| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349
 1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357
 1358
 1359
 1360
 1361
 1362
 1363
 1364
 1365
 1366
 1367
 1368
 1369
 1370
 1371
 1372
 1373
 1374
 1375
 1376
 1377
 1378
 1379
 1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403
 1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422
 1423
 1424
 1425
 1426
 1427
 1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457
 1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468
 1469
 1470
 1471
 1472
 1473
 1474
 1475
 1476
 1477
 1478
 1479
 1480
 1481
 1482
 1483
 1484
 1485
 1486
 1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511
 1512
 1513
 1514
 1515
 1516
 1517
 1518
 1519
 1520
 1521
 1522
 1523
 1524
 1525
 1526
 1527
 1528
 1529
 1530
 1531
 1532
 1533
 1534
 1535
 1536
 1537
 1538
 1539
 1540
 1541
 1542
 1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565
 1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619
 1620
 1621
 1622
 1623
 1624
 1625
 1626
 1627
 1628
 1629
 1630
 1631
 1632
 1633
 1634
 1635
 1636
 1637
 1638
 1639
 1640
 1641
 1642
 1643
 1644
 1645
 1646
 1647
 1648
 1649
 1650
 1651
 1652
 1653
 1654
 1655
 1656
 1657
 1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673
 1674
 1675
 1676
 1677
 1678
 1679
 1680
 1681
 1682
 1683
 1684
 1685
 1686
 1687
 1688
 1689
 1690
 1691
 1692
 1693
 1694
 1695
 1696
 1697
 1698
 1699
 1700
 1701
 1702
 1703
 1704
 1705
 1706
 1707
 1708
 1709
 1710
 1711
 1712
 1713
 1714
 1715
 1716
 1717
 1718
 1719
 1720
 1721
 1722
 1723
 1724
 1725
 1726
 1727
 1728
 1729
 1730
 1731
 1732
 1733
 1734
 1735
 1736
 1737
 1738
 1739
 1740
 1741
 1742
 1743
 1744
 1745
 1746
 1747
 1748
 1749
 1750
 1751
 1752
 1753
 1754
 1755
 1756
 1757
 1758
 1759
 1760
 1761
 1762
 1763
 1764
 1765
 1766
 1767
 1768
 1769
 1770
 1771
 1772
 1773
 1774
 1775
 1776
 1777
 1778
 1779
 1780
 1781
 1782
 1783
 1784
 1785
 1786
 1787
 1788
 1789
 1790
 1791
 1792
 1793
 1794
 1795
 1796
 1797
 1798
 1799
 1800
 1801
 1802
 1803
 1804
 1805
 1806
 1807
 1808
 1809
 1810
 1811
 1812
 1813
 1814
 1815
 1816
 1817
 1818
 1819
 1820
 1821
 1822
 1823
 1824
 1825
 1826
 1827
 1828
 1829
 1830
 1831
 1832
 1833
 1834
 1835
 1836
 1837
 1838
 1839
 1840
 1841
 1842
 1843
 1844
 1845
 1846
 1847
 1848
 1849
 1850
 1851
 1852
 1853
 1854
 1855
 1856
 1857
 1858
 1859
 1860
 1861
 1862
 1863
 1864
 1865
 1866
 1867
 1868
 1869
 1870
 1871
 1872
 1873
 1874
 1875
 1876
 1877
 1878
 1879
 1880
 1881
 1882
 1883
 1884
 1885
 1886
 1887
 1888
 1889
 1890
 1891
 1892
 1893
 1894
 1895
 1896
 1897
 1898
 1899
 1900
 1901
 1902
 1903
 1904
 1905
 1906
 1907
 1908
 1909
 1910
 1911
 1912
 1913
 1914
 1915
 1916
 1917
 1918
 1919
 1920
 1921
 1922
 1923
 1924
 1925
 1926
 1927
 1928
 1929
 1930
 1931
 1932
 1933
 1934
 1935
 1936
 1937
 1938
 1939
 1940
 1941
 1942
 1943
 1944
 1945
 1946
 1947
 1948
 1949
 1950
 1951
 1952
 1953
 1954
 1955
 1956
 1957
 1958
 1959
 1960
 1961
 1962
 1963
 1964
 1965
 1966
 1967
 1968
 1969
 1970
 1971
 1972
 1973
 1974
 1975
 1976
 1977
 1978
 1979
 1980
 1981
 1982
 1983
 1984
 1985
 1986
 1987
 1988
 1989
 1990
 1991
 1992
 1993
 1994
 1995
 1996
 1997
 1998
 1999
 2000
 2001
 2002
 2003
 2004
 2005
 2006
 2007
 2008
 2009
 2010
 2011
 2012
 2013
 2014
 2015
 2016
 2017
 2018
 2019
 2020
 2021
 2022
 2023
 2024
 2025
 2026
 2027
 2028
 2029
 2030
 2031
 2032
 2033
 2034
 2035
 2036
 2037
 2038
 2039
 2040
 2041
 2042
 2043
 2044
 2045
 2046
 2047
 2048
 2049
 2050
 2051
 2052
 2053
 2054
 2055
 2056
 2057
 2058
 2059
 2060
 2061
 2062
 2063
 2064
 2065
 2066
 2067
 2068
 2069
 2070
 2071
 2072
 2073
 2074
 2075
 2076
 2077
 2078
 2079
 2080
 2081
 2082
 2083
 2084
 2085
 2086
 2087
 2088
 2089
 2090
 2091
 2092
 2093
 2094
 2095
 2096
 2097
 2098
 2099
 2100
 2101
 2102
 2103
 2104
 2105
 2106
 2107
 2108
 2109
 2110
 2111
 2112
 2113
 2114
 2115
 2116
 2117
 2118
 2119
 2120
 2121
 2122
 2123
 2124
 2125
 2126
 2127
 2128
 2129
 2130
 2131
 2132
 2133
 2134
 2135
 2136
 2137
 2138
 2139
 2140
 2141
 2142
 2143
 2144
 2145
 2146
 2147
 2148
 2149
 2150
 2151
 2152
 2153
 2154
 2155
 2156
 2157
 2158
 2159
 2160
 2161
 2162
 2163
 2164
 2165
 2166
 2167
 2168
 2169
 2170
 2171
 2172
 2173
 2174
 2175
 2176
 2177
 2178
 2179
 2180
 2181
 2182
 2183
 2184
 2185
 2186
 2187
 2188
 2189
 2190
 2191
 2192
 2193
 2194
 2195
 2196
 2197
 2198
 2199
 2200
 2201
 2202
 2203
 2204
 2205
 2206
 2207
 2208
 2209
 2210
 2211
 2212
 2213
 2214
 2215
 2216
 2217
 2218
 2219
 2220
 2221
 2222
 2223
 2224
 2225
 2226
 2227
 2228
 2229
 2230
 2231
 2232
 2233
 2234
 2235
 2236
 2237
 2238
 2239
 2240
 2241
 2242
 2243
 2244
 2245
 2246
 2247
 2248
 2249
 2250
 2251
 2252
 2253
 2254
 2255
 2256
 2257
 2258
 2259
 2260
 2261
 2262
 2263
 2264
 2265
 2266
 2267
 2268
 2269
 2270
 2271
 2272
 2273
 2274
 2275
 2276
 2277
 2278
 2279
 2280
 2281
 2282
 2283
 2284
 2285
 2286
 2287
 2288
 2289
 2290
 2291
 2292
 2293
 2294
 2295
 2296
 2297
 2298
 2299
 2300
 2301
 2302
 2303
 2304
 2305
 2306
 2307
 2308
 2309
 2310
 2311
 2312
 2313
 2314
 2315
 2316
 2317
 2318
 2319
 2320
 2321
 2322
 2323
 2324
 2325
 2326
 2327
 2328
 2329
 2330
 2331
 2332
 2333
 2334
 2335
 2336
 2337
 2338
 2339
 2340
 2341
 2342
 2343
 2344
 2345
 2346
 2347
 2348
 2349
 2350
 2351
 2352
 2353
 2354
 2355
 2356
 2357
 2358
 2359
 2360
 2361
 2362
 2363
 2364
 2365
 2366
 2367
 2368
 2369
 2370
 2371
 2372
 2373
 2374
 2375
 2376
 2377
 2378
 2379
 2380
 2381
 2382
 2383
 2384
 2385
 2386
 2387
 2388
 2389
 2390
 2391
 2392
 2393
 2394
 2395
 2396
 2397
 2398
 2399
 2400
 2401
 2402
 2403
 2404
 2405
 2406
 2407
 2408
 2409
 2410
 2411
 2412
 2413
 2414
 2415
 2416
 2417
 2418
 2419
 2420
 2421
 2422
 2423
 2424
 2425
 2426
 2427
 2428
 2429
 2430
 2431
 2432
 2433
 2434
 2435
 2436
 2437
 2438
 2439
 2440
 2441
 2442
 2443
 2444
 2445
 2446
 2447
 2448
 2449
 2450
 2451
 2452
 2453
 2454
 2455
 2456
 2457
 2458
 2459
 2460
 2461
 2462
 2463
 2464
 2465
 2466
 2467
 2468
 2469
 2470
 2471
 2472
 2473
 2474
 2475
 2476
 2477
 2478
 2479
 2480
 2481
 2482
 2483
 2484
 2485
 2486
 2487
 2488
 2489
 2490
 2491
 2492
 2493
 2494
 2495
 2496
 2497
 2498
 2499
 2500
 2501
 2502
 2503
 2504
 2505
 2506
 2507
 2508
 2509
 2510
 2511
 2512
 2513
 2514
 2515
 2516
 2517
 2518
 2519
 2520
 2521
 2522
 2523
 2524
 2525
 2526
 2527
 2528
 2529
 2530
 2531
 2532
 2533
 2534
 2535
 2536
 2537
 2538
 2539
 2540
 2541
 2542
 2543
 2544
 2545
 2546
 2547
 2548
 2549
 2550
 2551
 2552
 2553
 2554
 2555
 2556
 2557
 2558
 2559
 2560
 2561
 2562
 2563
 2564
 2565
 2566
 2567
 2568
 2569
 2570
 2571
 2572
 2573
 2574
 2575
 2576
 2577
 2578
 2579
 2580
 2581
 2582
 2583
 2584
 2585
 2586
 2587
 2588
 2589
 2590
 2591
 2592
 2593
 2594
 2595
 2596
 2597
 2598
 2599
 2600
 2601
 2602
 2603
 2604
 2605
 2606
 2607
 2608
 2609
 2610
 2611
 2612
 2613
 2614
 2615
 2616
 2617
 2618
 2619
 2620
 2621
 2622
 2623
 2624
 2625
 2626
 2627
 2628
 2629
 2630
 2631
 2632
 2633
 2634
 2635
 2636
 2637
 2638
 2639
 2640
 2641
 2642
 2643
 2644
 2645
 2646
 2647
 2648
 2649
 2650
 2651
 2652
 2653
 2654
 2655
 2656
 2657
 2658
 2659
 2660
 2661
 2662
 2663
 2664
 2665
 2666
 2667
 2668
 2669
 2670
 2671
 2672
 2673
 2674
 2675
 2676
 2677
 2678
 2679
 2680
 2681
 2682
 2683
 2684
 2685
 2686
 2687
 2688
 2689
 2690
 2691
 2692
 2693
 2694
 2695
 2696
 2697
 2698
 2699
 
 | //===-- PPCFrameLowering.cpp - PPC Frame Information ----------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains the PPC implementation of TargetFrameLowering class.
//
//===----------------------------------------------------------------------===//
#include "MCTargetDesc/PPCPredicates.h"
#include "PPCFrameLowering.h"
#include "PPCInstrBuilder.h"
#include "PPCInstrInfo.h"
#include "PPCMachineFunctionInfo.h"
#include "PPCSubtarget.h"
#include "PPCTargetMachine.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/RegisterScavenging.h"
#include "llvm/IR/Function.h"
#include "llvm/Target/TargetOptions.h"
using namespace llvm;
#define DEBUG_TYPE "framelowering"
STATISTIC(NumPESpillVSR, "Number of spills to vector in prologue");
STATISTIC(NumPEReloadVSR, "Number of reloads from vector in epilogue");
STATISTIC(NumPrologProbed, "Number of prologues probed");
static cl::opt<bool>
EnablePEVectorSpills("ppc-enable-pe-vector-spills",
                     cl::desc("Enable spills in prologue to vector registers."),
                     cl::init(false), cl::Hidden);
static unsigned computeReturnSaveOffset(const PPCSubtarget &STI) {
  if (STI.isAIXABI())
    return STI.isPPC64() ? 16 : 8;
  // SVR4 ABI:
  return STI.isPPC64() ? 16 : 4;
}
static unsigned computeTOCSaveOffset(const PPCSubtarget &STI) {
  if (STI.isAIXABI())
    return STI.isPPC64() ? 40 : 20;
  return STI.isELFv2ABI() ? 24 : 40;
}
static unsigned computeFramePointerSaveOffset(const PPCSubtarget &STI) {
  // First slot in the general register save area.
  return STI.isPPC64() ? -8U : -4U;
}
static unsigned computeLinkageSize(const PPCSubtarget &STI) {
  if (STI.isAIXABI() || STI.isPPC64())
    return (STI.isELFv2ABI() ? 4 : 6) * (STI.isPPC64() ? 8 : 4);
  // 32-bit SVR4 ABI:
  return 8;
}
static unsigned computeBasePointerSaveOffset(const PPCSubtarget &STI) {
  // Third slot in the general purpose register save area.
  if (STI.is32BitELFABI() && STI.getTargetMachine().isPositionIndependent())
    return -12U;
  // Second slot in the general purpose register save area.
  return STI.isPPC64() ? -16U : -8U;
}
static unsigned computeCRSaveOffset(const PPCSubtarget &STI) {
  return (STI.isAIXABI() && !STI.isPPC64()) ? 4 : 8;
}
PPCFrameLowering::PPCFrameLowering(const PPCSubtarget &STI)
    : TargetFrameLowering(TargetFrameLowering::StackGrowsDown,
                          STI.getPlatformStackAlignment(), 0),
      Subtarget(STI), ReturnSaveOffset(computeReturnSaveOffset(Subtarget)),
      TOCSaveOffset(computeTOCSaveOffset(Subtarget)),
      FramePointerSaveOffset(computeFramePointerSaveOffset(Subtarget)),
      LinkageSize(computeLinkageSize(Subtarget)),
      BasePointerSaveOffset(computeBasePointerSaveOffset(Subtarget)),
      CRSaveOffset(computeCRSaveOffset(Subtarget)) {}
// With the SVR4 ABI, callee-saved registers have fixed offsets on the stack.
const PPCFrameLowering::SpillSlot *PPCFrameLowering::getCalleeSavedSpillSlots(
    unsigned &NumEntries) const {
// Floating-point register save area offsets.
#define CALLEE_SAVED_FPRS \
      {PPC::F31, -8},     \
      {PPC::F30, -16},    \
      {PPC::F29, -24},    \
      {PPC::F28, -32},    \
      {PPC::F27, -40},    \
      {PPC::F26, -48},    \
      {PPC::F25, -56},    \
      {PPC::F24, -64},    \
      {PPC::F23, -72},    \
      {PPC::F22, -80},    \
      {PPC::F21, -88},    \
      {PPC::F20, -96},    \
      {PPC::F19, -104},   \
      {PPC::F18, -112},   \
      {PPC::F17, -120},   \
      {PPC::F16, -128},   \
      {PPC::F15, -136},   \
      {PPC::F14, -144}
// 32-bit general purpose register save area offsets shared by ELF and
// AIX. AIX has an extra CSR with r13.
#define CALLEE_SAVED_GPRS32 \
      {PPC::R31, -4},       \
      {PPC::R30, -8},       \
      {PPC::R29, -12},      \
      {PPC::R28, -16},      \
      {PPC::R27, -20},      \
      {PPC::R26, -24},      \
      {PPC::R25, -28},      \
      {PPC::R24, -32},      \
      {PPC::R23, -36},      \
      {PPC::R22, -40},      \
      {PPC::R21, -44},      \
      {PPC::R20, -48},      \
      {PPC::R19, -52},      \
      {PPC::R18, -56},      \
      {PPC::R17, -60},      \
      {PPC::R16, -64},      \
      {PPC::R15, -68},      \
      {PPC::R14, -72}
// 64-bit general purpose register save area offsets.
