1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688
|
//===- LinalgOps.cpp - Implementation of the linalg operations ------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the Linalg operations.
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/Linalg/IR/LinalgOps.h"
#include "mlir/Dialect/Affine/IR/AffineOps.h"
#include "mlir/Dialect/Linalg/IR/LinalgTypes.h"
#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/Dialect/StandardOps/IR/Ops.h"
#include "mlir/Dialect/Tensor/IR/Tensor.h"
#include "mlir/Dialect/Utils/ReshapeOpsUtils.h"
#include "mlir/Dialect/Utils/StaticValueUtils.h"
#include "mlir/IR/AffineExprVisitor.h"
#include "mlir/IR/Matchers.h"
#include "mlir/IR/OpImplementation.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/Interfaces/InferTypeOpInterface.h"
#include "mlir/Parser.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/StringSet.h"
#include "llvm/Support/FormatVariadic.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
using namespace mlir;
using namespace mlir::linalg;
#include "mlir/Dialect/Linalg/IR/LinalgOpsDialect.cpp.inc"
/// Forward declarations.
/// Generic entry point to create the block for the region of a LinalgOp.
/// This is used by both named structured ops created by ods-gen and by manually
/// defined C++ ops.
/// This is used by both builders and parsers.
/// This function creates the block in the region with arguments corresponding
/// to the elemental types of `inputTypes` and `outputTypes`. The latter are
/// asserted to be of ShapedType.
template <typename NamedStructuredOpType>
static void fillStructuredOpRegion(
OpBuilder &opBuilder, Region ®ion, TypeRange inputTypes,
TypeRange outputTypes,
std::function<void(unsigned, unsigned)> errorHandler = nullptr);
/// Generic entry point to create both the region and the block of a LinalgOp.
template <typename NamedStructuredOpType>
static void
createAndFillStructuredOpRegion(OpBuilder &opBuilder, OperationState &result,
TypeRange inputTypes, TypeRange outputTypes);
/// Common parsing and printing used for both named structured ops created by
/// ods-gen and by manually defined C++ ops. Does not handle regions.
static ParseResult
parseCommonStructuredOpParts(OpAsmParser &parser, OperationState &result,
SmallVectorImpl<Type> &inputTypes,
SmallVectorImpl<Type> &outputTypes);
template <typename NamedStructuredOpType>
static void printCommonStructuredOpParts(OpAsmPrinter &p,
NamedStructuredOpType op);
/// Specific parsing and printing for named structured ops created by ods-gen.
template <typename NamedStructuredOpType>
static ParseResult
parseNamedStructuredOpRegion(OpAsmParser &parser, Region ®ion,
TypeRange inputTypes, TypeRange outputTypes);
static ParseResult
parseNamedStructuredOpResults(OpAsmParser &parser,
SmallVectorImpl<Type> &resultTypes);
template <typename NamedStructuredOpType>
static ParseResult parseNamedStructuredOp(OpAsmParser &parser,
OperationState &result);
static void printNamedStructuredOpResults(OpAsmPrinter &p,
TypeRange resultTypes);
template <typename NamedStructuredOpType>
static void printNamedStructuredOp(OpAsmPrinter &p, NamedStructuredOpType op);
/// Helper function to convert a vector of `OpFoldResult`s into a vector of
/// `Value`s.
static SmallVector<Value> getAsValues(OpBuilder &b, Location loc,
ArrayRef<OpFoldResult> valueOrAttrVec) {
return llvm::to_vector<4>(
llvm::map_range(valueOrAttrVec, [&](OpFoldResult value) -> Value {
if (auto attr = value.dyn_cast<Attribute>())
return b.create<ConstantIndexOp>(loc,
attr.cast<IntegerAttr>().getInt());
return value.get<Value>();
}));
}
/// This is a common class used for patterns of the form
/// ```
/// someop(memrefcast(%src)) -> someop(%src)
/// ```
/// It folds the source of the memref.cast into the root operation directly.
