| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 
 | //===---------- PPCTLSDynamicCall.cpp - TLS Dynamic Call Fixup ------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This pass expands ADDItls{ld,gd}LADDR[32] machine instructions into
// separate ADDItls[gd]L[32] and GETtlsADDR[32] instructions, both of
// which define GPR3.  A copy is added from GPR3 to the target virtual
// register of the original instruction.  The GETtlsADDR[32] is really
// a call instruction, so its target register is constrained to be GPR3.
// This is not true of ADDItls[gd]L[32], but there is a legacy linker
// optimization bug that requires the target register of the addi of
// a local- or general-dynamic TLS access sequence to be GPR3.
//
// This is done in a late pass so that TLS variable accesses can be
// fully commoned by MachineCSE.
//
//===----------------------------------------------------------------------===//
#include "PPC.h"
#include "PPCInstrBuilder.h"
#include "PPCInstrInfo.h"
#include "PPCTargetMachine.h"
#include "llvm/CodeGen/LiveIntervals.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/InitializePasses.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
#define DEBUG_TYPE "ppc-tls-dynamic-call"
namespace {
  struct PPCTLSDynamicCall : public MachineFunctionPass {
    static char ID;
    PPCTLSDynamicCall() : MachineFunctionPass(ID) {
      initializePPCTLSDynamicCallPass(*PassRegistry::getPassRegistry());
    }
    const PPCInstrInfo *TII;
    LiveIntervals *LIS;
protected:
    bool processBlock(MachineBasicBlock &MBB) {
      bool Changed = false;
      bool NeedFence = true;
      bool Is64Bit = MBB.getParent()->getSubtarget<PPCSubtarget>().isPPC64();
      bool IsAIX = MBB.getParent()->getSubtarget<PPCSubtarget>().isAIXABI();
      bool IsPCREL = false;
      for (MachineBasicBlock::iterator I = MBB.begin(), IE = MBB.end();
           I != IE;) {
        MachineInstr &MI = *I;
        IsPCREL = isPCREL(MI);
        if (MI.getOpcode() != PPC::ADDItlsgdLADDR &&
            MI.getOpcode() != PPC::ADDItlsldLADDR &&
            MI.getOpcode() != PPC::ADDItlsgdLADDR32 &&
            MI.getOpcode() != PPC::ADDItlsldLADDR32 &&
            MI.getOpcode() != PPC::TLSGDAIX &&
            MI.getOpcode() != PPC::TLSGDAIX8 && !IsPCREL) {
          // Although we create ADJCALLSTACKDOWN and ADJCALLSTACKUP
          // as scheduling fences, we skip creating fences if we already
          // have existing ADJCALLSTACKDOWN/UP to avoid nesting,
          // which causes verification error with -verify-machineinstrs.
          if (MI.getOpcode() == PPC::ADJCALLSTACKDOWN)
            NeedFence = false;
          else if (MI.getOpcode() == PPC::ADJCALLSTACKUP)
            NeedFence = true;
          ++I;
          continue;
        }
        LLVM_DEBUG(dbgs() << "TLS Dynamic Call Fixup:\n    " << MI);
        Register OutReg = MI.getOperand(0).getReg();
        Register InReg = PPC::NoRegister;
        Register GPR3 = Is64Bit ? PPC::X3 : PPC::R3;
        Register GPR4 = Is64Bit ? PPC::X4 : PPC::R4;
        SmallVector<Register, 3> OrigRegs = {OutReg, GPR3};
        if (!IsPCREL) {
          InReg = MI.getOperand(1).getReg();
          OrigRegs.push_back(InReg);
        }
        DebugLoc DL = MI.getDebugLoc();
        unsigned Opc1, Opc2;
        switch (MI.getOpcode()) {
        default:
          llvm_unreachable("Opcode inconsistency error");
        case PPC::ADDItlsgdLADDR:
          Opc1 = PPC::ADDItlsgdL;
          Opc2 = PPC::GETtlsADDR;
          break;
        case PPC::ADDItlsldLADDR:
          Opc1 = PPC::ADDItlsldL;
          Opc2 = PPC::GETtlsldADDR;
          break;
        case PPC::ADDItlsgdLADDR32:
          Opc1 = PPC::ADDItlsgdL32;
          Opc2 = PPC::GETtlsADDR32;
          break;
        case PPC::ADDItlsldLADDR32:
          Opc1 = PPC::ADDItlsldL32;
          Opc2 = PPC::GETtlsldADDR32;
          break;
        case PPC::TLSGDAIX8:
          // TLSGDAIX8 is expanded to two copies and GET_TLS_ADDR, so we only
          // set Opc2 here.
          Opc2 = PPC::GETtlsADDR64AIX;
          break;
        case PPC::TLSGDAIX:
          // TLSGDAIX is expanded to two copies and GET_TLS_ADDR, so we only
          // set Opc2 here.