#define CALLEE_SAVED_GPRS64 \
      {PPC::X31, -8},       \
      {PPC::X30, -16},      \
      {PPC::X29, -24},      \
      {PPC::X28, -32},      \
      {PPC::X27, -40},      \
      {PPC::X26, -48},      \
      {PPC::X25, -56},      \
      {PPC::X24, -64},      \
      {PPC::X23, -72},      \
      {PPC::X22, -80},      \
      {PPC::X21, -88},      \
      {PPC::X20, -96},      \
      {PPC::X19, -104},     \
      {PPC::X18, -112},     \
      {PPC::X17, -120},     \
      {PPC::X16, -128},     \
      {PPC::X15, -136},     \
      {PPC::X14, -144}
// Vector register save area offsets.
#define CALLEE_SAVED_VRS \
      {PPC::V31, -16},   \
      {PPC::V30, -32},   \
      {PPC::V29, -48},   \
      {PPC::V28, -64},   \
      {PPC::V27, -80},   \
      {PPC::V26, -96},   \
      {PPC::V25, -112},  \
      {PPC::V24, -128},  \
      {PPC::V23, -144},  \
      {PPC::V22, -160},  \
      {PPC::V21, -176},  \
      {PPC::V20, -192}
  // Note that the offsets here overlap, but this is fixed up in
  // processFunctionBeforeFrameFinalized.
  static const SpillSlot ELFOffsets32[] = {
      CALLEE_SAVED_FPRS,
      CALLEE_SAVED_GPRS32,
      // CR save area offset.  We map each of the nonvolatile CR fields
      // to the slot for CR2, which is the first of the nonvolatile CR
      // fields to be assigned, so that we only allocate one save slot.
      // See PPCRegisterInfo::hasReservedSpillSlot() for more information.
      {PPC::CR2, -4},
      // VRSAVE save area offset.
      {PPC::VRSAVE, -4},
      CALLEE_SAVED_VRS,
      // SPE register save area (overlaps Vector save area).
      {PPC::S31, -8},
      {PPC::S30, -16},
      {PPC::S29, -24},
      {PPC::S28, -32},
      {PPC::S27, -40},
      {PPC::S26, -48},
      {PPC::S25, -56},
      {PPC::S24, -64},
      {PPC::S23, -72},
      {PPC::S22, -80},
      {PPC::S21, -88},
      {PPC::S20, -96},
      {PPC::S19, -104},
      {PPC::S18, -112},
      {PPC::S17, -120},
      {PPC::S16, -128},
      {PPC::S15, -136},
      {PPC::S14, -144}};
  static const SpillSlot ELFOffsets64[] = {
      CALLEE_SAVED_FPRS,
      CALLEE_SAVED_GPRS64,
      // VRSAVE save area offset.
      {PPC::VRSAVE, -4},
      CALLEE_SAVED_VRS
  };
  static const SpillSlot AIXOffsets32[] = {CALLEE_SAVED_FPRS,
                                           CALLEE_SAVED_GPRS32,
                                           // Add AIX's extra CSR.
                                           {PPC::R13, -76},
                                           CALLEE_SAVED_VRS};
  static const SpillSlot AIXOffsets64[] = {
      CALLEE_SAVED_FPRS, CALLEE_SAVED_GPRS64, CALLEE_SAVED_VRS};
  if (Subtarget.is64BitELFABI()) {
    NumEntries = array_lengthof(ELFOffsets64);
    return ELFOffsets64;
  }
  if (Subtarget.is32BitELFABI()) {
    NumEntries = array_lengthof(ELFOffsets32);
    return ELFOffsets32;
  }
  assert(Subtarget.isAIXABI() && "Unexpected ABI.");
  if (Subtarget.isPPC64()) {
    NumEntries = array_lengthof(AIXOffsets64);
    return AIXOffsets64;
  }
  NumEntries = array_lengthof(AIXOffsets32);
  return AIXOffsets32;
}
static bool spillsCR(const MachineFunction &MF) {
  const PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
  return FuncInfo->isCRSpilled();
}
static bool hasSpills(const MachineFunction &MF) {
  const PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
  return FuncInfo->hasSpills();
}
static bool hasNonRISpills(const MachineFunction &MF) {
  const PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
  return FuncInfo->hasNonRISpills();
}
/// MustSaveLR - Return true if this function requires that we save the LR
/// register onto the stack in the prolog and restore it in the epilog of the
/// function.
static bool MustSaveLR(const MachineFunction &MF, unsigned LR) {
  const PPCFunctionInfo *MFI = MF.getInfo<PPCFunctionInfo>();
  // We need a save/restore of LR if there is any def of LR (which is
  // defined by calls, including the PIC setup sequence), or if there is
  // some use of the LR stack slot (e.g. for builtin_return_address).
  // (LR comes in 32 and 64 bit versions.)
  MachineRegisterInfo::def_iterator RI = MF.getRegInfo().def_begin(LR);
  return RI !=MF.getRegInfo().def_end() || MFI->isLRStoreRequired();
}
/// determineFrameLayoutAndUpdate - Determine the size of the frame and maximum
/// call frame size. Update the MachineFunction object with the stack size.
unsigned
PPCFrameLowering::determineFrameLayoutAndUpdate(MachineFunction &MF,
                                                bool UseEstimate) const {
  unsigned NewMaxCallFrameSize = 0;
  unsigned FrameSize = determineFrameLayout(MF, UseEstimate,
                                            &NewMaxCallFrameSize);
  MF.getFrameInfo().setStackSize(FrameSize);
  MF.getFrameInfo().setMaxCallFrameSize(NewMaxCallFrameSize);
  return FrameSize;
}
/// determineFrameLayout - Determine the size of the frame and maximum call
/// frame size.
unsigned
PPCFrameLowering::determineFrameLayout(const MachineFunction &MF,
                                       bool UseEstimate,
                                       unsigned *NewMaxCallFrameSize) const {
  const MachineFrameInfo &MFI = MF.getFrameInfo();
  const PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
  // Get the number of bytes to allocate from the FrameInfo
  unsigned FrameSize =
    UseEstimate ? MFI.estimateStackSize(MF) : MFI.getStackSize();
  // Get stack alignments. The frame must be aligned to the greatest of these:
  Align TargetAlign = getStackAlign(); // alignment required per the ABI
  Align MaxAlign = MFI.getMaxAlign();  // algmt required by data in frame
  Align Alignment = std::max(TargetAlign, MaxAlign);
  const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo();
  unsigned LR = RegInfo->getRARegister();
  bool DisableRedZone = MF.getFunction().hasFnAttribute(Attribute::NoRedZone);
  bool CanUseRedZone = !MFI.hasVarSizedObjects() && // No dynamic alloca.
                       !MFI.adjustsStack() &&       // No calls.
                       !MustSaveLR(MF, LR) &&       // No need to save LR.
                       !FI->mustSaveTOC() &&        // No need to save TOC.
                       !RegInfo->hasBasePointer(MF); // No special alignment.
  // Note: for PPC32 SVR4ABI, we can still generate stackless
  // code if all local vars are reg-allocated.
  bool FitsInRedZone = FrameSize <= Subtarget.getRedZoneSize();
  // Check whether we can skip adjusting the stack pointer (by using red zone)
  if (!DisableRedZone && CanUseRedZone && FitsInRedZone) {
    // No need for frame
    return 0;
  }
  // Get the maximum call frame size of all the calls.
  unsigned maxCallFrameSize = MFI.getMaxCallFrameSize();
  // Maximum call frame needs to be at least big enough for linkage area.
  unsigned minCallFrameSize = getLinkageSize();
  maxCallFrameSize = std::max(maxCallFrameSize, minCallFrameSize);
  // If we have dynamic alloca then maxCallFrameSize needs to be aligned so
  // that allocations will be aligned.
  if (MFI.hasVarSizedObjects())
    maxCallFrameSize = alignTo(maxCallFrameSize, Alignment);
  // Update the new max call frame size if the caller passes in a valid pointer.
  if (NewMaxCallFrameSize)
    *NewMaxCallFrameSize = maxCallFrameSize;
  // Include call frame size in total.
  FrameSize += maxCallFrameSize;
  // Make sure the frame is aligned.
  FrameSize = alignTo(FrameSize, Alignment);
  return FrameSize;
}
// hasFP - Return true if the specified function actually has a dedicated frame
// pointer register.
bool PPCFrameLowering::hasFP(const MachineFunction &MF) const {
  const MachineFrameInfo &MFI = MF.getFrameInfo();
  // FIXME: This is pretty much broken by design: hasFP() might be called really
  // early, before the stack layout was calculated and thus hasFP() might return
  // true or false here depending on the time of call.
  return (MFI.getStackSize()) && needsFP(MF);
}
// needsFP - Return true if the specified function should have a dedicated frame
// pointer register.  This is true if the function has variable sized allocas or
// if frame pointer elimination is disabled.
bool PPCFrameLowering::needsFP(const MachineFunction &MF) const {
  const MachineFrameInfo &MFI = MF.getFrameInfo();
  // Naked functions have no stack frame pushed, so we don't have a frame
  // pointer.
  if (MF.getFunction().hasFnAttribute(Attribute::Naked))
    return false;
  return MF.getTarget().Options.DisableFramePointerElim(MF) ||
         MFI.hasVarSizedObjects() || MFI.hasStackMap() || MFI.hasPatchPoint() ||
         MF.exposesReturnsTwice() ||
         (MF.getTarget().Options.GuaranteedTailCallOpt &&
          MF.getInfo<PPCFunctionInfo>()->hasFastCall());
}
void PPCFrameLowering::replaceFPWithRealFP(MachineFunction &MF) const {
  bool is31 = needsFP(MF);
  unsigned FPReg  = is31 ? PPC::R31 : PPC::R1;
  unsigned FP8Reg = is31 ? PPC::X31 : PPC::X1;
  const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo();
  bool HasBP = RegInfo->hasBasePointer(MF);
  unsigned BPReg  = HasBP ? (unsigned) RegInfo->getBaseRegister(MF) : FPReg;
  unsigned BP8Reg = HasBP ? (unsigned) PPC::X30 : FP8Reg;
  for (MachineFunction::iterator BI = MF.begin(), BE = MF.end();
       BI != BE; ++BI)
    for (MachineBasicBlock::iterator MBBI = BI->end(); MBBI != BI->begin(); ) {
      --MBBI;
      for (unsigned I = 0, E = MBBI->getNumOperands(); I != E; ++I) {
        MachineOperand &MO = MBBI->getOperand(I);
        if (!MO.isReg())
          continue;
        switch (MO.getReg()) {
        case PPC::FP:
          MO.setReg(FPReg);
          break;
        case PPC::FP8:
          MO.setReg(FP8Reg);
          break;
        case PPC::BP:
          MO.setReg(BPReg);
          break;
        case PPC::BP8:
          MO.setReg(BP8Reg);
          break;
        }
      }
    }
}
/*  This function will do the following:
    - If MBB is an entry or exit block, set SR1 and SR2 to R0 and R12
      respectively (defaults recommended by the ABI) and return true
    - If MBB is not an entry block, initialize the register scavenger and look
      for available registers.
    - If the defaults (R0/R12) are available, return true
    - If TwoUniqueRegsRequired is set to true, it looks for two unique
      registers. Otherwise, look for a single available register.
      - If the required registers are found, set SR1 and SR2 and return true.
      - If the required registers are not found, set SR2 or both SR1 and SR2 to
        PPC::NoRegister and return false.
    Note that if both SR1 and SR2 are valid parameters and TwoUniqueRegsRequired
    is not set, this function will attempt to find two different registers, but
    still return true if only one register is available (and set SR1 == SR2).
*/
bool
PPCFrameLowering::findScratchRegister(MachineBasicBlock *MBB,
                                      bool UseAtEnd,
                                      bool TwoUniqueRegsRequired,
                                      Register *SR1,
                                      Register *SR2) const {
  RegScavenger RS;
  Register R0 =  Subtarget.isPPC64() ? PPC::X0 : PPC::R0;
  Register R12 = Subtarget.isPPC64() ? PPC::X12 : PPC::R12;
  // Set the defaults for the two scratch registers.
  if (SR1)
    *SR1 = R0;
  if (SR2) {
    assert (SR1 && "Asking for the second scratch register but not the first?");
    *SR2 = R12;
  }
  // If MBB is an entry or exit block, use R0 and R12 as the scratch registers.
  if ((UseAtEnd && MBB->isReturnBlock()) ||
      (!UseAtEnd && (&MBB->getParent()->front() == MBB)))
    return true;
  RS.enterBasicBlock(*MBB);
  if (UseAtEnd && !MBB->empty()) {
    // The scratch register will be used at the end of the block, so must
    // consider all registers used within the block
    MachineBasicBlock::iterator MBBI = MBB->getFirstTerminator();
    // If no terminator, back iterator up to previous instruction.
    if (MBBI == MBB->end())
      MBBI = std::prev(MBBI);
    if (MBBI != MBB->begin())
      RS.forward(MBBI);
  }
  // If the two registers are available, we're all good.
  // Note that we only return here if both R0 and R12 are available because
  // although the function may not require two unique registers, it may benefit
  // from having two so we should try to provide them.
  if (!RS.isRegUsed(R0) && !RS.isRegUsed(R12))
    return true;
  // Get the list of callee-saved registers for the target.
  const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo();
  const MCPhysReg *CSRegs = RegInfo->getCalleeSavedRegs(MBB->getParent());
  // Get all the available registers in the block.
  BitVector BV = RS.getRegsAvailable(Subtarget.isPPC64() ? &PPC::G8RCRegClass :
                                     &PPC::GPRCRegClass);
  // We shouldn't use callee-saved registers as scratch registers as they may be
  // available when looking for a candidate block for shrink wrapping but not
  // available when the actual prologue/epilogue is being emitted because they
  // were added as live-in to the prologue block by PrologueEpilogueInserter.
  for (int i = 0; CSRegs[i]; ++i)
    BV.reset(CSRegs[i]);
  // Set the first scratch register to the first available one.
  if (SR1) {
    int FirstScratchReg = BV.find_first();
    *SR1 = FirstScratchReg == -1 ? (unsigned)PPC::NoRegister : FirstScratchReg;
  }
  // If there is another one available, set the second scratch register to that.
  // Otherwise, set it to either PPC::NoRegister if this function requires two
  // or to whatever SR1 is set to if this function doesn't require two.
  if (SR2) {
    int SecondScratchReg = BV.find_next(*SR1);
    if (SecondScratchReg != -1)
      *SR2 = SecondScratchReg;
    else
      *SR2 = TwoUniqueRegsRequired ? Register() : *SR1;
  }
  // Now that we've done our best to provide both registers, double check
  // whether we were unable to provide enough.
  if (BV.count() < (TwoUniqueRegsRequired ? 2U : 1U))
    return false;
  return true;
}
// We need a scratch register for spilling LR and for spilling CR. By default,
// we use two scratch registers to hide latency. However, if only one scratch
// register is available, we can adjust for that by not overlapping the spill
// code. However, if we need to realign the stack (i.e. have a base pointer)
// and the stack frame is large, we need two scratch registers.