static LogicalResult foldMemRefCast(Operation *op) {
bool folded = false;
for (OpOperand &operand : op->getOpOperands()) {
auto castOp = operand.get().getDefiningOp<memref::CastOp>();
if (castOp && memref::CastOp::canFoldIntoConsumerOp(castOp)) {
operand.set(castOp.getOperand());
folded = true;
}
}
return success(folded);
}
/// This is a specialization of `foldMemRefCast` used for patterns of the form
/// ```
/// tiled_loop(memrefcast(%src)) -> tiled_loop(%src)
/// ```
/// It folds the source of the memref.cast into the root operation directly.
static LogicalResult foldMemRefCastInTiledLoopOp(TiledLoopOp op) {
bool folded = false;
Location loc = op->getLoc();
Block *body = op.getBody();
OpBuilder b = OpBuilder::atBlockBegin(body);
// Update `input` and `output` operands and block arguments if necessary.
// Operands list: [lbs, ubs, steps, inputs, outputs].
// Block args list: [ivs, inputs, outputs].
for (size_t operandIndex = op.getNumControlOperands(),
bbArgIndex = op.getNumLoops(), e = op.getNumOperands();
operandIndex < e; ++operandIndex, ++bbArgIndex) {
OpOperand &operand = op->getOpOperand(operandIndex);
auto castOp = operand.get().getDefiningOp<memref::CastOp>();
if (castOp && memref::CastOp::canFoldIntoConsumerOp(castOp)) {
operand.set(castOp.getOperand());
BlockArgument newBbArg =
body->insertArgument(bbArgIndex, castOp.getOperand().getType());
BlockArgument oldBbArg = body->getArgument(newBbArg.getArgNumber() + 1);
// Insert memref.cast back to the original type.
oldBbArg.replaceAllUsesWith(
b.create<memref::CastOp>(loc, oldBbArg.getType(), newBbArg));
body->eraseArgument(oldBbArg.getArgNumber());
folded = true;
}
}
return success(folded);
}
//===----------------------------------------------------------------------===//
// Region builder helper.
// TODO: Move this to a utility library.
// The public methods on this class are referenced directly from generated code
// and bind by name to math functions in the DSL as:
// `applyfn__{fnName}`
// Examples:
// `applyfn__add`
// `applyfn__mul`
// The naming convention is intentional in order to match snake-cased DSL names.
// See mlir-linalg-ods-yaml-gen.cpp for the code that mates to this class.
//
// Implementations of the math functions must be polymorphic over numeric types,
// internally performing necessary casts. If the function application makes no
// sense, then the only recourse is to assert and return nullptr. This can be
// extended later if it becomes possible to fail construction of the region. The
// invariant should be enforced at a higher level.
//
// TODO: These helpers are currently type polymorphic over the class of integer
// and floating point types, but they will not internally cast within bit
// widths of a class (mixed precision such as i8->i32) or across classes
// (i.e. mixed float and integer). Many such combinations are ambiguous or need
// to be handled with care and work is being considered to extend the op
// language to make such cases explicit. In the mean-time, violating this will
// fail verification, which is deemed acceptable.
//===----------------------------------------------------------------------===//
namespace {
class RegionBuilderHelper {
public:
RegionBuilderHelper(MLIRContext *context, Block &block)
: context(context), block(block) {}
// Generates operations to cast the given operand to a specified type.
// If the cast cannot be performed, a warning will be issued and the
// operand returned as-is (which will presumably yield a verification
// issue downstream).