          Opc2 = PPC::GETtlsADDR32AIX;
          break;
        case PPC::PADDI8pc:
          assert(IsPCREL && "Expecting General/Local Dynamic PCRel");
          Opc1 = PPC::PADDI8pc;
          Opc2 = MI.getOperand(2).getTargetFlags() ==
                         PPCII::MO_GOT_TLSGD_PCREL_FLAG
                     ? PPC::GETtlsADDRPCREL
                     : PPC::GETtlsldADDRPCREL;
        }
        // We create ADJCALLSTACKUP and ADJCALLSTACKDOWN around _tls_get_addr
        // as scheduling fence to avoid it is scheduled before
        // mflr in the prologue and the address in LR is clobbered (PR25839).
        // We don't really need to save data to the stack - the clobbered
        // registers are already saved when the SDNode (e.g. PPCaddiTlsgdLAddr)
        // gets translated to the pseudo instruction (e.g. ADDItlsgdLADDR).
        if (NeedFence)
          BuildMI(MBB, I, DL, TII->get(PPC::ADJCALLSTACKDOWN)).addImm(0)
                                                              .addImm(0);
        // The ADDItls* instruction is the first instruction in the
        // repair range.
        MachineBasicBlock::iterator First = I;
        --First;
        if (IsAIX) {
          // The variable offset and region handle are copied in r4 and r3. The
          // copies are followed by GETtlsADDR32AIX/GETtlsADDR64AIX.
          BuildMI(MBB, I, DL, TII->get(TargetOpcode::COPY), GPR4)
              .addReg(MI.getOperand(1).getReg());
          BuildMI(MBB, I, DL, TII->get(TargetOpcode::COPY), GPR3)
              .addReg(MI.getOperand(2).getReg());
          BuildMI(MBB, I, DL, TII->get(Opc2), GPR3).addReg(GPR3).addReg(GPR4);
        } else {
          MachineInstr *Addi;
          if (IsPCREL) {
            Addi = BuildMI(MBB, I, DL, TII->get(Opc1), GPR3).addImm(0);
          } else {
            // Expand into two ops built prior to the existing instruction.
            assert(InReg != PPC::NoRegister && "Operand must be a register");
            Addi = BuildMI(MBB, I, DL, TII->get(Opc1), GPR3).addReg(InReg);
          }
          Addi->addOperand(MI.getOperand(2));
          MachineInstr *Call =
              (BuildMI(MBB, I, DL, TII->get(Opc2), GPR3).addReg(GPR3));
          if (IsPCREL)
            Call->addOperand(MI.getOperand(2));
          else
            Call->addOperand(MI.getOperand(3));
        }
        if (NeedFence)
          BuildMI(MBB, I, DL, TII->get(PPC::ADJCALLSTACKUP)).addImm(0).addImm(0);
        BuildMI(MBB, I, DL, TII->get(TargetOpcode::COPY), OutReg)
          .addReg(GPR3);
        // The COPY is the last instruction in the repair range.
        MachineBasicBlock::iterator Last = I;
        --Last;
        // Move past the original instruction and remove it.
        ++I;
        MI.removeFromParent();
        // Repair the live intervals.
        LIS->repairIntervalsInRange(&MBB, First, Last, OrigRegs);
        Changed = true;
      }
      return Changed;
    }
public:
  bool isPCREL(const MachineInstr &MI) {
    return (MI.getOpcode() == PPC::PADDI8pc) &&
           (MI.getOperand(2).getTargetFlags() ==
                PPCII::MO_GOT_TLSGD_PCREL_FLAG ||
            MI.getOperand(2).getTargetFlags() ==
                PPCII::MO_GOT_TLSLD_PCREL_FLAG);
  }
    bool runOnMachineFunction(MachineFunction &MF) override {
      TII = MF.getSubtarget<PPCSubtarget>().getInstrInfo();
      LIS = &getAnalysis<LiveIntervals>();
      bool Changed = false;
      for (MachineFunction::iterator I = MF.begin(); I != MF.end();) {
        MachineBasicBlock &B = *I++;
        if (processBlock(B))
          Changed = true;
      }
      return Changed;
    }
    void getAnalysisUsage(AnalysisUsage &AU) const override {
      AU.addRequired<LiveIntervals>();
      AU.addPreserved<LiveIntervals>();
      AU.addRequired<SlotIndexes>();
      AU.addPreserved<SlotIndexes>();
      MachineFunctionPass::getAnalysisUsage(AU);
    }
  };
}
INITIALIZE_PASS_BEGIN(PPCTLSDynamicCall, DEBUG_TYPE,
                      "PowerPC TLS Dynamic Call Fixup", false, false)
INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
INITIALIZE_PASS_END(PPCTLSDynamicCall, DEBUG_TYPE,
                    "PowerPC TLS Dynamic Call Fixup", false, false)
char PPCTLSDynamicCall::ID = 0;
FunctionPass*
llvm::createPPCTLSDynamicCallPass() { return new PPCTLSDynamicCall(); }
 |