// Also, stack probe requires two scratch registers, one for old sp, one for
// large frame and large probe size.
bool
PPCFrameLowering::twoUniqueScratchRegsRequired(MachineBasicBlock *MBB) const {
  const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo();
  MachineFunction &MF = *(MBB->getParent());
  bool HasBP = RegInfo->hasBasePointer(MF);
  unsigned FrameSize = determineFrameLayout(MF);
  int NegFrameSize = -FrameSize;
  bool IsLargeFrame = !isInt<16>(NegFrameSize);
  MachineFrameInfo &MFI = MF.getFrameInfo();
  Align MaxAlign = MFI.getMaxAlign();
  bool HasRedZone = Subtarget.isPPC64() || !Subtarget.isSVR4ABI();
  const PPCTargetLowering &TLI = *Subtarget.getTargetLowering();
  return ((IsLargeFrame || !HasRedZone) && HasBP && MaxAlign > 1) ||
         TLI.hasInlineStackProbe(MF);
}
bool PPCFrameLowering::canUseAsPrologue(const MachineBasicBlock &MBB) const {
  MachineBasicBlock *TmpMBB = const_cast<MachineBasicBlock *>(&MBB);
  return findScratchRegister(TmpMBB, false,
                             twoUniqueScratchRegsRequired(TmpMBB));
}
bool PPCFrameLowering::canUseAsEpilogue(const MachineBasicBlock &MBB) const {
  MachineBasicBlock *TmpMBB = const_cast<MachineBasicBlock *>(&MBB);
  return findScratchRegister(TmpMBB, true);
}
bool PPCFrameLowering::stackUpdateCanBeMoved(MachineFunction &MF) const {
  const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo();
  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
  // Abort if there is no register info or function info.
  if (!RegInfo || !FI)
    return false;
  // Only move the stack update on ELFv2 ABI and PPC64.
  if (!Subtarget.isELFv2ABI() || !Subtarget.isPPC64())
    return false;
  // Check the frame size first and return false if it does not fit the
  // requirements.
  // We need a non-zero frame size as well as a frame that will fit in the red
  // zone. This is because by moving the stack pointer update we are now storing
  // to the red zone until the stack pointer is updated. If we get an interrupt
  // inside the prologue but before the stack update we now have a number of
  // stores to the red zone and those stores must all fit.
  MachineFrameInfo &MFI = MF.getFrameInfo();
  unsigned FrameSize = MFI.getStackSize();
  if (!FrameSize || FrameSize > Subtarget.getRedZoneSize())
    return false;
  // Frame pointers and base pointers complicate matters so don't do anything
  // if we have them. For example having a frame pointer will sometimes require
  // a copy of r1 into r31 and that makes keeping track of updates to r1 more
  // difficult. Similar situation exists with setjmp.
  if (hasFP(MF) || RegInfo->hasBasePointer(MF) || MF.exposesReturnsTwice())
    return false;
  // Calls to fast_cc functions use different rules for passing parameters on
  // the stack from the ABI and using PIC base in the function imposes
  // similar restrictions to using the base pointer. It is not generally safe
  // to move the stack pointer update in these situations.
  if (FI->hasFastCall() || FI->usesPICBase())
    return false;
  // Finally we can move the stack update if we do not require register
  // scavenging. Register scavenging can introduce more spills and so
  // may make the frame size larger than we have computed.
  return !RegInfo->requiresFrameIndexScavenging(MF);
}
void PPCFrameLowering::emitPrologue(MachineFunction &MF,
                                    MachineBasicBlock &MBB) const {
  MachineBasicBlock::iterator MBBI = MBB.begin();
  MachineFrameInfo &MFI = MF.getFrameInfo();
  const PPCInstrInfo &TII = *Subtarget.getInstrInfo();
  const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo();
  const PPCTargetLowering &TLI = *Subtarget.getTargetLowering();
  MachineModuleInfo &MMI = MF.getMMI();
  const MCRegisterInfo *MRI = MMI.getContext().getRegisterInfo();
  DebugLoc dl;
  // AIX assembler does not support cfi directives.
  const bool needsCFI = MF.needsFrameMoves() && !Subtarget.isAIXABI();
  // Get processor type.
  bool isPPC64 = Subtarget.isPPC64();
  // Get the ABI.
  bool isSVR4ABI = Subtarget.isSVR4ABI();
  bool isELFv2ABI = Subtarget.isELFv2ABI();
  assert((isSVR4ABI || Subtarget.isAIXABI()) && "Unsupported PPC ABI.");
  // Work out frame sizes.
  unsigned FrameSize = determineFrameLayoutAndUpdate(MF);
  int NegFrameSize = -FrameSize;
  if (!isInt<32>(NegFrameSize))
    llvm_unreachable("Unhandled stack size!");
  if (MFI.isFrameAddressTaken())
    replaceFPWithRealFP(MF);
  // Check if the link register (LR) must be saved.
  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
  bool MustSaveLR = FI->mustSaveLR();
  bool MustSaveTOC = FI->mustSaveTOC();
  const SmallVectorImpl<Register> &MustSaveCRs = FI->getMustSaveCRs();
  bool MustSaveCR = !MustSaveCRs.empty();
  // Do we have a frame pointer and/or base pointer for this function?
  bool HasFP = hasFP(MF);
  bool HasBP = RegInfo->hasBasePointer(MF);
  bool HasRedZone = isPPC64 || !isSVR4ABI;
  bool HasROPProtect = Subtarget.hasROPProtect();
  bool HasPrivileged = Subtarget.hasPrivileged();
  Register SPReg       = isPPC64 ? PPC::X1  : PPC::R1;
  Register BPReg = RegInfo->getBaseRegister(MF);
  Register FPReg       = isPPC64 ? PPC::X31 : PPC::R31;
  Register LRReg       = isPPC64 ? PPC::LR8 : PPC::LR;
  Register TOCReg      = isPPC64 ? PPC::X2 :  PPC::R2;
  Register ScratchReg;
  Register TempReg     = isPPC64 ? PPC::X12 : PPC::R12; // another scratch reg
  //  ...(R12/X12 is volatile in both Darwin & SVR4, & can't be a function arg.)
  const MCInstrDesc& MFLRInst = TII.get(isPPC64 ? PPC::MFLR8
                                                : PPC::MFLR );
  const MCInstrDesc& StoreInst = TII.get(isPPC64 ? PPC::STD
                                                 : PPC::STW );
  const MCInstrDesc& StoreUpdtInst = TII.get(isPPC64 ? PPC::STDU
                                                     : PPC::STWU );
  const MCInstrDesc& StoreUpdtIdxInst = TII.get(isPPC64 ? PPC::STDUX
                                                        : PPC::STWUX);
  const MCInstrDesc& LoadImmShiftedInst = TII.get(isPPC64 ? PPC::LIS8
                                                          : PPC::LIS );
  const MCInstrDesc& OrImmInst = TII.get(isPPC64 ? PPC::ORI8
                                                 : PPC::ORI );
  const MCInstrDesc& OrInst = TII.get(isPPC64 ? PPC::OR8
                                              : PPC::OR );
  const MCInstrDesc& SubtractCarryingInst = TII.get(isPPC64 ? PPC::SUBFC8
                                                            : PPC::SUBFC);
  const MCInstrDesc& SubtractImmCarryingInst = TII.get(isPPC64 ? PPC::SUBFIC8
                                                               : PPC::SUBFIC);
  const MCInstrDesc &MoveFromCondRegInst = TII.get(isPPC64 ? PPC::MFCR8
                                                           : PPC::MFCR);
  const MCInstrDesc &StoreWordInst = TII.get(isPPC64 ? PPC::STW8 : PPC::STW);
  const MCInstrDesc &HashST =
      TII.get(HasPrivileged ? PPC::HASHSTP : PPC::HASHST);
  // Regarding this assert: Even though LR is saved in the caller's frame (i.e.,
  // LROffset is positive), that slot is callee-owned. Because PPC32 SVR4 has no
  // Red Zone, an asynchronous event (a form of "callee") could claim a frame &
  // overwrite it, so PPC32 SVR4 must claim at least a minimal frame to save LR.
  assert((isPPC64 || !isSVR4ABI || !(!FrameSize && (MustSaveLR || HasFP))) &&
         "FrameSize must be >0 to save/restore the FP or LR for 32-bit SVR4.");
  // Using the same bool variable as below to suppress compiler warnings.
  bool SingleScratchReg = findScratchRegister(
      &MBB, false, twoUniqueScratchRegsRequired(&MBB), &ScratchReg, &TempReg);
  assert(SingleScratchReg &&
         "Required number of registers not available in this block");
  SingleScratchReg = ScratchReg == TempReg;
  int LROffset = getReturnSaveOffset();
  int FPOffset = 0;
  if (HasFP) {
    MachineFrameInfo &MFI = MF.getFrameInfo();
    int FPIndex = FI->getFramePointerSaveIndex();
    assert(FPIndex && "No Frame Pointer Save Slot!");
    FPOffset = MFI.getObjectOffset(FPIndex);
  }
  int BPOffset = 0;
  if (HasBP) {
    MachineFrameInfo &MFI = MF.getFrameInfo();
    int BPIndex = FI->getBasePointerSaveIndex();
    assert(BPIndex && "No Base Pointer Save Slot!");
    BPOffset = MFI.getObjectOffset(BPIndex);
  }
  int PBPOffset = 0;
  if (FI->usesPICBase()) {
    MachineFrameInfo &MFI = MF.getFrameInfo();
    int PBPIndex = FI->getPICBasePointerSaveIndex();
    assert(PBPIndex && "No PIC Base Pointer Save Slot!");
    PBPOffset = MFI.getObjectOffset(PBPIndex);
  }
  // Get stack alignments.
  Align MaxAlign = MFI.getMaxAlign();
  if (HasBP && MaxAlign > 1)
    assert(Log2(MaxAlign) < 16 && "Invalid alignment!");
  // Frames of 32KB & larger require special handling because they cannot be
  // indexed into with a simple STDU/STWU/STD/STW immediate offset operand.
  bool isLargeFrame = !isInt<16>(NegFrameSize);
  // Check if we can move the stack update instruction (stdu) down the prologue
  // past the callee saves. Hopefully this will avoid the situation where the
  // saves are waiting for the update on the store with update to complete.
  MachineBasicBlock::iterator StackUpdateLoc = MBBI;
  bool MovingStackUpdateDown = false;
  // Check if we can move the stack update.
  if (stackUpdateCanBeMoved(MF)) {
    const std::vector<CalleeSavedInfo> &Info = MFI.getCalleeSavedInfo();
    for (CalleeSavedInfo CSI : Info) {
      // If the callee saved register is spilled to a register instead of the
      // stack then the spill no longer uses the stack pointer.
      // This can lead to two consequences:
      // 1) We no longer need to update the stack because the function does not
      //    spill any callee saved registers to stack.
      // 2) We have a situation where we still have to update the stack pointer
      //    even though some registers are spilled to other registers. In
      //    this case the current code moves the stack update to an incorrect
      //    position.
      // In either case we should abort moving the stack update operation.
      if (CSI.isSpilledToReg()) {
        StackUpdateLoc = MBBI;
        MovingStackUpdateDown = false;
        break;
      }
      int FrIdx = CSI.getFrameIdx();
      // If the frame index is not negative the callee saved info belongs to a
      // stack object that is not a fixed stack object. We ignore non-fixed
      // stack objects because we won't move the stack update pointer past them.
      if (FrIdx >= 0)
        continue;
      if (MFI.isFixedObjectIndex(FrIdx) && MFI.getObjectOffset(FrIdx) < 0) {
        StackUpdateLoc++;
        MovingStackUpdateDown = true;
      } else {
        // We need all of the Frame Indices to meet these conditions.
        // If they do not, abort the whole operation.
        StackUpdateLoc = MBBI;
        MovingStackUpdateDown = false;
        break;
      }
    }
    // If the operation was not aborted then update the object offset.
    if (MovingStackUpdateDown) {
      for (CalleeSavedInfo CSI : Info) {
        int FrIdx = CSI.getFrameIdx();
        if (FrIdx < 0)
          MFI.setObjectOffset(FrIdx, MFI.getObjectOffset(FrIdx) + NegFrameSize);
      }
    }
  }
  // Where in the prologue we move the CR fields depends on how many scratch
  // registers we have, and if we need to save the link register or not. This
  // lambda is to avoid duplicating the logic in 2 places.
  auto BuildMoveFromCR = [&]() {
    if (isELFv2ABI && MustSaveCRs.size() == 1) {
    // In the ELFv2 ABI, we are not required to save all CR fields.
    // If only one CR field is clobbered, it is more efficient to use
    // mfocrf to selectively save just that field, because mfocrf has short
    // latency compares to mfcr.
      assert(isPPC64 && "V2 ABI is 64-bit only.");
      MachineInstrBuilder MIB =
          BuildMI(MBB, MBBI, dl, TII.get(PPC::MFOCRF8), TempReg);
      MIB.addReg(MustSaveCRs[0], RegState::Kill);
    } else {
      MachineInstrBuilder MIB =
          BuildMI(MBB, MBBI, dl, MoveFromCondRegInst, TempReg);
      for (unsigned CRfield : MustSaveCRs)
        MIB.addReg(CRfield, RegState::ImplicitKill);
    }
  };
  // If we need to spill the CR and the LR but we don't have two separate
  // registers available, we must spill them one at a time
  if (MustSaveCR && SingleScratchReg && MustSaveLR) {
    BuildMoveFromCR();
    BuildMI(MBB, MBBI, dl, StoreWordInst)
        .addReg(TempReg, getKillRegState(true))
        .addImm(CRSaveOffset)
        .addReg(SPReg);
  }
  if (MustSaveLR)
    BuildMI(MBB, MBBI, dl, MFLRInst, ScratchReg);
  if (MustSaveCR && !(SingleScratchReg && MustSaveLR))
    BuildMoveFromCR();
  if (HasRedZone) {
    if (HasFP)
      BuildMI(MBB, MBBI, dl, StoreInst)
        .addReg(FPReg)
        .addImm(FPOffset)
        .addReg(SPReg);
    if (FI->usesPICBase())
      BuildMI(MBB, MBBI, dl, StoreInst)
        .addReg(PPC::R30)
        .addImm(PBPOffset)
        .addReg(SPReg);
    if (HasBP)
      BuildMI(MBB, MBBI, dl, StoreInst)
        .addReg(BPReg)
        .addImm(BPOffset)
        .addReg(SPReg);
  }
  // Generate the instruction to store the LR. In the case where ROP protection
  // is required the register holding the LR should not be killed as it will be
  // used by the hash store instruction.
  if (MustSaveLR) {
    BuildMI(MBB, StackUpdateLoc, dl, StoreInst)
        .addReg(ScratchReg, getKillRegState(!HasROPProtect))
        .addImm(LROffset)
        .addReg(SPReg);
    // Add the ROP protection Hash Store instruction.
    // NOTE: This is technically a violation of the ABI. The hash can be saved
    // up to 512 bytes into the Protected Zone. This can be outside of the
    // initial 288 byte volatile program storage region in the Protected Zone.
    // However, this restriction will be removed in an upcoming revision of the
    // ABI.
    if (HasROPProtect) {
      const int SaveIndex = FI->getROPProtectionHashSaveIndex();
      const int ImmOffset = MFI.getObjectOffset(SaveIndex);
      assert((ImmOffset <= -8 && ImmOffset >= -512) &&
             "ROP hash save offset out of range.");
      assert(((ImmOffset & 0x7) == 0) &&
             "ROP hash save offset must be 8 byte aligned.");
      BuildMI(MBB, StackUpdateLoc, dl, HashST)
          .addReg(ScratchReg, getKillRegState(true))
          .addImm(ImmOffset)
          .addReg(SPReg);
    }
  }
  if (MustSaveCR &&
      !(SingleScratchReg && MustSaveLR)) {
    assert(HasRedZone && "A red zone is always available on PPC64");
    BuildMI(MBB, MBBI, dl, StoreWordInst)
      .addReg(TempReg, getKillRegState(true))
      .addImm(CRSaveOffset)
      .addReg(SPReg);
  }
  // Skip the rest if this is a leaf function & all spills fit in the Red Zone.
  if (!FrameSize)
    return;
  // Adjust stack pointer: r1 += NegFrameSize.
  // If there is a preferred stack alignment, align R1 now
  if (HasBP && HasRedZone) {
    // Save a copy of r1 as the base pointer.
    BuildMI(MBB, MBBI, dl, OrInst, BPReg)
      .addReg(SPReg)
      .addReg(SPReg);
  }
  // Have we generated a STUX instruction to claim stack frame? If so,
  // the negated frame size will be placed in ScratchReg.
  bool HasSTUX = false;
  // If FrameSize <= TLI.getStackProbeSize(MF), as POWER ABI requires backchain
  // pointer is always stored at SP, we will get a free probe due to an essential
  // STU(X) instruction.
  if (TLI.hasInlineStackProbe(MF) && FrameSize > TLI.getStackProbeSize(MF)) {
    // To be consistent with other targets, a pseudo instruction is emitted and
    // will be later expanded in `inlineStackProbe`.