Value cast(Type toType, Value operand) {
OpBuilder builder = getBuilder();
auto loc = operand.getLoc();
if (operand.getType() == toType)
return operand;
if (auto toIntType = toType.dyn_cast<IntegerType>()) {
// If operand is floating point, cast directly to the int type.
if (operand.getType().isa<FloatType>())
return builder.create<FPToSIOp>(loc, toType, operand);
// Cast index operands directly to the int type.
if (operand.getType().isIndex())
return builder.create<IndexCastOp>(loc, toType, operand);
if (auto fromIntType = operand.getType().dyn_cast<IntegerType>()) {
// Either sign extend or truncate.
if (toIntType.getWidth() > fromIntType.getWidth())
return builder.create<SignExtendIOp>(loc, toType, operand);
if (toIntType.getWidth() < fromIntType.getWidth())
return builder.create<TruncateIOp>(loc, toType, operand);
}
} else if (auto toFloatType = toType.dyn_cast<FloatType>()) {
// If operand is integer, cast directly to the float type.
// Note that it is unclear how to cast from BF16<->FP16.
if (operand.getType().isa<IntegerType>())
return builder.create<SIToFPOp>(loc, toFloatType, operand);
if (auto fromFloatType = operand.getType().dyn_cast<FloatType>()) {
if (toFloatType.getWidth() > fromFloatType.getWidth())
return builder.create<FPExtOp>(loc, toFloatType, operand);
if (toFloatType.getWidth() < fromFloatType.getWidth())
return builder.create<FPTruncOp>(loc, toFloatType, operand);
}
}
emitWarning(operand.getLoc()) << "could not cast operand of type "
<< operand.getType() << " to " << toType;
return operand;
}
Value applyfn__add(Value lhs, Value rhs) {
OpBuilder builder = getBuilder();
if (isFloatingPoint(lhs))
return builder.create<AddFOp>(lhs.getLoc(), lhs, rhs);
if (isInteger(lhs))
return builder.create<AddIOp>(lhs.getLoc(), lhs, rhs);
llvm_unreachable("unsupported non numeric type");
}
Value applyfn__exp(Value x) {
OpBuilder builder = getBuilder();
if (isFloatingPoint(x))
return builder.create<math::ExpOp>(x.getLoc(), x);
llvm_unreachable("unsupported non numeric type");
}
Value applyfn__log(Value x) {
OpBuilder builder = getBuilder();
if (isFloatingPoint(x))
return builder.create<math::LogOp>(x.getLoc(), x);
llvm_unreachable("unsupported non numeric type");
}
Value applyfn__sub(Value lhs, Value rhs) {
OpBuilder builder = getBuilder();
if (isFloatingPoint(lhs))
return builder.create<SubFOp>(lhs.getLoc(), lhs, rhs);
if (isInteger(lhs))
return builder.create<SubIOp>(lhs.getLoc(), lhs, rhs);
llvm_unreachable("unsupported non numeric type");
}
Value applyfn__mul(Value lhs, Value rhs) {
OpBuilder builder = getBuilder();
if (isFloatingPoint(lhs))
return builder.create<MulFOp>(lhs.getLoc(), lhs, rhs);
if (isInteger(lhs))
return builder.create<MulIOp>(lhs.getLoc(), lhs, rhs);
llvm_unreachable("unsupported non numeric type");
}
Value applyfn__max(Value lhs, Value rhs) {
if (isFloatingPoint(lhs))
return emitCmpFAndSelect(lhs, rhs, CmpFPredicate::OGT);
if (isInteger(lhs))
return emitCmpIAndSelect(lhs, rhs, CmpIPredicate::sgt);
llvm_unreachable("unsupported non numeric type");
}
Value applyfn__min(Value lhs, Value rhs) {
if (isFloatingPoint(lhs))
