1;
return static_cast<int>(
std::distance(ImportantInstructionSuccessions.begin(), I));
};
// We don't want debug calls, because they'd just add noise.
for (const auto &BB : F) {
for (const auto &I : BB.instructionsWithoutDebug()) {
auto ID = I.getOpcode();
++FF.InstructionHistogram[ID];
int PairIndex = getPairIndex(LastID, ID);
if (PairIndex >= 0)
++FF.InstructionPairHistogram[PairIndex];
LastID = ID;
if (isa<CallBase>(I))
++FF[NamedFeatureIndex::Calls];
}
}
FF[NamedFeatureIndex::InitialSize] = getSize(F, FAM);
FF[NamedFeatureIndex::IsLocal] = F.hasLocalLinkage();
FF[NamedFeatureIndex::IsLinkOnceODR] = F.hasLinkOnceODRLinkage();
FF[NamedFeatureIndex::IsLinkOnce] = F.hasLinkOnceLinkage();
FF[NamedFeatureIndex::Blocks] =
std::distance(F.getBasicBlockList().begin(), F.getBasicBlockList().end());
auto &LI = FAM.getResult<LoopAnalysis>(F);
FF[NamedFeatureIndex::Loops] = std::distance(LI.begin(), LI.end());
for (auto &L : LI)
FF[NamedFeatureIndex::MaxLoopDepth] =
std::max(FF[NamedFeatureIndex::MaxLoopDepth],
static_cast<int32_t>(L->getLoopDepth()));
FF[NamedFeatureIndex::MaxDomTreeLevel] = getMaxDominatorTreeDepth(F, DomTree);
return FF;
}
void IRToNativeSizeLearning::FunctionFeatures::fillTensor(int32_t *Ptr) const {
std::copy(NamedFeatures.begin(), NamedFeatures.end(), Ptr);
Ptr += NamedFeatures.size();
std::copy(InstructionHistogram.begin(), InstructionHistogram.end(), Ptr);
Ptr += InstructionHistogram.size();
std::copy(InstructionPairHistogram.begin(), InstructionPairHistogram.end(),
Ptr);
}
bool InlineSizeEstimatorAnalysis::isEvaluatorRequested() {
return !TFIR2NativeModelPath.empty();
}
InlineSizeEstimatorAnalysis::InlineSizeEstimatorAnalysis() {
if (!isEvaluatorRequested()) {
return;
}
std::vector<TensorSpec> InputSpecs{TensorSpec::createSpec<int32_t>(
"serving_default_input_1",
{1, static_cast<int64_t>(
IRToNativeSizeLearning::FunctionFeatures::FeatureCount)})};
std::vector<TensorSpec> OutputSpecs{
TensorSpec::createSpec<float>("StatefulPartitionedCall", {1})};
Evaluator = std::make_unique<TFModelEvaluator>(
TFIR2NativeModelPath.getValue().c_str(), InputSpecs, OutputSpecs);
if (!Evaluator || !Evaluator->isValid()) {
Evaluator.reset();
return;
}
}
InlineSizeEstimatorAnalysis::Result
InlineSizeEstimatorAnalysis::run(const Function &F,
FunctionAnalysisManager &FAM) {
if (!Evaluator)
return None;
auto Features = IRToNativeSizeLearning::getFunctionFeatures(
const_cast<Function &>(F), FAM);
int32_t *V = Evaluator->getInput<int32_t>(0);
Features.fillTensor(V);
auto ER = Evaluator->evaluate();
if (!ER)
return None;
float Ret = *ER->getTensorValue<float>(0);
if (Ret < 0.0)
Ret = 0.0;
return static_cast<size_t>(Ret);
}
InlineSizeEstimatorAnalysis::~InlineSizeEstimatorAnalysis() {}
InlineSizeEstimatorAnalysis::InlineSizeEstimatorAnalysis(
InlineSizeEstimatorAnalysis &&Other)
: Evaluator(std::move(Other.Evaluator)) {}
#else
namespace llvm {
class TFModelEvaluator {};
} // namespace llvm
InlineSizeEstimatorAnalysis::InlineSizeEstimatorAnalysis() {}
InlineSizeEstimatorAnalysis ::InlineSizeEstimatorAnalysis(
InlineSizeEstimatorAnalysis &&) {}
InlineSizeEstimatorAnalysis::~InlineSizeEstimatorAnalysis() {}
InlineSizeEstimatorAnalysis::Result
InlineSizeEstimatorAnalysis::run(const Function &F,
FunctionAnalysisManager &FAM) {
return None;
}
bool InlineSizeEstimatorAnalysis::isEvaluatorRequested() { return false; }
#endif
PreservedAnalyses
InlineSizeEstimatorAnalysisPrinterPass::run(Function &F,
FunctionAnalysisManager &AM) {
OS << "[InlineSizeEstimatorAnalysis] size estimate for " << F.getName()
<< ": " << AM.getResult<InlineSizeEstimatorAnalysis>(F) << "\n";
return PreservedAnalyses::all();
}
|