    BuildMI(MBB, MBBI, dl,
            TII.get(isPPC64 ? PPC::PROBED_STACKALLOC_64
                            : PPC::PROBED_STACKALLOC_32))
        .addDef(TempReg)
        .addDef(ScratchReg) // ScratchReg stores the old sp.
        .addImm(NegFrameSize);
    // FIXME: HasSTUX is only read if HasRedZone is not set, in such case, we
    // update the ScratchReg to meet the assumption that ScratchReg contains
    // the NegFrameSize. This solution is rather tricky.
    if (!HasRedZone) {
      BuildMI(MBB, MBBI, dl, TII.get(PPC::SUBF), ScratchReg)
          .addReg(ScratchReg)
          .addReg(SPReg);
      HasSTUX = true;
    }
  } else {
    // This condition must be kept in sync with canUseAsPrologue.
    if (HasBP && MaxAlign > 1) {
      if (isPPC64)
        BuildMI(MBB, MBBI, dl, TII.get(PPC::RLDICL), ScratchReg)
            .addReg(SPReg)
            .addImm(0)
            .addImm(64 - Log2(MaxAlign));
      else // PPC32...
        BuildMI(MBB, MBBI, dl, TII.get(PPC::RLWINM), ScratchReg)
            .addReg(SPReg)
            .addImm(0)
            .addImm(32 - Log2(MaxAlign))
            .addImm(31);
      if (!isLargeFrame) {
        BuildMI(MBB, MBBI, dl, SubtractImmCarryingInst, ScratchReg)
            .addReg(ScratchReg, RegState::Kill)
            .addImm(NegFrameSize);
      } else {
        assert(!SingleScratchReg && "Only a single scratch reg available");
        BuildMI(MBB, MBBI, dl, LoadImmShiftedInst, TempReg)
            .addImm(NegFrameSize >> 16);
        BuildMI(MBB, MBBI, dl, OrImmInst, TempReg)
            .addReg(TempReg, RegState::Kill)
            .addImm(NegFrameSize & 0xFFFF);
        BuildMI(MBB, MBBI, dl, SubtractCarryingInst, ScratchReg)
            .addReg(ScratchReg, RegState::Kill)
            .addReg(TempReg, RegState::Kill);
      }
      BuildMI(MBB, MBBI, dl, StoreUpdtIdxInst, SPReg)
          .addReg(SPReg, RegState::Kill)
          .addReg(SPReg)
          .addReg(ScratchReg);
      HasSTUX = true;
    } else if (!isLargeFrame) {
      BuildMI(MBB, StackUpdateLoc, dl, StoreUpdtInst, SPReg)
          .addReg(SPReg)
          .addImm(NegFrameSize)
          .addReg(SPReg);
    } else {
      BuildMI(MBB, MBBI, dl, LoadImmShiftedInst, ScratchReg)
          .addImm(NegFrameSize >> 16);
      BuildMI(MBB, MBBI, dl, OrImmInst, ScratchReg)
          .addReg(ScratchReg, RegState::Kill)
          .addImm(NegFrameSize & 0xFFFF);
      BuildMI(MBB, MBBI, dl, StoreUpdtIdxInst, SPReg)
          .addReg(SPReg, RegState::Kill)
          .addReg(SPReg)
          .addReg(ScratchReg);
      HasSTUX = true;
    }
  }
  // Save the TOC register after the stack pointer update if a prologue TOC
  // save is required for the function.
  if (MustSaveTOC) {
    assert(isELFv2ABI && "TOC saves in the prologue only supported on ELFv2");
    BuildMI(MBB, StackUpdateLoc, dl, TII.get(PPC::STD))
      .addReg(TOCReg, getKillRegState(true))
      .addImm(TOCSaveOffset)
      .addReg(SPReg);
  }
  if (!HasRedZone) {
    assert(!isPPC64 && "A red zone is always available on PPC64");
    if (HasSTUX) {
      // The negated frame size is in ScratchReg, and the SPReg has been
      // decremented by the frame size: SPReg = old SPReg + ScratchReg.
      // Since FPOffset, PBPOffset, etc. are relative to the beginning of
      // the stack frame (i.e. the old SP), ideally, we would put the old
      // SP into a register and use it as the base for the stores. The
      // problem is that the only available register may be ScratchReg,
      // which could be R0, and R0 cannot be used as a base address.
      // First, set ScratchReg to the old SP. This may need to be modified
      // later.
      BuildMI(MBB, MBBI, dl, TII.get(PPC::SUBF), ScratchReg)
        .addReg(ScratchReg, RegState::Kill)
        .addReg(SPReg);
      if (ScratchReg == PPC::R0) {
        // R0 cannot be used as a base register, but it can be used as an
        // index in a store-indexed.
        int LastOffset = 0;
        if (HasFP)  {
          // R0 += (FPOffset-LastOffset).
          // Need addic, since addi treats R0 as 0.
          BuildMI(MBB, MBBI, dl, TII.get(PPC::ADDIC), ScratchReg)
            .addReg(ScratchReg)
            .addImm(FPOffset-LastOffset);
          LastOffset = FPOffset;
          // Store FP into *R0.
          BuildMI(MBB, MBBI, dl, TII.get(PPC::STWX))
            .addReg(FPReg, RegState::Kill)  // Save FP.
            .addReg(PPC::ZERO)
            .addReg(ScratchReg);  // This will be the index (R0 is ok here).
        }
        if (FI->usesPICBase()) {
          // R0 += (PBPOffset-LastOffset).
          BuildMI(MBB, MBBI, dl, TII.get(PPC::ADDIC), ScratchReg)
            .addReg(ScratchReg)
            .addImm(PBPOffset-LastOffset);
          LastOffset = PBPOffset;
          BuildMI(MBB, MBBI, dl, TII.get(PPC::STWX))
            .addReg(PPC::R30, RegState::Kill)  // Save PIC base pointer.
            .addReg(PPC::ZERO)
            .addReg(ScratchReg);  // This will be the index (R0 is ok here).
        }
        if (HasBP) {
          // R0 += (BPOffset-LastOffset).
          BuildMI(MBB, MBBI, dl, TII.get(PPC::ADDIC), ScratchReg)
            .addReg(ScratchReg)
            .addImm(BPOffset-LastOffset);
          LastOffset = BPOffset;
          BuildMI(MBB, MBBI, dl, TII.get(PPC::STWX))
            .addReg(BPReg, RegState::Kill)  // Save BP.
            .addReg(PPC::ZERO)
            .addReg(ScratchReg);  // This will be the index (R0 is ok here).
          // BP = R0-LastOffset
          BuildMI(MBB, MBBI, dl, TII.get(PPC::ADDIC), BPReg)
            .addReg(ScratchReg, RegState::Kill)
            .addImm(-LastOffset);
        }
      } else {
        // ScratchReg is not R0, so use it as the base register. It is
        // already set to the old SP, so we can use the offsets directly.
        // Now that the stack frame has been allocated, save all the necessary
        // registers using ScratchReg as the base address.
        if (HasFP)
          BuildMI(MBB, MBBI, dl, StoreInst)
            .addReg(FPReg)
            .addImm(FPOffset)
            .addReg(ScratchReg);
        if (FI->usesPICBase())
          BuildMI(MBB, MBBI, dl, StoreInst)
            .addReg(PPC::R30)
            .addImm(PBPOffset)
            .addReg(ScratchReg);
        if (HasBP) {
          BuildMI(MBB, MBBI, dl, StoreInst)
            .addReg(BPReg)
            .addImm(BPOffset)
            .addReg(ScratchReg);
          BuildMI(MBB, MBBI, dl, OrInst, BPReg)
            .addReg(ScratchReg, RegState::Kill)
            .addReg(ScratchReg);
        }
      }
    } else {
      // The frame size is a known 16-bit constant (fitting in the immediate
      // field of STWU). To be here we have to be compiling for PPC32.
      // Since the SPReg has been decreased by FrameSize, add it back to each
      // offset.
      if (HasFP)
        BuildMI(MBB, MBBI, dl, StoreInst)
          .addReg(FPReg)
          .addImm(FrameSize + FPOffset)
          .addReg(SPReg);
      if (FI->usesPICBase())
        BuildMI(MBB, MBBI, dl, StoreInst)
          .addReg(PPC::R30)
          .addImm(FrameSize + PBPOffset)
          .addReg(SPReg);
      if (HasBP) {
        BuildMI(MBB, MBBI, dl, StoreInst)
          .addReg(BPReg)
          .addImm(FrameSize + BPOffset)
          .addReg(SPReg);
        BuildMI(MBB, MBBI, dl, TII.get(PPC::ADDI), BPReg)
          .addReg(SPReg)
          .addImm(FrameSize);
      }
    }
  }
  // Add Call Frame Information for the instructions we generated above.
  if (needsCFI) {
    unsigned CFIIndex;
    if (HasBP) {
      // Define CFA in terms of BP. Do this in preference to using FP/SP,
      // because if the stack needed aligning then CFA won't be at a fixed
      // offset from FP/SP.
      unsigned Reg = MRI->getDwarfRegNum(BPReg, true);
      CFIIndex = MF.addFrameInst(
          MCCFIInstruction::createDefCfaRegister(nullptr, Reg));
    } else {
      // Adjust the definition of CFA to account for the change in SP.
      assert(NegFrameSize);
      CFIIndex = MF.addFrameInst(
          MCCFIInstruction::cfiDefCfaOffset(nullptr, -NegFrameSize));
    }
    BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
        .addCFIIndex(CFIIndex);
    if (HasFP) {
      // Describe where FP was saved, at a fixed offset from CFA.
      unsigned Reg = MRI->getDwarfRegNum(FPReg, true);
      CFIIndex = MF.addFrameInst(
          MCCFIInstruction::createOffset(nullptr, Reg, FPOffset));
      BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
          .addCFIIndex(CFIIndex);
    }
    if (FI->usesPICBase()) {
      // Describe where FP was saved, at a fixed offset from CFA.
      unsigned Reg = MRI->getDwarfRegNum(PPC::R30, true);
      CFIIndex = MF.addFrameInst(
          MCCFIInstruction::createOffset(nullptr, Reg, PBPOffset));
      BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
          .addCFIIndex(CFIIndex);
    }
    if (HasBP) {
      // Describe where BP was saved, at a fixed offset from CFA.
      unsigned Reg = MRI->getDwarfRegNum(BPReg, true);
      CFIIndex = MF.addFrameInst(
          MCCFIInstruction::createOffset(nullptr, Reg, BPOffset));
      BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
          .addCFIIndex(CFIIndex);
    }
    if (MustSaveLR) {
      // Describe where LR was saved, at a fixed offset from CFA.
      unsigned Reg = MRI->getDwarfRegNum(LRReg, true);
      CFIIndex = MF.addFrameInst(
          MCCFIInstruction::createOffset(nullptr, Reg, LROffset));
      BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
          .addCFIIndex(CFIIndex);
    }
  }
  // If there is a frame pointer, copy R1 into R31
  if (HasFP) {
    BuildMI(MBB, MBBI, dl, OrInst, FPReg)
      .addReg(SPReg)
      .addReg(SPReg);
    if (!HasBP && needsCFI) {
      // Change the definition of CFA from SP+offset to FP+offset, because SP
      // will change at every alloca.
      unsigned Reg = MRI->getDwarfRegNum(FPReg, true);
      unsigned CFIIndex = MF.addFrameInst(
          MCCFIInstruction::createDefCfaRegister(nullptr, Reg));
      BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
          .addCFIIndex(CFIIndex);
    }
  }
  if (needsCFI) {
    // Describe where callee saved registers were saved, at fixed offsets from
    // CFA.
    const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo();
    for (unsigned I = 0, E = CSI.size(); I != E; ++I) {
      unsigned Reg = CSI[I].getReg();
      if (Reg == PPC::LR || Reg == PPC::LR8 || Reg == PPC::RM) continue;
      // This is a bit of a hack: CR2LT, CR2GT, CR2EQ and CR2UN are just
      // subregisters of CR2. We just need to emit a move of CR2.
      if (PPC::CRBITRCRegClass.contains(Reg))
        continue;
      if ((Reg == PPC::X2 || Reg == PPC::R2) && MustSaveTOC)
        continue;
      // For SVR4, don't emit a move for the CR spill slot if we haven't
      // spilled CRs.
      if (isSVR4ABI && (PPC::CR2 <= Reg && Reg <= PPC::CR4)
          && !MustSaveCR)
        continue;
      // For 64-bit SVR4 when we have spilled CRs, the spill location
      // is SP+8, not a frame-relative slot.
      if (isSVR4ABI && isPPC64 && (PPC::CR2 <= Reg && Reg <= PPC::CR4)) {
        // In the ELFv1 ABI, only CR2 is noted in CFI and stands in for
        // the whole CR word.  In the ELFv2 ABI, every CR that was
        // actually saved gets its own CFI record.
        unsigned CRReg = isELFv2ABI? Reg : (unsigned) PPC::CR2;
        unsigned CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset(
            nullptr, MRI->getDwarfRegNum(CRReg, true), CRSaveOffset));
        BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
            .addCFIIndex(CFIIndex);
        continue;
      }
      if (CSI[I].isSpilledToReg()) {
        unsigned SpilledReg = CSI[I].getDstReg();
        unsigned CFIRegister = MF.addFrameInst(MCCFIInstruction::createRegister(
            nullptr, MRI->getDwarfRegNum(Reg, true),
            MRI->getDwarfRegNum(SpilledReg, true)));
        BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
          .addCFIIndex(CFIRegister);
      } else {
        int Offset = MFI.getObjectOffset(CSI[I].getFrameIdx());
        // We have changed the object offset above but we do not want to change
        // the actual offsets in the CFI instruction so we have to undo the
        // offset change here.
        if (MovingStackUpdateDown)
          Offset -= NegFrameSize;
        unsigned CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset(
            nullptr, MRI->getDwarfRegNum(Reg, true), Offset));
        BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
            .addCFIIndex(CFIIndex);
      }
    }
  }
}
void PPCFrameLowering::inlineStackProbe(MachineFunction &MF,
                                        MachineBasicBlock &PrologMBB) const {
  bool isPPC64 = Subtarget.isPPC64();
  const PPCTargetLowering &TLI = *Subtarget.getTargetLowering();
  const PPCInstrInfo &TII = *Subtarget.getInstrInfo();
  MachineFrameInfo &MFI = MF.getFrameInfo();
  MachineModuleInfo &MMI = MF.getMMI();
  const MCRegisterInfo *MRI = MMI.getContext().getRegisterInfo();
  // AIX assembler does not support cfi directives.
  const bool needsCFI = MF.needsFrameMoves() && !Subtarget.isAIXABI();
  auto StackAllocMIPos = llvm::find_if(PrologMBB, [](MachineInstr &MI) {
    int Opc = MI.getOpcode();
    return Opc == PPC::PROBED_STACKALLOC_64 || Opc == PPC::PROBED_STACKALLOC_32;
  });
  if (StackAllocMIPos == PrologMBB.end())
    return;
  const BasicBlock *ProbedBB = PrologMBB.getBasicBlock();
  MachineBasicBlock *CurrentMBB = &PrologMBB;
  DebugLoc DL = PrologMBB.findDebugLoc(StackAllocMIPos);
  MachineInstr &MI = *StackAllocMIPos;
  int64_t NegFrameSize = MI.getOperand(2).getImm();
  unsigned ProbeSize = TLI.getStackProbeSize(MF);
  int64_t NegProbeSize = -(int64_t)ProbeSize;
  assert(isInt<32>(NegProbeSize) && "Unhandled probe size");
  int64_t NumBlocks = NegFrameSize / NegProbeSize;
  int64_t NegResidualSize = NegFrameSize % NegProbeSize;
  Register SPReg = isPPC64 ? PPC::X1 : PPC::R1;
  Register ScratchReg = MI.getOperand(0).getReg();
  Register FPReg = MI.getOperand(1).getReg();
  const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo();
  bool HasBP = RegInfo->hasBasePointer(MF);
  Register BPReg = RegInfo->getBaseRegister(MF);
  Align MaxAlign = MFI.getMaxAlign();
  bool HasRedZone = Subtarget.isPPC64() || !Subtarget.isSVR4ABI();
  const MCInstrDesc &CopyInst = TII.get(isPPC64 ? PPC::OR8 : PPC::OR);
  // Subroutines to generate .cfi_* directives.