return emitCmpFAndSelect(lhs, rhs, CmpFPredicate::OLT);
if (isInteger(lhs))
return emitCmpIAndSelect(lhs, rhs, CmpIPredicate::slt);
llvm_unreachable("unsupported non numeric type");
}
void yieldOutputs(ValueRange values) {
assert(!values.empty() && "linalg ops must yield outputs");
if (values.empty())
return;
Value first = values.front();
OpBuilder builder = getBuilder();
builder.create<YieldOp>(first.getLoc(), values);
}
Value constant(std::string value) {
OpBuilder builder = getBuilder();
Location loc = builder.getUnknownLoc();
Attribute valueAttr = parseAttribute(value, builder.getContext());
return builder.create<ConstantOp>(loc, valueAttr.getType(), valueAttr);
}
Value index(int64_t dim) {
OpBuilder builder = getBuilder();
return builder.create<IndexOp>(builder.getUnknownLoc(), dim);
}
Type getIntegerType(unsigned width) {
return IntegerType::get(context, width);
}
Type getFloat32Type() { return Float32Type::get(context); }
Type getFloat64Type() { return Float64Type::get(context); }
private:
MLIRContext *context;
Block █
Value emitCmpFAndSelect(Value lhs, Value rhs, CmpFPredicate predicate) {
OpBuilder builder = getBuilder();
Value condition = builder.create<CmpFOp>(lhs.getLoc(), predicate, lhs, rhs);
return builder.create<SelectOp>(lhs.getLoc(), condition, lhs, rhs);
}
Value emitCmpIAndSelect(Value lhs, Value rhs, CmpIPredicate predicate) {
OpBuilder builder = getBuilder();
Value condition = builder.create<CmpIOp>(lhs.getLoc(), predicate, lhs, rhs);
return builder.create<SelectOp>(lhs.getLoc(), condition, lhs, rhs);
}
bool isFloatingPoint(Value value) { return value.getType().isa<FloatType>(); }
bool isInteger(Value value) { return value.getType().isa<IntegerType>(); }
OpBuilder getBuilder() {
OpBuilder builder(context);
builder.setInsertionPointToEnd(&block);
return builder;
}
};
} // namespace
//===----------------------------------------------------------------------===//
// CopyOp
//===----------------------------------------------------------------------===//
void CopyOp::regionBuilder(ImplicitLocOpBuilder &b, Block &block) {
assert(block.getNumArguments() == 2 && "CopyOp regionBuilder expects 2 args");
b.create<linalg::YieldOp>(block.getArgument(0));
}
void CopyOp::build(OpBuilder &builder, OperationState &result, Value input,
Value output, AffineMap inputPermutation,
AffineMap outputPermutation,
ArrayRef<NamedAttribute> namedAttrs) {
result.addOperands({input, output});
result.addAttributes(namedAttrs);
if (inputPermutation)
result.addAttribute("inputPermutation",
AffineMapAttr::get(inputPermutation));
if (outputPermutation)
result.addAttribute("outputPermutation",
AffineMapAttr::get(outputPermutation));
result.addRegion();
fillStructuredOpRegion<CopyOp>(builder, *result.regions.front(),
TypeRange{input.getType()},
TypeRange{output.getType()});
}
ParseResult parseCopyOpRegion(OpAsmParser &parser, Region &r, Type inputType,
Type outputType) {
OpBuilder opBuilder(parser.getBuilder().getContext());
fillStructuredOpRegion<CopyOp>(opBuilder, r, TypeRange{inputType},
TypeRange{outputType});
return success();
}
/// CopyOp region is elided when printing.
