1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542
|
//===- TFUtils.cpp - tensorflow evaluation utilities ----------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements utilities for interfacing with tensorflow C APIs.
//
//===----------------------------------------------------------------------===//
#include "llvm/Config/config.h"
#if defined(LLVM_HAVE_TF_API)
#include "llvm/ADT/Twine.h"
#include "llvm/Analysis/Utils/TFUtils.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/JSON.h"
#include "llvm/Support/ManagedStatic.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/Path.h"
#include "llvm/Support/raw_ostream.h"
#include "google/protobuf/text_format.h"
#include "tensorflow/c/c_api.h"
#include "tensorflow/c/c_api_experimental.h"
#include "tensorflow/core/example/example.pb.h"
#include <cassert>
#include <numeric>
using namespace llvm;
using google::protobuf::Message;
using google::protobuf::TextFormat;
static cl::opt<bool>
ProtobufTextMode("tfutils-text-log", cl::init(false), cl::Hidden,
cl::desc("Output textual (human-readable) protobuf."));
namespace {
using TFGraphPtr = std::unique_ptr<TF_Graph, decltype(&TF_DeleteGraph)>;
using TFSessionOptionsPtr =
std::unique_ptr<TF_SessionOptions, decltype(&TF_DeleteSessionOptions)>;
using TFStatusPtr = std::unique_ptr<TF_Status, decltype(&TF_DeleteStatus)>;
struct TFInitializer {
TFInitializer() {
assert(!IsInitialized && "TFInitialized should be called only once");
int Argc = 1;
const char *Name = "";
const char **NamePtr = &Name;
TF_InitMain(Name, &Argc, const_cast<char ***>(&NamePtr));
IsInitialized = true;
}
bool IsInitialized = false;
};
llvm::ManagedStatic<TFInitializer> TFLibInitializer;
bool ensureInitTF() { return TFLibInitializer->IsInitialized; }
TFGraphPtr createTFGraph() {
return TFGraphPtr(TF_NewGraph(), &TF_DeleteGraph);
}
TFStatusPtr createTFStatus() {
return TFStatusPtr(TF_NewStatus(), &TF_DeleteStatus);
}
TFSessionOptionsPtr createTFSessionOptions() {
return TFSessionOptionsPtr(TF_NewSessionOptions(), &TF_DeleteSessionOptions);
}
} // namespace
namespace llvm {
class EvaluationResultImpl {
public:
EvaluationResultImpl(size_t OutputSize)
: OutputSize(OutputSize), Output(OutputSize){};
~EvaluationResultImpl() {
for (auto *P : Output)
if (P)
TF_DeleteTensor(P);
}
EvaluationResultImpl(const EvaluationResultImpl &) = delete;
EvaluationResultImpl(EvaluationResultImpl &&Other) = delete;
std::vector<TF_Tensor *> &getOutput() { return Output; }
private:
const size_t OutputSize;
std::vector<TF_Tensor *> Output;
};
size_t TensorSpec::getElementByteSize() const {
return TF_DataTypeSize(static_cast<TF_DataType>(TypeIndex));
}
TensorSpec::TensorSpec(const std::string &Name, int Port, int TypeIndex,
const std::vector<int64_t> &Shape)
: Name(Name), Port(Port), TypeIndex(TypeIndex), Shape(Shape),
ElementCount(std::accumulate(Shape.begin(), Shape.end(), 1,
std::multiplies<int64_t>())) {}
Optional<TensorSpec> getTensorSpecFromJSON(LLVMContext &Ctx,
const json::Value &Value) {
auto EmitError = [&](const llvm::Twine &Message) -> Optional<TensorSpec> {
std::string S;
llvm::raw_string_ostream OS(S);
OS << Value;
Ctx.emitError("Unable to parse JSON Value as spec (" + Message + "): " + S);
return None;
};
// FIXME: accept a Path as a parameter, and use it for error reporting.