  auto buildDefCFAReg = [&](MachineBasicBlock &MBB,
                            MachineBasicBlock::iterator MBBI, Register Reg) {
    unsigned RegNum = MRI->getDwarfRegNum(Reg, true);
    unsigned CFIIndex = MF.addFrameInst(
        MCCFIInstruction::createDefCfaRegister(nullptr, RegNum));
    BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
        .addCFIIndex(CFIIndex);
  };
  auto buildDefCFA = [&](MachineBasicBlock &MBB,
                         MachineBasicBlock::iterator MBBI, Register Reg,
                         int Offset) {
    unsigned RegNum = MRI->getDwarfRegNum(Reg, true);
    unsigned CFIIndex = MBB.getParent()->addFrameInst(
        MCCFIInstruction::cfiDefCfa(nullptr, RegNum, Offset));
    BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
        .addCFIIndex(CFIIndex);
  };
  // Subroutine to determine if we can use the Imm as part of d-form.
  auto CanUseDForm = [](int64_t Imm) { return isInt<16>(Imm) && Imm % 4 == 0; };
  // Subroutine to materialize the Imm into TempReg.
  auto MaterializeImm = [&](MachineBasicBlock &MBB,
                            MachineBasicBlock::iterator MBBI, int64_t Imm,
                            Register &TempReg) {
    assert(isInt<32>(Imm) && "Unhandled imm");
    if (isInt<16>(Imm))
      BuildMI(MBB, MBBI, DL, TII.get(isPPC64 ? PPC::LI8 : PPC::LI), TempReg)
          .addImm(Imm);
    else {
      BuildMI(MBB, MBBI, DL, TII.get(isPPC64 ? PPC::LIS8 : PPC::LIS), TempReg)
          .addImm(Imm >> 16);
      BuildMI(MBB, MBBI, DL, TII.get(isPPC64 ? PPC::ORI8 : PPC::ORI), TempReg)
          .addReg(TempReg)
          .addImm(Imm & 0xFFFF);
    }
  };
  // Subroutine to store frame pointer and decrease stack pointer by probe size.
  auto allocateAndProbe = [&](MachineBasicBlock &MBB,
                              MachineBasicBlock::iterator MBBI, int64_t NegSize,
                              Register NegSizeReg, bool UseDForm,
                              Register StoreReg) {
    if (UseDForm)
      BuildMI(MBB, MBBI, DL, TII.get(isPPC64 ? PPC::STDU : PPC::STWU), SPReg)
          .addReg(StoreReg)
          .addImm(NegSize)
          .addReg(SPReg);
    else
      BuildMI(MBB, MBBI, DL, TII.get(isPPC64 ? PPC::STDUX : PPC::STWUX), SPReg)
          .addReg(StoreReg)
          .addReg(SPReg)
          .addReg(NegSizeReg);
  };
  // Used to probe stack when realignment is required.
  // Note that, according to ABI's requirement, *sp must always equals the
  // value of back-chain pointer, only st(w|d)u(x) can be used to update sp.
  // Following is pseudo code:
  // final_sp = (sp & align) + negframesize;
  // neg_gap = final_sp - sp;
  // while (neg_gap < negprobesize) {
  //   stdu fp, negprobesize(sp);
  //   neg_gap -= negprobesize;
  // }
  // stdux fp, sp, neg_gap
  //
  // When HasBP & HasRedzone, back-chain pointer is already saved in BPReg
  // before probe code, we don't need to save it, so we get one additional reg
  // that can be used to materialize the probeside if needed to use xform.
  // Otherwise, we can NOT materialize probeside, so we can only use Dform for
  // now.
  //
  // The allocations are:
  // if (HasBP && HasRedzone) {
  //   r0: materialize the probesize if needed so that we can use xform.
  //   r12: `neg_gap`
  // } else {
  //   r0: back-chain pointer
  //   r12: `neg_gap`.
  // }
  auto probeRealignedStack = [&](MachineBasicBlock &MBB,
                                 MachineBasicBlock::iterator MBBI,
                                 Register ScratchReg, Register TempReg) {
    assert(HasBP && "The function is supposed to have base pointer when its "
                    "stack is realigned.");
    assert(isPowerOf2_64(ProbeSize) && "Probe size should be power of 2");
    // FIXME: We can eliminate this limitation if we get more infomation about
    // which part of redzone are already used. Used redzone can be treated
    // probed. But there might be `holes' in redzone probed, this could
    // complicate the implementation.
    assert(ProbeSize >= Subtarget.getRedZoneSize() &&
           "Probe size should be larger or equal to the size of red-zone so "
           "that red-zone is not clobbered by probing.");
    Register &FinalStackPtr = TempReg;
    // FIXME: We only support NegProbeSize materializable by DForm currently.
    // When HasBP && HasRedzone, we can use xform if we have an additional idle
    // register.
    NegProbeSize = std::max(NegProbeSize, -((int64_t)1 << 15));
    assert(isInt<16>(NegProbeSize) &&
           "NegProbeSize should be materializable by DForm");
    Register CRReg = PPC::CR0;
    // Layout of output assembly kinda like:
    // bb.0:
    //   ...
    //   sub $scratchreg, $finalsp, r1
    //   cmpdi $scratchreg, <negprobesize>
    //   bge bb.2
    // bb.1:
    //   stdu <backchain>, <negprobesize>(r1)
    //   sub $scratchreg, $scratchreg, negprobesize
    //   cmpdi $scratchreg, <negprobesize>
    //   blt bb.1
    // bb.2:
    //   stdux <backchain>, r1, $scratchreg
    MachineFunction::iterator MBBInsertPoint = std::next(MBB.getIterator());
    MachineBasicBlock *ProbeLoopBodyMBB = MF.CreateMachineBasicBlock(ProbedBB);
    MF.insert(MBBInsertPoint, ProbeLoopBodyMBB);
    MachineBasicBlock *ProbeExitMBB = MF.CreateMachineBasicBlock(ProbedBB);
    MF.insert(MBBInsertPoint, ProbeExitMBB);
    // bb.2
    {
      Register BackChainPointer = HasRedZone ? BPReg : TempReg;
      allocateAndProbe(*ProbeExitMBB, ProbeExitMBB->end(), 0, ScratchReg, false,
                       BackChainPointer);
      if (HasRedZone)
        // PROBED_STACKALLOC_64 assumes Operand(1) stores the old sp, copy BPReg
        // to TempReg to satisfy it.
        BuildMI(*ProbeExitMBB, ProbeExitMBB->end(), DL, CopyInst, TempReg)
            .addReg(BPReg)
            .addReg(BPReg);
      ProbeExitMBB->splice(ProbeExitMBB->end(), &MBB, MBBI, MBB.end());
      ProbeExitMBB->transferSuccessorsAndUpdatePHIs(&MBB);
    }
    // bb.0
    {
      BuildMI(&MBB, DL, TII.get(isPPC64 ? PPC::SUBF8 : PPC::SUBF), ScratchReg)
          .addReg(SPReg)
          .addReg(FinalStackPtr);
      if (!HasRedZone)
        BuildMI(&MBB, DL, CopyInst, TempReg).addReg(SPReg).addReg(SPReg);
      BuildMI(&MBB, DL, TII.get(isPPC64 ? PPC::CMPDI : PPC::CMPWI), CRReg)
          .addReg(ScratchReg)
          .addImm(NegProbeSize);
      BuildMI(&MBB, DL, TII.get(PPC::BCC))
          .addImm(PPC::PRED_GE)
          .addReg(CRReg)
          .addMBB(ProbeExitMBB);
      MBB.addSuccessor(ProbeLoopBodyMBB);
      MBB.addSuccessor(ProbeExitMBB);
    }
    // bb.1
    {
      Register BackChainPointer = HasRedZone ? BPReg : TempReg;
      allocateAndProbe(*ProbeLoopBodyMBB, ProbeLoopBodyMBB->end(), NegProbeSize,
                       0, true /*UseDForm*/, BackChainPointer);
      BuildMI(ProbeLoopBodyMBB, DL, TII.get(isPPC64 ? PPC::ADDI8 : PPC::ADDI),
              ScratchReg)
          .addReg(ScratchReg)
          .addImm(-NegProbeSize);
      BuildMI(ProbeLoopBodyMBB, DL, TII.get(isPPC64 ? PPC::CMPDI : PPC::CMPWI),
              CRReg)
          .addReg(ScratchReg)
          .addImm(NegProbeSize);
      BuildMI(ProbeLoopBodyMBB, DL, TII.get(PPC::BCC))
          .addImm(PPC::PRED_LT)
          .addReg(CRReg)
          .addMBB(ProbeLoopBodyMBB);
      ProbeLoopBodyMBB->addSuccessor(ProbeExitMBB);
      ProbeLoopBodyMBB->addSuccessor(ProbeLoopBodyMBB);
    }
    // Update liveins.
    recomputeLiveIns(*ProbeLoopBodyMBB);
    recomputeLiveIns(*ProbeExitMBB);
    return ProbeExitMBB;
  };
  // For case HasBP && MaxAlign > 1, we have to realign the SP by performing
  // SP = SP - SP % MaxAlign, thus make the probe more like dynamic probe since
  // the offset subtracted from SP is determined by SP's runtime value.
  if (HasBP && MaxAlign > 1) {
    // Calculate final stack pointer.
    if (isPPC64)
      BuildMI(*CurrentMBB, {MI}, DL, TII.get(PPC::RLDICL), ScratchReg)
          .addReg(SPReg)
          .addImm(0)
          .addImm(64 - Log2(MaxAlign));
    else
      BuildMI(*CurrentMBB, {MI}, DL, TII.get(PPC::RLWINM), ScratchReg)
          .addReg(SPReg)
          .addImm(0)
          .addImm(32 - Log2(MaxAlign))
          .addImm(31);
    BuildMI(*CurrentMBB, {MI}, DL, TII.get(isPPC64 ? PPC::SUBF8 : PPC::SUBF),
            FPReg)
        .addReg(ScratchReg)
        .addReg(SPReg);
    MaterializeImm(*CurrentMBB, {MI}, NegFrameSize, ScratchReg);
    BuildMI(*CurrentMBB, {MI}, DL, TII.get(isPPC64 ? PPC::ADD8 : PPC::ADD4),
            FPReg)
        .addReg(ScratchReg)
        .addReg(FPReg);
    CurrentMBB = probeRealignedStack(*CurrentMBB, {MI}, ScratchReg, FPReg);
    if (needsCFI)
      buildDefCFAReg(*CurrentMBB, {MI}, FPReg);
  } else {
    // Initialize current frame pointer.
    BuildMI(*CurrentMBB, {MI}, DL, CopyInst, FPReg).addReg(SPReg).addReg(SPReg);
    // Use FPReg to calculate CFA.
    if (needsCFI)
      buildDefCFA(*CurrentMBB, {MI}, FPReg, 0);
    // Probe residual part.
    if (NegResidualSize) {
      bool ResidualUseDForm = CanUseDForm(NegResidualSize);
      if (!ResidualUseDForm)
        MaterializeImm(*CurrentMBB, {MI}, NegResidualSize, ScratchReg);
      allocateAndProbe(*CurrentMBB, {MI}, NegResidualSize, ScratchReg,
                       ResidualUseDForm, FPReg);
    }
    bool UseDForm = CanUseDForm(NegProbeSize);
    // If number of blocks is small, just probe them directly.
    if (NumBlocks < 3) {
      if (!UseDForm)
        MaterializeImm(*CurrentMBB, {MI}, NegProbeSize, ScratchReg);
      for (int i = 0; i < NumBlocks; ++i)
        allocateAndProbe(*CurrentMBB, {MI}, NegProbeSize, ScratchReg, UseDForm,
                         FPReg);
      if (needsCFI) {
        // Restore using SPReg to calculate CFA.
        buildDefCFAReg(*CurrentMBB, {MI}, SPReg);
      }
    } else {
      // Since CTR is a volatile register and current shrinkwrap implementation
      // won't choose an MBB in a loop as the PrologMBB, it's safe to synthesize a
      // CTR loop to probe.
      // Calculate trip count and stores it in CTRReg.
      MaterializeImm(*CurrentMBB, {MI}, NumBlocks, ScratchReg);
      BuildMI(*CurrentMBB, {MI}, DL, TII.get(isPPC64 ? PPC::MTCTR8 : PPC::MTCTR))
          .addReg(ScratchReg, RegState::Kill);
      if (!UseDForm)
        MaterializeImm(*CurrentMBB, {MI}, NegProbeSize, ScratchReg);
      // Create MBBs of the loop.
      MachineFunction::iterator MBBInsertPoint =
          std::next(CurrentMBB->getIterator());
      MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(ProbedBB);
      MF.insert(MBBInsertPoint, LoopMBB);
      MachineBasicBlock *ExitMBB = MF.CreateMachineBasicBlock(ProbedBB);
      MF.insert(MBBInsertPoint, ExitMBB);
      // Synthesize the loop body.
      allocateAndProbe(*LoopMBB, LoopMBB->end(), NegProbeSize, ScratchReg,
                       UseDForm, FPReg);
      BuildMI(LoopMBB, DL, TII.get(isPPC64 ? PPC::BDNZ8 : PPC::BDNZ))
          .addMBB(LoopMBB);
      LoopMBB->addSuccessor(ExitMBB);
      LoopMBB->addSuccessor(LoopMBB);
      // Synthesize the exit MBB.
      ExitMBB->splice(ExitMBB->end(), CurrentMBB,
                      std::next(MachineBasicBlock::iterator(MI)),
                      CurrentMBB->end());
      ExitMBB->transferSuccessorsAndUpdatePHIs(CurrentMBB);
      CurrentMBB->addSuccessor(LoopMBB);
      if (needsCFI) {
        // Restore using SPReg to calculate CFA.
        buildDefCFAReg(*ExitMBB, ExitMBB->begin(), SPReg);
      }
      // Update liveins.
      recomputeLiveIns(*LoopMBB);
      recomputeLiveIns(*ExitMBB);
    }
  }
  ++NumPrologProbed;
  MI.eraseFromParent();
}
void PPCFrameLowering::emitEpilogue(MachineFunction &MF,
                                    MachineBasicBlock &MBB) const {
  MachineBasicBlock::iterator MBBI = MBB.getFirstTerminator();
  DebugLoc dl;
  if (MBBI != MBB.end())
    dl = MBBI->getDebugLoc();
  const PPCInstrInfo &TII = *Subtarget.getInstrInfo();
  const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo();
  // Get alignment info so we know how to restore the SP.
  const MachineFrameInfo &MFI = MF.getFrameInfo();
  // Get the number of bytes allocated from the FrameInfo.
  int FrameSize = MFI.getStackSize();
  // Get processor type.
  bool isPPC64 = Subtarget.isPPC64();
  // Check if the link register (LR) has been saved.