void printCopyOpRegion(OpAsmPrinter &, Operation *, Region &, Type, Type) {}
static LogicalResult verify(CopyOp op) {
OpOperand *output = op.getOutputOperand(0);
OpOperand *input = op.getInputOperand(0);
if (getElementTypeOrSelf(input->get()) != getElementTypeOrSelf(output->get()))
return op.emitOpError("expects views of the same type");
if (op.getRank(input) != op.getRank(output))
return op.emitOpError("expects views of the same rank");
auto rank = op.getNumParallelLoops();
auto inputPermutationMap = op.inputPermutation();
if (inputPermutationMap) {
if (inputPermutationMap->getNumInputs() != rank)
return op.emitOpError("expects optional input_permutation map of rank ")
<< rank;
if (!inputPermutationMap->isPermutation())
return op.emitOpError(
"expects optional input_permutation map to be a permutation");
}
auto outputPermutationMap = op.outputPermutation();
if (outputPermutationMap) {
if (outputPermutationMap->getNumInputs() != rank)
return op.emitOpError("expects optional output_permutation map of rank ")
<< rank;
if (!outputPermutationMap->isPermutation())
return op.emitOpError(
"expects optional output_permutation map to be a permutation");
}
if (rank == 0 && inputPermutationMap)
return op.emitOpError("expected no input permutation when rank == 0");
if (rank == 0 && outputPermutationMap)
return op.emitOpError("expected no output permutation when rank == 0");
return success();
}
void CopyOp::getEffects(
SmallVectorImpl<SideEffects::EffectInstance<MemoryEffects::Effect>>
&effects) {
effects.emplace_back(MemoryEffects::Read::get(), input(),
SideEffects::DefaultResource::get());
effects.emplace_back(MemoryEffects::Write::get(), output(),
SideEffects::DefaultResource::get());
}
//===----------------------------------------------------------------------===//
// FillOp
//===----------------------------------------------------------------------===//
void FillOp::regionBuilder(ImplicitLocOpBuilder &b, Block &block) {
assert(block.getNumArguments() == 2 && "FillOp regionBuilder expects 2 args");
b.create<linalg::YieldOp>(block.getArgument(0));
}
void FillOp::build(OpBuilder &builder, OperationState &result, Value value,
Value output) {
build(builder, result, output.getType().dyn_cast<RankedTensorType>(), value,
output);
fillStructuredOpRegion<FillOp>(builder, *result.regions.front(),
TypeRange{value.getType()},
TypeRange{output.getType()}, {});
}
ParseResult parseFillOpRegion(OpAsmParser &parser, Region &r, Type valueType,
Type outputType) {
OpBuilder opBuilder(parser.getBuilder().getContext());
fillStructuredOpRegion<FillOp>(opBuilder, r, TypeRange{valueType},
TypeRange{outputType});
return success();
}
/// FillOp region is elided when printing.
void printFillOpRegion(OpAsmPrinter &, Operation *, Region &, Type, Type) {}
static LogicalResult verify(FillOp op) {
OpOperand *output = op.getOutputOperand(0);
Type fillType = op.value().getType();
if (getElementTypeOrSelf(output->get()) != fillType)
return op.emitOpError("expects fill type to match view elemental type");
return success();
}
void FillOp::getEffects(
SmallVectorImpl<SideEffects::EffectInstance<MemoryEffects::Effect>>
&effects) {
if (output().getType().isa<MemRefType>())
effects.emplace_back(MemoryEffects::Write::get(), output(),
SideEffects::DefaultResource::get());
}
//===----------------------------------------------------------------------===//
// GenericOps
//===----------------------------------------------------------------------===//
void GenericOp::build(
OpBuilder &builder, OperationState &result, TypeRange resultTensorTypes,
ValueRange inputs, ValueRange outputs, ArrayRef<AffineMap> indexingMaps,
ArrayRef<StringRef> iteratorTypes, StringRef doc, StringRef libraryCall,
function_ref<void(OpBuilder &, Location, ValueRange)> bodyBuild) {
build(builder, result, resultTensorTypes, inputs, outputs,
builder.getAffineMapArrayAttr(indexingMaps),
builder.getStrArrayAttr(iteratorTypes),
doc.empty() ? StringAttr() : builder.getStringAttr(doc),
libraryCall.empty() ? StringAttr()
: builder.getStringAttr(libraryCall));
if (!bodyBuild)