json::Path::Root Root("tensor_spec");
json::ObjectMapper Mapper(Value, Root);
if (!Mapper)
return EmitError("Value is not a dict");
std::string TensorName;
int TensorPort = -1;
std::string TensorType;
std::vector<int64_t> TensorShape;
if (!Mapper.map<std::string>("name", TensorName))
return EmitError("'name' property not present or not a string");
if (!Mapper.map<std::string>("type", TensorType))
return EmitError("'type' property not present or not a string");
if (!Mapper.map<int>("port", TensorPort))
return EmitError("'port' property not present or not an int");
if (!Mapper.map<std::vector<int64_t>>("shape", TensorShape))
return EmitError("'shape' property not present or not an int array");
#define PARSE_TYPE(T, E) \
if (TensorType == #T) \
return TensorSpec::createSpec<T>(TensorName, TensorShape, TensorPort);
TFUTILS_SUPPORTED_TYPES(PARSE_TYPE)
#undef PARSE_TYPE
return None;
}
Optional<std::vector<LoggedFeatureSpec>>
loadOutputSpecs(LLVMContext &Ctx, StringRef ExpectedDecisionName,
StringRef ModelPath, StringRef SpecFileOverride) {
SmallVector<char, 128> OutputSpecsPath;
StringRef FileName = SpecFileOverride;
if (FileName.empty()) {
llvm::sys::path::append(OutputSpecsPath, ModelPath, "output_spec.json");
FileName = {OutputSpecsPath.data(), OutputSpecsPath.size()};
}
auto BufferOrError = MemoryBuffer::getFileOrSTDIN(FileName);
if (!BufferOrError) {
Ctx.emitError("Error opening output specs file: " + FileName + " : " +
BufferOrError.getError().message());
return None;
}
auto ParsedJSONValues = json::parse(BufferOrError.get()->getBuffer());
if (!ParsedJSONValues) {
Ctx.emitError("Could not parse specs file: " + FileName);
return None;
}
auto ValuesArray = ParsedJSONValues->getAsArray();
if (!ValuesArray) {
Ctx.emitError("Expected an array of {tensor_spec:<TensorSpec>, "
"logging_name:<name>} dictionaries");
return None;
}
std::vector<LoggedFeatureSpec> Ret;
for (const auto &Value : *ValuesArray)
if (const auto *Obj = Value.getAsObject())
if (const auto *SpecPart = Obj->get("tensor_spec"))
if (auto TensorSpec = getTensorSpecFromJSON(Ctx, *SpecPart))
if (auto LoggingName = Obj->getString("logging_name")) {
if (!TensorSpec->isElementType<int64_t>() &&
!TensorSpec->isElementType<int32_t>() &&
!TensorSpec->isElementType<float>()) {
Ctx.emitError(
"Only int64, int32, and float tensors are supported. "
"Found unsupported type for tensor named " +
TensorSpec->name());
return None;
}
Ret.push_back({*TensorSpec, LoggingName->str()});
}
if (ValuesArray->size() != Ret.size()) {
Ctx.emitError(
"Unable to parse output spec. It should be a json file containing an "
"array of dictionaries. Each dictionary must have a 'tensor_spec' key, "
"with a json object describing a TensorSpec; and a 'logging_name' key, "
"which is a string to use as name when logging this tensor in the "
"training log.");
return None;
}
if (Ret.empty() || *Ret[0].LoggingName != ExpectedDecisionName) {
Ctx.emitError("The first output spec must describe the decision tensor, "
"and must have the logging_name " +
StringRef(ExpectedDecisionName));
return None;
}
return Ret;
}
class TFModelEvaluatorImpl {
public:
TFModelEvaluatorImpl(StringRef SavedModelPath,
const std::vector<TensorSpec> &InputSpecs,
function_ref<TensorSpec(size_t)> GetOutputSpecs,
size_t OutputSpecsSize, const char *Tags);
bool isValid() const { return IsValid; }
size_t OutputSize() const { return OutputFeed.size(); }
void evaluate(TF_Tensor **Output, TF_Status *Status) {
TF_SessionRun(Session, nullptr, InputFeed.data(), Input.data(),
Input.size(), OutputFeed.data(), Output, OutputFeed.size(),
nullptr, 0, nullptr, Status);
}
void initInput(size_t Index, TF_DataType Type,
const std::vector<int64_t> &Dimensions);
const std::vector<TF_Tensor *> &getInput() const { return Input; }
~TFModelEvaluatorImpl();
private:
/// The objects necessary for carrying out an evaluation of the SavedModel.
/// They are expensive to set up, and we maintain them accross all the
/// evaluations of the model.