  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
  bool MustSaveLR = FI->mustSaveLR();
  const SmallVectorImpl<Register> &MustSaveCRs = FI->getMustSaveCRs();
  bool MustSaveCR = !MustSaveCRs.empty();
  // Do we have a frame pointer and/or base pointer for this function?
  bool HasFP = hasFP(MF);
  bool HasBP = RegInfo->hasBasePointer(MF);
  bool HasRedZone = Subtarget.isPPC64() || !Subtarget.isSVR4ABI();
  bool HasROPProtect = Subtarget.hasROPProtect();
  bool HasPrivileged = Subtarget.hasPrivileged();
  Register SPReg      = isPPC64 ? PPC::X1  : PPC::R1;
  Register BPReg = RegInfo->getBaseRegister(MF);
  Register FPReg      = isPPC64 ? PPC::X31 : PPC::R31;
  Register ScratchReg;
  Register TempReg     = isPPC64 ? PPC::X12 : PPC::R12; // another scratch reg
  const MCInstrDesc& MTLRInst = TII.get( isPPC64 ? PPC::MTLR8
                                                 : PPC::MTLR );
  const MCInstrDesc& LoadInst = TII.get( isPPC64 ? PPC::LD
                                                 : PPC::LWZ );
  const MCInstrDesc& LoadImmShiftedInst = TII.get( isPPC64 ? PPC::LIS8
                                                           : PPC::LIS );
  const MCInstrDesc& OrInst = TII.get(isPPC64 ? PPC::OR8
                                              : PPC::OR );
  const MCInstrDesc& OrImmInst = TII.get( isPPC64 ? PPC::ORI8
                                                  : PPC::ORI );
  const MCInstrDesc& AddImmInst = TII.get( isPPC64 ? PPC::ADDI8
                                                   : PPC::ADDI );
  const MCInstrDesc& AddInst = TII.get( isPPC64 ? PPC::ADD8
                                                : PPC::ADD4 );
  const MCInstrDesc& LoadWordInst = TII.get( isPPC64 ? PPC::LWZ8
                                                     : PPC::LWZ);
  const MCInstrDesc& MoveToCRInst = TII.get( isPPC64 ? PPC::MTOCRF8
                                                     : PPC::MTOCRF);
  const MCInstrDesc &HashChk =
      TII.get(HasPrivileged ? PPC::HASHCHKP : PPC::HASHCHK);
  int LROffset = getReturnSaveOffset();
  int FPOffset = 0;
  // Using the same bool variable as below to suppress compiler warnings.
  bool SingleScratchReg = findScratchRegister(&MBB, true, false, &ScratchReg,
                                              &TempReg);
  assert(SingleScratchReg &&
         "Could not find an available scratch register");
  SingleScratchReg = ScratchReg == TempReg;
  if (HasFP) {
    int FPIndex = FI->getFramePointerSaveIndex();
    assert(FPIndex && "No Frame Pointer Save Slot!");
    FPOffset = MFI.getObjectOffset(FPIndex);
  }
  int BPOffset = 0;
  if (HasBP) {
      int BPIndex = FI->getBasePointerSaveIndex();
      assert(BPIndex && "No Base Pointer Save Slot!");
      BPOffset = MFI.getObjectOffset(BPIndex);
  }
  int PBPOffset = 0;
  if (FI->usesPICBase()) {
    int PBPIndex = FI->getPICBasePointerSaveIndex();
    assert(PBPIndex && "No PIC Base Pointer Save Slot!");
    PBPOffset = MFI.getObjectOffset(PBPIndex);
  }
  bool IsReturnBlock = (MBBI != MBB.end() && MBBI->isReturn());
  if (IsReturnBlock) {
    unsigned RetOpcode = MBBI->getOpcode();
    bool UsesTCRet =  RetOpcode == PPC::TCRETURNri ||
                      RetOpcode == PPC::TCRETURNdi ||
                      RetOpcode == PPC::TCRETURNai ||
                      RetOpcode == PPC::TCRETURNri8 ||
                      RetOpcode == PPC::TCRETURNdi8 ||
                      RetOpcode == PPC::TCRETURNai8;
    if (UsesTCRet) {
      int MaxTCRetDelta = FI->getTailCallSPDelta();
      MachineOperand &StackAdjust = MBBI->getOperand(1);
      assert(StackAdjust.isImm() && "Expecting immediate value.");
      // Adjust stack pointer.
      int StackAdj = StackAdjust.getImm();
      int Delta = StackAdj - MaxTCRetDelta;
      assert((Delta >= 0) && "Delta must be positive");
      if (MaxTCRetDelta>0)
        FrameSize += (StackAdj +Delta);
      else
        FrameSize += StackAdj;
    }
  }
  // Frames of 32KB & larger require special handling because they cannot be
  // indexed into with a simple LD/LWZ immediate offset operand.
  bool isLargeFrame = !isInt<16>(FrameSize);
  // On targets without red zone, the SP needs to be restored last, so that
  // all live contents of the stack frame are upwards of the SP. This means
  // that we cannot restore SP just now, since there may be more registers
  // to restore from the stack frame (e.g. R31). If the frame size is not
  // a simple immediate value, we will need a spare register to hold the
  // restored SP. If the frame size is known and small, we can simply adjust
  // the offsets of the registers to be restored, and still use SP to restore
  // them. In such case, the final update of SP will be to add the frame
  // size to it.
  // To simplify the code, set RBReg to the base register used to restore
  // values from the stack, and set SPAdd to the value that needs to be added
  // to the SP at the end. The default values are as if red zone was present.
  unsigned RBReg = SPReg;
  unsigned SPAdd = 0;
  // Check if we can move the stack update instruction up the epilogue
  // past the callee saves. This will allow the move to LR instruction
  // to be executed before the restores of the callee saves which means
  // that the callee saves can hide the latency from the MTLR instrcution.
  MachineBasicBlock::iterator StackUpdateLoc = MBBI;
  if (stackUpdateCanBeMoved(MF)) {
    const std::vector<CalleeSavedInfo> & Info = MFI.getCalleeSavedInfo();
    for (CalleeSavedInfo CSI : Info) {
      // If the callee saved register is spilled to another register abort the
      // stack update movement.
      if (CSI.isSpilledToReg()) {
        StackUpdateLoc = MBBI;
        break;
      }
      int FrIdx = CSI.getFrameIdx();
      // If the frame index is not negative the callee saved info belongs to a
      // stack object that is not a fixed stack object. We ignore non-fixed
      // stack objects because we won't move the update of the stack pointer
      // past them.
      if (FrIdx >= 0)
        continue;
      if (MFI.isFixedObjectIndex(FrIdx) && MFI.getObjectOffset(FrIdx) < 0)
        StackUpdateLoc--;
      else {
        // Abort the operation as we can't update all CSR restores.
        StackUpdateLoc = MBBI;
        break;
      }
    }
  }
  if (FrameSize) {
    // In the prologue, the loaded (or persistent) stack pointer value is
    // offset by the STDU/STDUX/STWU/STWUX instruction. For targets with red
    // zone add this offset back now.
    // If the function has a base pointer, the stack pointer has been copied
    // to it so we can restore it by copying in the other direction.
    if (HasRedZone && HasBP) {
      BuildMI(MBB, MBBI, dl, OrInst, RBReg).
        addReg(BPReg).
        addReg(BPReg);
    }
    // If this function contained a fastcc call and GuaranteedTailCallOpt is
    // enabled (=> hasFastCall()==true) the fastcc call might contain a tail
    // call which invalidates the stack pointer value in SP(0). So we use the
    // value of R31 in this case. Similar situation exists with setjmp.
    else if (FI->hasFastCall() || MF.exposesReturnsTwice()) {
      assert(HasFP && "Expecting a valid frame pointer.");
      if (!HasRedZone)
        RBReg = FPReg;
      if (!isLargeFrame) {
        BuildMI(MBB, MBBI, dl, AddImmInst, RBReg)
          .addReg(FPReg).addImm(FrameSize);
      } else {
        BuildMI(MBB, MBBI, dl, LoadImmShiftedInst, ScratchReg)
          .addImm(FrameSize >> 16);
        BuildMI(MBB, MBBI, dl, OrImmInst, ScratchReg)
          .addReg(ScratchReg, RegState::Kill)
          .addImm(FrameSize & 0xFFFF);
        BuildMI(MBB, MBBI, dl, AddInst)
          .addReg(RBReg)
          .addReg(FPReg)
          .addReg(ScratchReg);
      }
    } else if (!isLargeFrame && !HasBP && !MFI.hasVarSizedObjects()) {
      if (HasRedZone) {
        BuildMI(MBB, StackUpdateLoc, dl, AddImmInst, SPReg)
          .addReg(SPReg)
          .addImm(FrameSize);
      } else {
        // Make sure that adding FrameSize will not overflow the max offset
        // size.
        assert(FPOffset <= 0 && BPOffset <= 0 && PBPOffset <= 0 &&
               "Local offsets should be negative");
        SPAdd = FrameSize;
        FPOffset += FrameSize;
        BPOffset += FrameSize;
        PBPOffset += FrameSize;
      }
    } else {
      // We don't want to use ScratchReg as a base register, because it
      // could happen to be R0. Use FP instead, but make sure to preserve it.
      if (!HasRedZone) {
        // If FP is not saved, copy it to ScratchReg.
        if (!HasFP)
          BuildMI(MBB, MBBI, dl, OrInst, ScratchReg)
            .addReg(FPReg)
            .addReg(FPReg);
        RBReg = FPReg;
      }
      BuildMI(MBB, StackUpdateLoc, dl, LoadInst, RBReg)
        .addImm(0)
        .addReg(SPReg);
    }
  }
  assert(RBReg != ScratchReg && "Should have avoided ScratchReg");
  // If there is no red zone, ScratchReg may be needed for holding a useful
  // value (although not the base register). Make sure it is not overwritten
  // too early.
  // If we need to restore both the LR and the CR and we only have one
  // available scratch register, we must do them one at a time.
  if (MustSaveCR && SingleScratchReg && MustSaveLR) {
    // Here TempReg == ScratchReg, and in the absence of red zone ScratchReg
    // is live here.
    assert(HasRedZone && "Expecting red zone");
    BuildMI(MBB, MBBI, dl, LoadWordInst, TempReg)
      .addImm(CRSaveOffset)
      .addReg(SPReg);
    for (unsigned i = 0, e = MustSaveCRs.size(); i != e; ++i)
      BuildMI(MBB, MBBI, dl, MoveToCRInst, MustSaveCRs[i])
        .addReg(TempReg, getKillRegState(i == e-1));
  }
  // Delay restoring of the LR if ScratchReg is needed. This is ok, since
  // LR is stored in the caller's stack frame. ScratchReg will be needed
  // if RBReg is anything other than SP. We shouldn't use ScratchReg as
  // a base register anyway, because it may happen to be R0.
  bool LoadedLR = false;
  if (MustSaveLR && RBReg == SPReg && isInt<16>(LROffset+SPAdd)) {
    BuildMI(MBB, StackUpdateLoc, dl, LoadInst, ScratchReg)
      .addImm(LROffset+SPAdd)
      .addReg(RBReg);
    LoadedLR = true;
  }
  if (MustSaveCR && !(SingleScratchReg && MustSaveLR)) {
    assert(RBReg == SPReg && "Should be using SP as a base register");
    BuildMI(MBB, MBBI, dl, LoadWordInst, TempReg)
      .addImm(CRSaveOffset)
      .addReg(RBReg);
  }
  if (HasFP) {
    // If there is red zone, restore FP directly, since SP has already been
    // restored. Otherwise, restore the value of FP into ScratchReg.
    if (HasRedZone || RBReg == SPReg)
      BuildMI(MBB, MBBI, dl, LoadInst, FPReg)
        .addImm(FPOffset)
        .addReg(SPReg);
    else
      BuildMI(MBB, MBBI, dl, LoadInst, ScratchReg)
        .addImm(FPOffset)
        .addReg(RBReg);
  }
  if (FI->usesPICBase())
    BuildMI(MBB, MBBI, dl, LoadInst, PPC::R30)
      .addImm(PBPOffset)
      .addReg(RBReg);
  if (HasBP)
    BuildMI(MBB, MBBI, dl, LoadInst, BPReg)
      .addImm(BPOffset)
      .addReg(RBReg);
  // There is nothing more to be loaded from the stack, so now we can
  // restore SP: SP = RBReg + SPAdd.
  if (RBReg != SPReg || SPAdd != 0) {
    assert(!HasRedZone && "This should not happen with red zone");
    // If SPAdd is 0, generate a copy.
    if (SPAdd == 0)
      BuildMI(MBB, MBBI, dl, OrInst, SPReg)
        .addReg(RBReg)
        .addReg(RBReg);
    else
      BuildMI(MBB, MBBI, dl, AddImmInst, SPReg)
        .addReg(RBReg)
        .addImm(SPAdd);
    assert(RBReg != ScratchReg && "Should be using FP or SP as base register");
    if (RBReg == FPReg)
      BuildMI(MBB, MBBI, dl, OrInst, FPReg)
        .addReg(ScratchReg)
        .addReg(ScratchReg);
    // Now load the LR from the caller's stack frame.
    if (MustSaveLR && !LoadedLR)
      BuildMI(MBB, MBBI, dl, LoadInst, ScratchReg)
        .addImm(LROffset)
        .addReg(SPReg);
  }
  if (MustSaveCR &&
      !(SingleScratchReg && MustSaveLR))
    for (unsigned i = 0, e = MustSaveCRs.size(); i != e; ++i)
      BuildMI(MBB, MBBI, dl, MoveToCRInst, MustSaveCRs[i])
        .addReg(TempReg, getKillRegState(i == e-1));
  if (MustSaveLR) {
    // If ROP protection is required, an extra instruction is added to compute a
    // hash and then compare it to the hash stored in the prologue.
    if (HasROPProtect) {
      const int SaveIndex = FI->getROPProtectionHashSaveIndex();
      const int ImmOffset = MFI.getObjectOffset(SaveIndex);
      assert((ImmOffset <= -8 && ImmOffset >= -512) &&
             "ROP hash check location offset out of range.");
      assert(((ImmOffset & 0x7) == 0) &&
             "ROP hash check location offset must be 8 byte aligned.");
      BuildMI(MBB, StackUpdateLoc, dl, HashChk)
          .addReg(ScratchReg)
          .addImm(ImmOffset)
          .addReg(SPReg);
    }
    BuildMI(MBB, StackUpdateLoc, dl, MTLRInst).addReg(ScratchReg);
  }
  // Callee pop calling convention. Pop parameter/linkage area. Used for tail
  // call optimization
  if (IsReturnBlock) {
    unsigned RetOpcode = MBBI->getOpcode();
    if (MF.getTarget().Options.GuaranteedTailCallOpt &&
        (RetOpcode == PPC::BLR || RetOpcode == PPC::BLR8) &&
        MF.getFunction().getCallingConv() == CallingConv::Fast) {
      PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
      unsigned CallerAllocatedAmt = FI->getMinReservedArea();
      if (CallerAllocatedAmt && isInt<16>(CallerAllocatedAmt)) {
        BuildMI(MBB, MBBI, dl, AddImmInst, SPReg)
          .addReg(SPReg).addImm(CallerAllocatedAmt);
      } else {
        BuildMI(MBB, MBBI, dl, LoadImmShiftedInst, ScratchReg)
          .addImm(CallerAllocatedAmt >> 16);
        BuildMI(MBB, MBBI, dl, OrImmInst, ScratchReg)
          .addReg(ScratchReg, RegState::Kill)
          .addImm(CallerAllocatedAmt & 0xFFFF);
        BuildMI(MBB, MBBI, dl, AddInst)
          .addReg(SPReg)
          .addReg(FPReg)
          .addReg(ScratchReg);
      }
    } else {
      createTailCallBranchInstr(MBB);
    }
  }
}
void PPCFrameLowering::createTailCallBranchInstr(MachineBasicBlock &MBB) const {
  MachineBasicBlock::iterator MBBI = MBB.getFirstTerminator();
  // If we got this far a first terminator should exist.
  assert(MBBI != MBB.end() && "Failed to find the first terminator.");
  DebugLoc dl = MBBI->getDebugLoc();
  const PPCInstrInfo &TII = *Subtarget.getInstrInfo();
  // Create branch instruction for pseudo tail call return instruction.