return;
SmallVector<Type, 4> blockArgTypes;
for (ValueRange container : {inputs, outputs})
for (Value v : container)
blockArgTypes.push_back(getElementTypeOrSelf(v));
OpBuilder::InsertionGuard guard(builder);
auto ®ion = *result.regions.front();
Block *bodyBlock = builder.createBlock(®ion, region.end(), blockArgTypes);
bodyBuild(builder, result.location, bodyBlock->getArguments());
}
void GenericOp::build(
OpBuilder &builder, OperationState &result, ValueRange inputs,
ValueRange outputs, ArrayRef<AffineMap> indexingMaps,
ArrayRef<StringRef> iteratorTypes, StringRef doc, StringRef libraryCall,
function_ref<void(OpBuilder &, Location, ValueRange)> bodyBuild) {
build(builder, result, TypeRange{}, inputs, outputs, indexingMaps,
iteratorTypes, doc, libraryCall, bodyBuild);
}
void GenericOp::build(
OpBuilder &builder, OperationState &result, ValueRange inputs,
ValueRange outputs, ArrayRef<AffineMap> indexingMaps,
ArrayRef<StringRef> iteratorTypes,
function_ref<void(OpBuilder &, Location, ValueRange)> bodyBuild) {
build(builder, result, inputs, outputs, indexingMaps, iteratorTypes,
/*doc=*/"",
/*libraryCall=*/"", bodyBuild);
}
void GenericOp::build(
OpBuilder &builder, OperationState &result, TypeRange resultTensorTypes,
ValueRange inputs, ValueRange outputs, ArrayRef<AffineMap> indexingMaps,
ArrayRef<StringRef> iteratorTypes,
function_ref<void(OpBuilder &, Location, ValueRange)> bodyBuild) {
build(builder, result, resultTensorTypes, inputs, outputs, indexingMaps,
iteratorTypes,
/*doc=*/"",
/*libraryCall=*/"", bodyBuild);
}
static void print(OpAsmPrinter &p, GenericOp op) {
p << op.getOperationName() << " ";
// Print extra attributes.
auto genericAttrNames = op.linalgTraitAttrNames();
llvm::StringSet<> genericAttrNamesSet;
genericAttrNamesSet.insert(genericAttrNames.begin(), genericAttrNames.end());
SmallVector<NamedAttribute, 8> genericAttrs;
for (auto attr : op->getAttrs())
if (genericAttrNamesSet.count(attr.first.strref()) > 0)
genericAttrs.push_back(attr);
if (!genericAttrs.empty()) {
auto genericDictAttr = DictionaryAttr::get(op.getContext(), genericAttrs);
p << genericDictAttr;
}
// Printing is shared with named ops, except for the region and attributes
printCommonStructuredOpParts(p, op);
genericAttrNames.push_back("operand_segment_sizes");
genericAttrNamesSet.insert(genericAttrNames.back());
bool hasExtraAttrs = false;
for (NamedAttribute n : op->getAttrs()) {
if ((hasExtraAttrs = !genericAttrNamesSet.contains(n.first.strref())))
break;
}
if (hasExtraAttrs) {
p << " attrs = ";
p.printOptionalAttrDict(op->getAttrs(), /*elidedAttrs=*/genericAttrNames);
}
// Print region.
if (!op.region().empty())
p.printRegion(op.region());
// Print results.
printNamedStructuredOpResults(p, op.result_tensors().getTypes());
}
static ParseResult parseGenericOp(OpAsmParser &parser, OperationState &result) {
DictionaryAttr dictAttr;
// Parse the core linalg traits that must check into a dictAttr.
// The name is unimportant as we will overwrite result.attributes.
// The core linalg traits must contain the information necessary to pass the
// verifier.
if (parser.parseAttribute(dictAttr, "_", result.attributes))
return failure();
result.attributes.assign(dictAttr.getValue().begin(),
dictAttr.getValue().end());
// Parsing is shared with named ops, except for the region.
SmallVector<Type, 1> inputTypes, outputTypes;
if (parseCommonStructuredOpParts(parser, result, inputTypes, outputTypes))
return failure();
// Optional attributes may be added.
if (succeeded(parser.parseOptionalKeyword("attrs")))
if (failed(parser.parseEqual()) ||
failed(parser.parseOptionalAttrDict(result.attributes)))
return failure();
SmallVector<OpAsmParser::OperandType, 8> regionOperands;
std::unique_ptr<Region> region = std::make_unique<Region>();
SmallVector<Type, 8> operandTypes, regionTypes;
if (parser.parseRegion(*region, regionOperands, regionTypes))
return failure();
result.addRegion(std::move(region));
// Generic ops may specify that a subset of its outputs are tensors. Such
// outputs are specified in the result type.