TF_Session *Session = nullptr;
TFGraphPtr Graph;
TFSessionOptionsPtr Options;
/// The specification of the input nodes.
std::vector<TF_Output> InputFeed;
/// The input tensors. They must match by index of the corresponding InputFeed
/// value. We set up the tensors once and just mutate theirs scalars before
/// each evaluation. The input tensors keep their value after an evaluation.
std::vector<TF_Tensor *> Input;
/// The specification of the output nodes. When evaluating, the tensors in the
/// output tensor vector must match by index the corresponding element in the
/// OutputFeed.
std::vector<TF_Output> OutputFeed;
void invalidate() { IsValid = false; }
bool IsValid = true;
/// Reusable utility for ensuring we can bind the requested Name to a node in
/// the SavedModel Graph.
bool checkReportAndInvalidate(const TF_Output &Output,
const TensorSpec &OutputSpec);
};
class LoggerDataImpl {
const std::vector<LoggedFeatureSpec> LoggedFeatureSpecs;
const TensorSpec RewardSpec;
tensorflow::SequenceExample SE;
std::vector<tensorflow::FeatureList *> FeatureLists;
tensorflow::FeatureList *Reward = nullptr;
public:
LoggerDataImpl(const std::vector<LoggedFeatureSpec> &LoggedSpecs,
const TensorSpec &RewardSpec, bool IncludeReward)
: LoggedFeatureSpecs(LoggedSpecs), RewardSpec(RewardSpec) {
auto *FL = SE.mutable_feature_lists()->mutable_feature_list();
if (IncludeReward)
Reward = &(*FL)[RewardSpec.name()];
// Allocate first the map entries, then capture their address. We will not
// mutate the set of features after this (i.e. the pointers won't dangle).
for (const auto &LFS : LoggedSpecs) {
(*FL)[LFS.LoggingName ? *LFS.LoggingName : LFS.Spec.name()] = {};
}
for (const auto &LFS : LoggedSpecs)
FeatureLists.push_back(
&(*FL)[LFS.LoggingName ? *LFS.LoggingName : LFS.Spec.name()]);
}
void print(raw_ostream &OS) {
std::string OutStr;
if (ProtobufTextMode)
google::protobuf::TextFormat::PrintToString(SE, &OutStr);
else
OutStr = SE.SerializeAsString();
OS << OutStr;
}
char *addNewTensor(size_t FeatureID) {
const auto &Spec = LoggedFeatureSpecs[FeatureID].Spec;
if (Spec.isElementType<float>()) {
auto *RF = FeatureLists[FeatureID]
->add_feature()
->mutable_float_list()
->mutable_value();
RF->Resize(Spec.getElementCount(), 0.0);
return reinterpret_cast<char *>(RF->mutable_data());
} else if (Spec.isElementType<int32_t>() || Spec.isElementType<int64_t>()) {
auto *RF = FeatureLists[FeatureID]
->add_feature()
->mutable_int64_list()
->mutable_value();
RF->Resize(Spec.getElementCount(), 0);
return reinterpret_cast<char *>(RF->mutable_data());
}
llvm_unreachable("Unsupported tensor type.");
}
template <typename T> void logReward(T Value) {
if (RewardSpec.isElementType<float>())
Reward->add_feature()->mutable_float_list()->add_value(Value);
else if (RewardSpec.isElementType<int32_t>() ||
RewardSpec.isElementType<int64_t>())
Reward->add_feature()->mutable_int64_list()->add_value(Value);
else
llvm_unreachable("Unsupported tensor type.");
}
size_t getNrRecords() const {
return FeatureLists.empty() ? 0 : FeatureLists[0]->feature().size();
}
};
} // namespace llvm
TFModelEvaluatorImpl::TFModelEvaluatorImpl(
StringRef SavedModelPath, const std::vector<TensorSpec> &InputSpecs,
function_ref<TensorSpec(size_t)> GetOutputSpecs, size_t OutputSpecsSize,