  // The TCRETURNdi variants are direct calls. Valid targets for those are
  // MO_GlobalAddress operands as well as MO_ExternalSymbol with PC-Rel
  // since we can tail call external functions with PC-Rel (i.e. we don't need
  // to worry about different TOC pointers). Some of the external functions will
  // be MO_GlobalAddress while others like memcpy for example, are going to
  // be MO_ExternalSymbol.
  unsigned RetOpcode = MBBI->getOpcode();
  if (RetOpcode == PPC::TCRETURNdi) {
    MBBI = MBB.getLastNonDebugInstr();
    MachineOperand &JumpTarget = MBBI->getOperand(0);
    if (JumpTarget.isGlobal())
      BuildMI(MBB, MBBI, dl, TII.get(PPC::TAILB)).
        addGlobalAddress(JumpTarget.getGlobal(), JumpTarget.getOffset());
    else if (JumpTarget.isSymbol())
      BuildMI(MBB, MBBI, dl, TII.get(PPC::TAILB)).
        addExternalSymbol(JumpTarget.getSymbolName());
    else
      llvm_unreachable("Expecting Global or External Symbol");
  } else if (RetOpcode == PPC::TCRETURNri) {
    MBBI = MBB.getLastNonDebugInstr();
    assert(MBBI->getOperand(0).isReg() && "Expecting register operand.");
    BuildMI(MBB, MBBI, dl, TII.get(PPC::TAILBCTR));
  } else if (RetOpcode == PPC::TCRETURNai) {
    MBBI = MBB.getLastNonDebugInstr();
    MachineOperand &JumpTarget = MBBI->getOperand(0);
    BuildMI(MBB, MBBI, dl, TII.get(PPC::TAILBA)).addImm(JumpTarget.getImm());
  } else if (RetOpcode == PPC::TCRETURNdi8) {
    MBBI = MBB.getLastNonDebugInstr();
    MachineOperand &JumpTarget = MBBI->getOperand(0);
    if (JumpTarget.isGlobal())
      BuildMI(MBB, MBBI, dl, TII.get(PPC::TAILB8)).
        addGlobalAddress(JumpTarget.getGlobal(), JumpTarget.getOffset());
    else if (JumpTarget.isSymbol())
      BuildMI(MBB, MBBI, dl, TII.get(PPC::TAILB8)).
        addExternalSymbol(JumpTarget.getSymbolName());
    else
      llvm_unreachable("Expecting Global or External Symbol");
  } else if (RetOpcode == PPC::TCRETURNri8) {
    MBBI = MBB.getLastNonDebugInstr();
    assert(MBBI->getOperand(0).isReg() && "Expecting register operand.");
    BuildMI(MBB, MBBI, dl, TII.get(PPC::TAILBCTR8));
  } else if (RetOpcode == PPC::TCRETURNai8) {
    MBBI = MBB.getLastNonDebugInstr();
    MachineOperand &JumpTarget = MBBI->getOperand(0);
    BuildMI(MBB, MBBI, dl, TII.get(PPC::TAILBA8)).addImm(JumpTarget.getImm());
  }
}
void PPCFrameLowering::determineCalleeSaves(MachineFunction &MF,
                                            BitVector &SavedRegs,
                                            RegScavenger *RS) const {
  TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS);
  const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo();
  //  Save and clear the LR state.
  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
  unsigned LR = RegInfo->getRARegister();
  FI->setMustSaveLR(MustSaveLR(MF, LR));
  SavedRegs.reset(LR);
  //  Save R31 if necessary
  int FPSI = FI->getFramePointerSaveIndex();
  const bool isPPC64 = Subtarget.isPPC64();
  MachineFrameInfo &MFI = MF.getFrameInfo();
  // If the frame pointer save index hasn't been defined yet.
  if (!FPSI && needsFP(MF)) {
    // Find out what the fix offset of the frame pointer save area.
    int FPOffset = getFramePointerSaveOffset();
    // Allocate the frame index for frame pointer save area.
    FPSI = MFI.CreateFixedObject(isPPC64? 8 : 4, FPOffset, true);
    // Save the result.
    FI->setFramePointerSaveIndex(FPSI);
  }
  int BPSI = FI->getBasePointerSaveIndex();
  if (!BPSI && RegInfo->hasBasePointer(MF)) {
    int BPOffset = getBasePointerSaveOffset();
    // Allocate the frame index for the base pointer save area.
    BPSI = MFI.CreateFixedObject(isPPC64? 8 : 4, BPOffset, true);
    // Save the result.
    FI->setBasePointerSaveIndex(BPSI);
  }
  // Reserve stack space for the PIC Base register (R30).
  // Only used in SVR4 32-bit.
  if (FI->usesPICBase()) {
    int PBPSI = MFI.CreateFixedObject(4, -8, true);
    FI->setPICBasePointerSaveIndex(PBPSI);
  }
  // Make sure we don't explicitly spill r31, because, for example, we have
  // some inline asm which explicitly clobbers it, when we otherwise have a
  // frame pointer and are using r31's spill slot for the prologue/epilogue
  // code. Same goes for the base pointer and the PIC base register.
  if (needsFP(MF))
    SavedRegs.reset(isPPC64 ? PPC::X31 : PPC::R31);
  if (RegInfo->hasBasePointer(MF))
    SavedRegs.reset(RegInfo->getBaseRegister(MF));
  if (FI->usesPICBase())
    SavedRegs.reset(PPC::R30);
  // Reserve stack space to move the linkage area to in case of a tail call.
  int TCSPDelta = 0;
  if (MF.getTarget().Options.GuaranteedTailCallOpt &&
      (TCSPDelta = FI->getTailCallSPDelta()) < 0) {
    MFI.CreateFixedObject(-1 * TCSPDelta, TCSPDelta, true);
  }
  // Allocate the nonvolatile CR spill slot iff the function uses CR 2, 3, or 4.
  // For 64-bit SVR4, and all flavors of AIX we create a FixedStack
  // object at the offset of the CR-save slot in the linkage area. The actual
  // save and restore of the condition register will be created as part of the
  // prologue and epilogue insertion, but the FixedStack object is needed to
  // keep the CalleSavedInfo valid.
  if ((SavedRegs.test(PPC::CR2) || SavedRegs.test(PPC::CR3) ||
       SavedRegs.test(PPC::CR4))) {
    const uint64_t SpillSize = 4; // Condition register is always 4 bytes.
    const int64_t SpillOffset =
        Subtarget.isPPC64() ? 8 : Subtarget.isAIXABI() ? 4 : -4;
    int FrameIdx =
        MFI.CreateFixedObject(SpillSize, SpillOffset,
                              /* IsImmutable */ true, /* IsAliased */ false);
    FI->setCRSpillFrameIndex(FrameIdx);
  }
}
void PPCFrameLowering::processFunctionBeforeFrameFinalized(MachineFunction &MF,
                                                       RegScavenger *RS) const {
  // Get callee saved register information.
  MachineFrameInfo &MFI = MF.getFrameInfo();
  const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo();
  // If the function is shrink-wrapped, and if the function has a tail call, the
  // tail call might not be in the new RestoreBlock, so real branch instruction
  // won't be generated by emitEpilogue(), because shrink-wrap has chosen new
  // RestoreBlock. So we handle this case here.
  if (MFI.getSavePoint() && MFI.hasTailCall()) {
    MachineBasicBlock *RestoreBlock = MFI.getRestorePoint();
    for (MachineBasicBlock &MBB : MF) {
      if (MBB.isReturnBlock() && (&MBB) != RestoreBlock)
        createTailCallBranchInstr(MBB);
    }
  }
  // Early exit if no callee saved registers are modified!
  if (CSI.empty() && !needsFP(MF)) {
    addScavengingSpillSlot(MF, RS);
    return;
  }
  unsigned MinGPR = PPC::R31;
  unsigned MinG8R = PPC::X31;
  unsigned MinFPR = PPC::F31;
  unsigned MinVR = Subtarget.hasSPE() ? PPC::S31 : PPC::V31;
  bool HasGPSaveArea = false;
  bool HasG8SaveArea = false;
  bool HasFPSaveArea = false;
  bool HasVRSaveArea = false;
  SmallVector<CalleeSavedInfo, 18> GPRegs;
  SmallVector<CalleeSavedInfo, 18> G8Regs;
  SmallVector<CalleeSavedInfo, 18> FPRegs;
  SmallVector<CalleeSavedInfo, 18> VRegs;
  for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
    unsigned Reg = CSI[i].getReg();
    assert((!MF.getInfo<PPCFunctionInfo>()->mustSaveTOC() ||
            (Reg != PPC::X2 && Reg != PPC::R2)) &&
           "Not expecting to try to spill R2 in a function that must save TOC");
    if (PPC::GPRCRegClass.contains(Reg)) {
      HasGPSaveArea = true;
      GPRegs.push_back(CSI[i]);
      if (Reg < MinGPR) {
        MinGPR = Reg;
      }
    } else if (PPC::G8RCRegClass.contains(Reg)) {
      HasG8SaveArea = true;
      G8Regs.push_back(CSI[i]);
      if (Reg < MinG8R) {
        MinG8R = Reg;
      }
    } else if (PPC::F8RCRegClass.contains(Reg)) {
      HasFPSaveArea = true;
      FPRegs.push_back(CSI[i]);
      if (Reg < MinFPR) {
        MinFPR = Reg;
      }
    } else if (PPC::CRBITRCRegClass.contains(Reg) ||
               PPC::CRRCRegClass.contains(Reg)) {
      ; // do nothing, as we already know whether CRs are spilled
    } else if (PPC::VRRCRegClass.contains(Reg) ||
               PPC::SPERCRegClass.contains(Reg)) {
      // Altivec and SPE are mutually exclusive, but have the same stack
      // alignment requirements, so overload the save area for both cases.
      HasVRSaveArea = true;
      VRegs.push_back(CSI[i]);
      if (Reg < MinVR) {
        MinVR = Reg;
      }
    } else {
      llvm_unreachable("Unknown RegisterClass!");
    }
  }
  PPCFunctionInfo *PFI = MF.getInfo<PPCFunctionInfo>();
  const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
  int64_t LowerBound = 0;
  // Take into account stack space reserved for tail calls.
  int TCSPDelta = 0;
  if (MF.getTarget().Options.GuaranteedTailCallOpt &&
      (TCSPDelta = PFI->getTailCallSPDelta()) < 0) {
    LowerBound = TCSPDelta;
  }
  // The Floating-point register save area is right below the back chain word
  // of the previous stack frame.
  if (HasFPSaveArea) {
    for (unsigned i = 0, e = FPRegs.size(); i != e; ++i) {
      int FI = FPRegs[i].getFrameIdx();
      MFI.setObjectOffset(FI, LowerBound + MFI.getObjectOffset(FI));
    }
    LowerBound -= (31 - TRI->getEncodingValue(MinFPR) + 1) * 8;
  }
  // Check whether the frame pointer register is allocated. If so, make sure it
  // is spilled to the correct offset.
  if (needsFP(MF)) {
    int FI = PFI->getFramePointerSaveIndex();
    assert(FI && "No Frame Pointer Save Slot!");
    MFI.setObjectOffset(FI, LowerBound + MFI.getObjectOffset(FI));
    // FP is R31/X31, so no need to update MinGPR/MinG8R.
    HasGPSaveArea = true;
  }
  if (PFI->usesPICBase()) {
    int FI = PFI->getPICBasePointerSaveIndex();
    assert(FI && "No PIC Base Pointer Save Slot!");
    MFI.setObjectOffset(FI, LowerBound + MFI.getObjectOffset(FI));
    MinGPR = std::min<unsigned>(MinGPR, PPC::R30);
    HasGPSaveArea = true;
  }
  const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo();
  if (RegInfo->hasBasePointer(MF)) {
    int FI = PFI->getBasePointerSaveIndex();
    assert(FI && "No Base Pointer Save Slot!");
    MFI.setObjectOffset(FI, LowerBound + MFI.getObjectOffset(FI));
    Register BP = RegInfo->getBaseRegister(MF);
    if (PPC::G8RCRegClass.contains(BP)) {
      MinG8R = std::min<unsigned>(MinG8R, BP);
      HasG8SaveArea = true;
    } else if (PPC::GPRCRegClass.contains(BP)) {
      MinGPR = std::min<unsigned>(MinGPR, BP);
      HasGPSaveArea = true;
    }
  }
  // General register save area starts right below the Floating-point
  // register save area.
  if (HasGPSaveArea || HasG8SaveArea) {
    // Move general register save area spill slots down, taking into account
    // the size of the Floating-point register save area.
    for (unsigned i = 0, e = GPRegs.size(); i != e; ++i) {
      if (!GPRegs[i].isSpilledToReg()) {
        int FI = GPRegs[i].getFrameIdx();
        MFI.setObjectOffset(FI, LowerBound + MFI.getObjectOffset(FI));
      }
    }
    // Move general register save area spill slots down, taking into account
    // the size of the Floating-point register save area.
    for (unsigned i = 0, e = G8Regs.size(); i != e; ++i) {
      if (!G8Regs[i].isSpilledToReg()) {
        int FI = G8Regs[i].getFrameIdx();
        MFI.setObjectOffset(FI, LowerBound + MFI.getObjectOffset(FI));
      }
    }
    unsigned MinReg =
      std::min<unsigned>(TRI->getEncodingValue(MinGPR),
                         TRI->getEncodingValue(MinG8R));
    const unsigned GPRegSize = Subtarget.isPPC64() ? 8 : 4;
    LowerBound -= (31 - MinReg + 1) * GPRegSize;
  }
  // For 32-bit only, the CR save area is below the general register
  // save area.  For 64-bit SVR4, the CR save area is addressed relative
  // to the stack pointer and hence does not need an adjustment here.
  // Only CR2 (the first nonvolatile spilled) has an associated frame
  // index so that we have a single uniform save area.
  if (spillsCR(MF) && Subtarget.is32BitELFABI()) {
    // Adjust the frame index of the CR spill slot.
    for (const auto &CSInfo : CSI) {
      if (CSInfo.getReg() == PPC::CR2) {
        int FI = CSInfo.getFrameIdx();
        MFI.setObjectOffset(FI, LowerBound + MFI.getObjectOffset(FI));
        break;
      }
    }
    LowerBound -= 4; // The CR save area is always 4 bytes long.
  }
  // Both Altivec and SPE have the same alignment and padding requirements
  // within the stack frame.
  if (HasVRSaveArea) {
    // Insert alignment padding, we need 16-byte alignment. Note: for positive
    // number the alignment formula is : y = (x + (n-1)) & (~(n-1)). But since
    // we are using negative number here (the stack grows downward). We should
    // use formula : y = x & (~(n-1)). Where x is the size before aligning, n
    // is the alignment size ( n = 16 here) and y is the size after aligning.
    assert(LowerBound <= 0 && "Expect LowerBound have a non-positive value!");
    LowerBound &= ~(15);
    for (unsigned i = 0, e = VRegs.size(); i != e; ++i) {
      int FI = VRegs[i].getFrameIdx();
      MFI.setObjectOffset(FI, LowerBound + MFI.getObjectOffset(FI));
    }
  }
  addScavengingSpillSlot(MF, RS);
}
void
PPCFrameLowering::addScavengingSpillSlot(MachineFunction &MF,
                                         RegScavenger *RS) const {
  // Reserve a slot closest to SP or frame pointer if we have a dynalloc or
  // a large stack, which will require scavenging a register to materialize a
  // large offset.
  // We need to have a scavenger spill slot for spills if the frame size is
  // large. In case there is no free register for large-offset addressing,
  // this slot is used for the necessary emergency spill. Also, we need the
  // slot for dynamic stack allocations.
  // The scavenger might be invoked if the frame offset does not fit into
  // the 16-bit immediate. We don't know the complete frame size here
  // because we've not yet computed callee-saved register spills or the
  // needed alignment padding.
  unsigned StackSize = determineFrameLayout(MF, true);
  MachineFrameInfo &MFI = MF.getFrameInfo();
  if (MFI.hasVarSizedObjects() || spillsCR(MF) || hasNonRISpills(MF) ||
      (hasSpills(MF) && !isInt<16>(StackSize))) {
    const TargetRegisterClass &GPRC = PPC::GPRCRegClass;
    const TargetRegisterClass &G8RC = PPC::G8RCRegClass;
    const TargetRegisterClass &RC = Subtarget.isPPC64() ? G8RC : GPRC;
    const TargetRegisterInfo &TRI = *Subtarget.getRegisterInfo();
    unsigned Size = TRI.getSpillSize(RC);
    Align Alignment = TRI.getSpillAlign(RC);
    RS->addScavengingFrameIndex(MFI.CreateStackObject(Size, Alignment, false));
    // Might we have over-aligned allocas?
    bool HasAlVars =
        MFI.hasVarSizedObjects() && MFI.getMaxAlign() > getStackAlign();
    // These kinds of spills might need two registers.
    if (spillsCR(MF) || HasAlVars)
      RS->addScavengingFrameIndex(
          MFI.CreateStackObject(Size, Alignment, false));
  }
}
// This function checks if a callee saved gpr can be spilled to a volatile
// vector register. This occurs for leaf functions when the option
// ppc-enable-pe-vector-spills is enabled. If there are any remaining registers
// which were not spilled to vectors, return false so the target independent
// code can handle them by assigning a FrameIdx to a stack slot.
bool PPCFrameLowering::assignCalleeSavedSpillSlots(
    MachineFunction &MF, const TargetRegisterInfo *TRI,
    std::vector<CalleeSavedInfo> &CSI) const {
  if (CSI.empty())
    return true; // Early exit if no callee saved registers are modified!