const char *Tags = "serve")
: Graph(createTFGraph()), Options(createTFSessionOptions()),
InputFeed(InputSpecs.size()), Input(InputSpecs.size()),
OutputFeed(OutputSpecsSize) {
if (!ensureInitTF()) {
errs() << "Tensorflow should have been initialized";
return;
}
auto Status = createTFStatus();
Session = TF_LoadSessionFromSavedModel(Options.get(), nullptr,
SavedModelPath.str().c_str(), &Tags, 1,
Graph.get(), nullptr, Status.get());
if (TF_GetCode(Status.get()) != TF_Code::TF_OK) {
errs() << TF_Message(Status.get());
invalidate();
}
for (size_t I = 0; I < InputSpecs.size(); ++I) {
auto &InputSpec = InputSpecs[I];
InputFeed[I] = {
TF_GraphOperationByName(Graph.get(), (InputSpec.name()).c_str()),
InputSpec.port()};
if (!checkReportAndInvalidate(InputFeed[I], InputSpec))
return;
initInput(I, static_cast<TF_DataType>(InputSpec.typeIndex()),
InputSpec.shape());
}
for (size_t I = 0; I < OutputSpecsSize; ++I) {
auto OutputSpec = GetOutputSpecs(I);
OutputFeed[I] = {
TF_GraphOperationByName(Graph.get(), (OutputSpec.name()).c_str()),
OutputSpec.port()};
if (!checkReportAndInvalidate(OutputFeed[I], OutputSpec))
return;
}
}
TFModelEvaluator::TFModelEvaluator(
StringRef SavedModelPath, const std::vector<TensorSpec> &InputSpecs,
function_ref<TensorSpec(size_t)> GetOutputSpecs, size_t OutputSpecsSize,
const char *Tags)
: Impl(new TFModelEvaluatorImpl(SavedModelPath, InputSpecs, GetOutputSpecs,
OutputSpecsSize, Tags)) {
if (!Impl->isValid())
Impl.reset();
}
TFModelEvaluator::TFModelEvaluator(StringRef SavedModelPath,
const std::vector<TensorSpec> &InputSpecs,
const std::vector<TensorSpec> &OutputSpecs,
const char *Tags)
: TFModelEvaluator(
SavedModelPath, InputSpecs, [&](size_t I) { return OutputSpecs[I]; },
OutputSpecs.size(), Tags) {}
TFModelEvaluatorImpl::~TFModelEvaluatorImpl() {
for (auto *T : Input) {
TF_DeleteTensor(T);
}
if (Session == nullptr)
return;
auto Status = createTFStatus();
TF_DeleteSession(Session, Status.get());
Session = nullptr;
if (TF_GetCode(Status.get()) != TF_Code::TF_OK)
errs() << "Could not delete TF session";
}
bool TFModelEvaluatorImpl::checkReportAndInvalidate(
const TF_Output &Output, const TensorSpec &OutputSpec) {
if (Output.oper)
return true;
errs() << "Could not find TF_Output named: " + OutputSpec.name();
IsValid = false;
return IsValid;
}
Optional<TFModelEvaluator::EvaluationResult> TFModelEvaluator::evaluate() {
if (!isValid())
return None;
std::unique_ptr<EvaluationResultImpl> Ret =
std::make_unique<EvaluationResultImpl>(Impl->OutputSize());
auto Status = createTFStatus();
Impl->evaluate(Ret->getOutput().data(), Status.get());
if (TF_GetCode(Status.get()) != TF_Code::TF_OK) {
errs() << TF_Message(Status.get());
Impl.reset();
return None;
}
return EvaluationResult(std::move(Ret));
}
void TFModelEvaluatorImpl::initInput(size_t Index, TF_DataType Type,
const std::vector<int64_t> &Dimensions) {
int64_t TotalSize = TF_DataTypeSize(Type);
for (auto &D : Dimensions)
TotalSize *= D;
Input[Index] =
TF_AllocateTensor(Type, Dimensions.data(), Dimensions.size(), TotalSize);
std::memset(TF_TensorData(Input[Index]), 0, TotalSize);
}
void *TFModelEvaluator::getUntypedInput(size_t Index) {
return TF_TensorData(Impl->getInput()[Index]);
}
TFModelEvaluator::EvaluationResult::EvaluationResult(
std::unique_ptr<EvaluationResultImpl> Impl)
: Impl(std::move(Impl)) {}
TFModelEvaluator::EvaluationResult::EvaluationResult(EvaluationResult &&Other)
: Impl(std::move(Other.Impl)) {}
TFModelEvaluator::EvaluationResult &
TFModelEvaluator::EvaluationResult::operator=(EvaluationResult &&Other) {
Impl = std::move(Other.Impl);
return *this;
}
void *TFModelEvaluator::EvaluationResult::getUntypedTensorValue(size_t Index) {
return TF_TensorData(Impl->getOutput()[Index]);
}
const void *
TFModelEvaluator::EvaluationResult::getUntypedTensorValue(size_t Index) const {
return TF_TensorData(Impl->getOutput()[Index]);
}
#define TFUTILS_GETDATATYPE_IMPL(T, E) \
template <> int TensorSpec::getDataType<T>() { return E; }
TFUTILS_SUPPORTED_TYPES(TFUTILS_GETDATATYPE_IMPL)
#undef TFUTILS_GETDATATYPE_IMPL
TFModelEvaluator::EvaluationResult::~EvaluationResult() {}
TFModelEvaluator::~TFModelEvaluator() {}
Logger::Logger(const std::vector<LoggedFeatureSpec> &FeatureSpecs,
const TensorSpec &RewardSpec, bool IncludeReward)
: FeatureSpecs(FeatureSpecs), RewardSpec(RewardSpec),
IncludeReward(IncludeReward),
LoggerData(std::make_unique<LoggerDataImpl>(FeatureSpecs, RewardSpec,
IncludeReward)) {}
Logger::~Logger() {}
#define LOG_REWARD(NAME, TYPE) \
void Logger::log##NAME##Reward(TYPE Value) { \
assert(IncludeReward); \
LoggerData->logReward(Value); \
}
LOG_REWARD(Float, float)
LOG_REWARD(Int32, int32_t)
LOG_REWARD(Int64, int64_t)
#undef LOG_REWARD
#define LOG_FINAL_REWARD(NAME, TYPE) \
void Logger::log##NAME##FinalReward(TYPE Value) { \
assert(RewardSpec.isElementType<TYPE>()); \
for (size_t I = 1; I < LoggerData->getNrRecords(); ++I) \
log##NAME##Reward(0); \
log##NAME##Reward(Value); \
}
LOG_FINAL_REWARD(Float, float)
LOG_FINAL_REWARD(Int32, int32_t)
LOG_FINAL_REWARD(Int64, int64_t)
#undef LOG_FINAL_REWARD
void Logger::logFloatValue(size_t FeatureID, const float *Value) {
assert(FeatureSpecs[FeatureID].Spec.isElementType<float>());
logSpecifiedTensorValue(FeatureID, reinterpret_cast<const char *>(Value));
}
void Logger::logInt64Value(size_t FeatureID, const int64_t *Value) {
assert(FeatureSpecs[FeatureID].Spec.isElementType<int64_t>());
logSpecifiedTensorValue(FeatureID, reinterpret_cast<const char *>(Value));
}
void Logger::logInt32Value(size_t FeatureID, const int32_t *Value) {
assert(FeatureSpecs[FeatureID].Spec.isElementType<int32_t>());
logSpecifiedTensorValue(FeatureID, reinterpret_cast<const char *>(Value));
}
void Logger::logSpecifiedTensorValue(size_t FeatureID, const char *RawData) {
const auto &Spec = FeatureSpecs[FeatureID].Spec;
char *Buff = addEntryAndGetFloatOrInt64Buffer(FeatureID);
if (Spec.isElementType<int32_t>())
for (size_t I = 0; I < Spec.getElementCount(); ++I)
(reinterpret_cast<int64_t *>(Buff))[I] =
static_cast<int64_t>((reinterpret_cast<const int32_t *>(RawData))[I]);
else if (Spec.isElementType<int64_t>() || Spec.isElementType<float>())
std::memcpy(Buff, RawData,
Spec.getElementCount() * Spec.getElementByteSize());
else
llvm_unreachable("Unsupported tensor type");
}
char *Logger::addEntryAndGetFloatOrInt64Buffer(size_t FeatureID) {
return reinterpret_cast<char *>(LoggerData->addNewTensor(FeatureID));
}
void Logger::print(raw_ostream &OS) { LoggerData->print(OS); }
#endif // defined(LLVM_HAVE_TF_API)
|