  // Early exit if cannot spill gprs to volatile vector registers.
  MachineFrameInfo &MFI = MF.getFrameInfo();
  if (!EnablePEVectorSpills || MFI.hasCalls() || !Subtarget.hasP9Vector())
    return false;
  // Build a BitVector of VSRs that can be used for spilling GPRs.
  BitVector BVAllocatable = TRI->getAllocatableSet(MF);
  BitVector BVCalleeSaved(TRI->getNumRegs());
  const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo();
  const MCPhysReg *CSRegs = RegInfo->getCalleeSavedRegs(&MF);
  for (unsigned i = 0; CSRegs[i]; ++i)
    BVCalleeSaved.set(CSRegs[i]);
  for (unsigned Reg : BVAllocatable.set_bits()) {
    // Set to 0 if the register is not a volatile VSX register, or if it is
    // used in the function.
    if (BVCalleeSaved[Reg] || !PPC::VSRCRegClass.contains(Reg) ||
        MF.getRegInfo().isPhysRegUsed(Reg))
      BVAllocatable.reset(Reg);
  }
  bool AllSpilledToReg = true;
  unsigned LastVSRUsedForSpill = 0;
  for (auto &CS : CSI) {
    if (BVAllocatable.none())
      return false;
    unsigned Reg = CS.getReg();
    if (!PPC::G8RCRegClass.contains(Reg)) {
      AllSpilledToReg = false;
      continue;
    }
    // For P9, we can reuse LastVSRUsedForSpill to spill two GPRs
    // into one VSR using the mtvsrdd instruction.
    if (LastVSRUsedForSpill != 0) {
      CS.setDstReg(LastVSRUsedForSpill);
      BVAllocatable.reset(LastVSRUsedForSpill);
      LastVSRUsedForSpill = 0;
      continue;
    }
    unsigned VolatileVFReg = BVAllocatable.find_first();
    if (VolatileVFReg < BVAllocatable.size()) {
      CS.setDstReg(VolatileVFReg);
      LastVSRUsedForSpill = VolatileVFReg;
    } else {
      AllSpilledToReg = false;
    }
  }
  return AllSpilledToReg;
}
bool PPCFrameLowering::spillCalleeSavedRegisters(
    MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
    ArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const {
  MachineFunction *MF = MBB.getParent();
  const PPCInstrInfo &TII = *Subtarget.getInstrInfo();
  PPCFunctionInfo *FI = MF->getInfo<PPCFunctionInfo>();
  bool MustSaveTOC = FI->mustSaveTOC();
  DebugLoc DL;
  bool CRSpilled = false;
  MachineInstrBuilder CRMIB;
  BitVector Spilled(TRI->getNumRegs());
  VSRContainingGPRs.clear();
  // Map each VSR to GPRs to be spilled with into it. Single VSR can contain one
  // or two GPRs, so we need table to record information for later save/restore.
  llvm::for_each(CSI, [&](const CalleeSavedInfo &Info) {
    if (Info.isSpilledToReg()) {
      auto &SpilledVSR =
          VSRContainingGPRs.FindAndConstruct(Info.getDstReg()).second;
      assert(SpilledVSR.second == 0 &&
             "Can't spill more than two GPRs into VSR!");
      if (SpilledVSR.first == 0)
        SpilledVSR.first = Info.getReg();
      else
        SpilledVSR.second = Info.getReg();
    }
  });
  for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
    unsigned Reg = CSI[i].getReg();
    // CR2 through CR4 are the nonvolatile CR fields.
    bool IsCRField = PPC::CR2 <= Reg && Reg <= PPC::CR4;
    // Add the callee-saved register as live-in; it's killed at the spill.
    // Do not do this for callee-saved registers that are live-in to the
    // function because they will already be marked live-in and this will be
    // adding it for a second time. It is an error to add the same register
    // to the set more than once.
    const MachineRegisterInfo &MRI = MF->getRegInfo();
    bool IsLiveIn = MRI.isLiveIn(Reg);
    if (!IsLiveIn)
       MBB.addLiveIn(Reg);
    if (CRSpilled && IsCRField) {
      CRMIB.addReg(Reg, RegState::ImplicitKill);
      continue;
    }
    // The actual spill will happen in the prologue.
    if ((Reg == PPC::X2 || Reg == PPC::R2) && MustSaveTOC)
      continue;
    // Insert the spill to the stack frame.
    if (IsCRField) {
      PPCFunctionInfo *FuncInfo = MF->getInfo<PPCFunctionInfo>();
      if (!Subtarget.is32BitELFABI()) {
        // The actual spill will happen at the start of the prologue.
        FuncInfo->addMustSaveCR(Reg);
      } else {
        CRSpilled = true;
        FuncInfo->setSpillsCR();
        // 32-bit:  FP-relative.  Note that we made sure CR2-CR4 all have
        // the same frame index in PPCRegisterInfo::hasReservedSpillSlot.
        CRMIB = BuildMI(*MF, DL, TII.get(PPC::MFCR), PPC::R12)
                  .addReg(Reg, RegState::ImplicitKill);
        MBB.insert(MI, CRMIB);
        MBB.insert(MI, addFrameReference(BuildMI(*MF, DL, TII.get(PPC::STW))
                                         .addReg(PPC::R12,
                                                 getKillRegState(true)),
                                         CSI[i].getFrameIdx()));
      }
    } else {
      if (CSI[i].isSpilledToReg()) {
        unsigned Dst = CSI[i].getDstReg();
        if (Spilled[Dst])
          continue;
        if (VSRContainingGPRs[Dst].second != 0) {
          assert(Subtarget.hasP9Vector() &&
                 "mtvsrdd is unavailable on pre-P9 targets.");
          NumPESpillVSR += 2;
          BuildMI(MBB, MI, DL, TII.get(PPC::MTVSRDD), Dst)
              .addReg(VSRContainingGPRs[Dst].first, getKillRegState(true))
              .addReg(VSRContainingGPRs[Dst].second, getKillRegState(true));
        } else if (VSRContainingGPRs[Dst].second == 0) {
          assert(Subtarget.hasP8Vector() &&
                 "Can't move GPR to VSR on pre-P8 targets.");
          ++NumPESpillVSR;
          BuildMI(MBB, MI, DL, TII.get(PPC::MTVSRD),
                  TRI->getSubReg(Dst, PPC::sub_64))
              .addReg(VSRContainingGPRs[Dst].first, getKillRegState(true));
        } else {
          llvm_unreachable("More than two GPRs spilled to a VSR!");
        }
        Spilled.set(Dst);
      } else {
        const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg);
        // Use !IsLiveIn for the kill flag.
        // We do not want to kill registers that are live in this function
        // before their use because they will become undefined registers.
        // Functions without NoUnwind need to preserve the order of elements in
        // saved vector registers.
        if (Subtarget.needsSwapsForVSXMemOps() &&
            !MF->getFunction().hasFnAttribute(Attribute::NoUnwind))
          TII.storeRegToStackSlotNoUpd(MBB, MI, Reg, !IsLiveIn,
                                       CSI[i].getFrameIdx(), RC, TRI);
        else
          TII.storeRegToStackSlot(MBB, MI, Reg, !IsLiveIn, CSI[i].getFrameIdx(),
                                  RC, TRI);
      }
    }
  }
  return true;
}
static void restoreCRs(bool is31, bool CR2Spilled, bool CR3Spilled,
                       bool CR4Spilled, MachineBasicBlock &MBB,
                       MachineBasicBlock::iterator MI,
                       ArrayRef<CalleeSavedInfo> CSI, unsigned CSIIndex) {
  MachineFunction *MF = MBB.getParent();
  const PPCInstrInfo &TII = *MF->getSubtarget<PPCSubtarget>().getInstrInfo();
  DebugLoc DL;
  unsigned MoveReg = PPC::R12;
  // 32-bit:  FP-relative
  MBB.insert(MI,
             addFrameReference(BuildMI(*MF, DL, TII.get(PPC::LWZ), MoveReg),
                               CSI[CSIIndex].getFrameIdx()));
  unsigned RestoreOp = PPC::MTOCRF;
  if (CR2Spilled)
    MBB.insert(MI, BuildMI(*MF, DL, TII.get(RestoreOp), PPC::CR2)
               .addReg(MoveReg, getKillRegState(!CR3Spilled && !CR4Spilled)));
  if (CR3Spilled)
    MBB.insert(MI, BuildMI(*MF, DL, TII.get(RestoreOp), PPC::CR3)
               .addReg(MoveReg, getKillRegState(!CR4Spilled)));
  if (CR4Spilled)
    MBB.insert(MI, BuildMI(*MF, DL, TII.get(RestoreOp), PPC::CR4)
               .addReg(MoveReg, getKillRegState(true)));
}
MachineBasicBlock::iterator PPCFrameLowering::
eliminateCallFramePseudoInstr(MachineFunction &MF, MachineBasicBlock &MBB,
                              MachineBasicBlock::iterator I) const {
  const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
  if (MF.getTarget().Options.GuaranteedTailCallOpt &&
      I->getOpcode() == PPC::ADJCALLSTACKUP) {
    // Add (actually subtract) back the amount the callee popped on return.
    if (int CalleeAmt =  I->getOperand(1).getImm()) {
      bool is64Bit = Subtarget.isPPC64();
      CalleeAmt *= -1;
      unsigned StackReg = is64Bit ? PPC::X1 : PPC::R1;
      unsigned TmpReg = is64Bit ? PPC::X0 : PPC::R0;
      unsigned ADDIInstr = is64Bit ? PPC::ADDI8 : PPC::ADDI;
      unsigned ADDInstr = is64Bit ? PPC::ADD8 : PPC::ADD4;
      unsigned LISInstr = is64Bit ? PPC::LIS8 : PPC::LIS;
      unsigned ORIInstr = is64Bit ? PPC::ORI8 : PPC::ORI;
      const DebugLoc &dl = I->getDebugLoc();
      if (isInt<16>(CalleeAmt)) {
        BuildMI(MBB, I, dl, TII.get(ADDIInstr), StackReg)
          .addReg(StackReg, RegState::Kill)
          .addImm(CalleeAmt);
      } else {
        MachineBasicBlock::iterator MBBI = I;
        BuildMI(MBB, MBBI, dl, TII.get(LISInstr), TmpReg)
          .addImm(CalleeAmt >> 16);
        BuildMI(MBB, MBBI, dl, TII.get(ORIInstr), TmpReg)
          .addReg(TmpReg, RegState::Kill)
          .addImm(CalleeAmt & 0xFFFF);
        BuildMI(MBB, MBBI, dl, TII.get(ADDInstr), StackReg)
          .addReg(StackReg, RegState::Kill)
          .addReg(TmpReg);
      }
    }
  }
  // Simply discard ADJCALLSTACKDOWN, ADJCALLSTACKUP instructions.
  return MBB.erase(I);
}
static bool isCalleeSavedCR(unsigned Reg) {
  return PPC::CR2 == Reg || Reg == PPC::CR3 || Reg == PPC::CR4;
}
bool PPCFrameLowering::restoreCalleeSavedRegisters(
    MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
    MutableArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const {
  MachineFunction *MF = MBB.getParent();
  const PPCInstrInfo &TII = *Subtarget.getInstrInfo();
  PPCFunctionInfo *FI = MF->getInfo<PPCFunctionInfo>();
  bool MustSaveTOC = FI->mustSaveTOC();
  bool CR2Spilled = false;
  bool CR3Spilled = false;
  bool CR4Spilled = false;
  unsigned CSIIndex = 0;
  BitVector Restored(TRI->getNumRegs());
  // Initialize insertion-point logic; we will be restoring in reverse
  // order of spill.
  MachineBasicBlock::iterator I = MI, BeforeI = I;
  bool AtStart = I == MBB.begin();
  if (!AtStart)
    --BeforeI;
  for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
    unsigned Reg = CSI[i].getReg();
    if ((Reg == PPC::X2 || Reg == PPC::R2) && MustSaveTOC)
      continue;
    // Restore of callee saved condition register field is handled during
    // epilogue insertion.
    if (isCalleeSavedCR(Reg) && !Subtarget.is32BitELFABI())
      continue;
    if (Reg == PPC::CR2) {
      CR2Spilled = true;
      // The spill slot is associated only with CR2, which is the
      // first nonvolatile spilled.  Save it here.
      CSIIndex = i;
      continue;
    } else if (Reg == PPC::CR3) {
      CR3Spilled = true;
      continue;
    } else if (Reg == PPC::CR4) {
      CR4Spilled = true;
      continue;
    } else {
      // On 32-bit ELF when we first encounter a non-CR register after seeing at
      // least one CR register, restore all spilled CRs together.
      if (CR2Spilled || CR3Spilled || CR4Spilled) {
        bool is31 = needsFP(*MF);
        restoreCRs(is31, CR2Spilled, CR3Spilled, CR4Spilled, MBB, I, CSI,
                   CSIIndex);
        CR2Spilled = CR3Spilled = CR4Spilled = false;
      }
      if (CSI[i].isSpilledToReg()) {
        DebugLoc DL;
        unsigned Dst = CSI[i].getDstReg();
        if (Restored[Dst])
          continue;
        if (VSRContainingGPRs[Dst].second != 0) {
          assert(Subtarget.hasP9Vector());
          NumPEReloadVSR += 2;
          BuildMI(MBB, I, DL, TII.get(PPC::MFVSRLD),
                  VSRContainingGPRs[Dst].second)
              .addReg(Dst);
          BuildMI(MBB, I, DL, TII.get(PPC::MFVSRD),
                  VSRContainingGPRs[Dst].first)
              .addReg(TRI->getSubReg(Dst, PPC::sub_64), getKillRegState(true));
        } else if (VSRContainingGPRs[Dst].second == 0) {
          assert(Subtarget.hasP8Vector());
          ++NumPEReloadVSR;
          BuildMI(MBB, I, DL, TII.get(PPC::MFVSRD),
                  VSRContainingGPRs[Dst].first)
              .addReg(TRI->getSubReg(Dst, PPC::sub_64), getKillRegState(true));
        } else {
          llvm_unreachable("More than two GPRs spilled to a VSR!");
        }
        Restored.set(Dst);
      } else {
       // Default behavior for non-CR saves.
        const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg);
        // Functions without NoUnwind need to preserve the order of elements in
        // saved vector registers.
        if (Subtarget.needsSwapsForVSXMemOps() &&
            !MF->getFunction().hasFnAttribute(Attribute::NoUnwind))
          TII.loadRegFromStackSlotNoUpd(MBB, I, Reg, CSI[i].getFrameIdx(), RC,
                                        TRI);
        else
          TII.loadRegFromStackSlot(MBB, I, Reg, CSI[i].getFrameIdx(), RC, TRI);
        assert(I != MBB.begin() &&
               "loadRegFromStackSlot didn't insert any code!");
      }
    }
    // Insert in reverse order.
    if (AtStart)
      I = MBB.begin();
    else {
      I = BeforeI;
      ++I;
    }
  }
  // If we haven't yet spilled the CRs, do so now.
  if (CR2Spilled || CR3Spilled || CR4Spilled) {
    assert(Subtarget.is32BitELFABI() &&
           "Only set CR[2|3|4]Spilled on 32-bit SVR4.");
    bool is31 = needsFP(*MF);
    restoreCRs(is31, CR2Spilled, CR3Spilled, CR4Spilled, MBB, I, CSI, CSIIndex);
  }
  return true;
}
unsigned PPCFrameLowering::getTOCSaveOffset() const {
  return TOCSaveOffset;
}
unsigned PPCFrameLowering::getFramePointerSaveOffset() const {
  return FramePointerSaveOffset;
}
unsigned PPCFrameLowering::getBasePointerSaveOffset() const {
  return BasePointerSaveOffset;
}
bool PPCFrameLowering::enableShrinkWrapping(const MachineFunction &MF) const {
  if (MF.getInfo<PPCFunctionInfo>()->shrinkWrapDisabled())
    return false;
  return !MF.getSubtarget<PPCSubtarget>().is32BitELFABI();
}
 |