// TODO: may need to move output parsing before region parsing.
// Need to wait for declarative assembly resolution to decide.
SmallVector<Type, 1> outputTensorsTypes;
if (parseNamedStructuredOpResults(parser, outputTensorsTypes))
return failure();
result.addTypes(outputTensorsTypes);
return success();
}
static void getGenericEffectsImpl(
SmallVectorImpl<SideEffects::EffectInstance<MemoryEffects::Effect>>
&effects,
ValueRange results, ValueRange inputBuffers, ValueRange outputs) {
for (Value value : results) {
effects.emplace_back(MemoryEffects::Allocate::get(), value,
SideEffects::DefaultResource::get());
}
for (Value value : inputBuffers) {
effects.emplace_back(MemoryEffects::Read::get(), value,
SideEffects::DefaultResource::get());
}
for (Value value : outputs) {
effects.emplace_back(MemoryEffects::Read::get(), value,
SideEffects::DefaultResource::get());
effects.emplace_back(MemoryEffects::Write::get(), value,
SideEffects::DefaultResource::get());
}
}
void GenericOp::getEffects(
SmallVectorImpl<SideEffects::EffectInstance<MemoryEffects::Effect>>
&effects) {
SmallVector<Value> inputBuffers = getInputBufferOperands();
SmallVector<Value> outputBuffers = getOutputBufferOperands();
getGenericEffectsImpl(effects, getOperation()->getResults(), inputBuffers,
outputBuffers);
}
template <typename GenericOpType>
static LogicalResult verifyGenericOp(GenericOpType op) {
return success();
}
static LogicalResult verify(GenericOp op) { return verifyGenericOp(op); }
//===----------------------------------------------------------------------===//
// InitTensorOp
//===----------------------------------------------------------------------===//
void InitTensorOp::build(OpBuilder &b, OperationState &result,
ArrayRef<OpFoldResult> sizes, Type elementType,
ArrayRef<NamedAttribute> attrs) {
unsigned rank = sizes.size();
SmallVector<Value, 4> dynamicSizes;
SmallVector<int64_t, 4> staticSizes;
for (unsigned i = 0; i < rank; ++i) {
dispatchIndexOpFoldResult(sizes[i], dynamicSizes, staticSizes,
ShapedType::kDynamicSize);
}
auto resultType = RankedTensorType ::get(staticSizes, elementType);
build(b, result, resultType, dynamicSizes, b.getI64ArrayAttr(staticSizes));
result.addAttributes(attrs);
}
static LogicalResult verify(InitTensorOp op) {
RankedTensorType resultType = op.getType();
SmallVector<int64_t, 4> staticSizes = llvm::to_vector<4>(llvm::map_range(
op.static_sizes().cast<ArrayAttr>(),
[](Attribute a) -> int64_t { return a.cast<IntegerAttr>().getInt(); }));
if (failed(verifyListOfOperandsOrIntegers(op, "sizes", resultType.getRank(),
op.static_sizes(), op.sizes(),
ShapedType::isDynamic)))
return failure();
if (op.static_sizes().size() != static_cast<unsigned>(resultType.getRank()))
return op->emitError("expected ")
<< resultType.getRank() << " sizes values";
Type expectedType =
InitTensorOp::inferResultType(staticSizes, resultType.getElementType());
if (resultType != expectedType) {
return op.emitError("specified type ")
<< resultType << " does not match the inferred type "
<< expectedType;
}
return success();
}
Type InitTensorOp::inferResultType(ArrayRef<int64_t> staticSizes,
Type elementType) {
return RankedTensorType::get(staticSizes, elementType);
}
namespace {
/// Change the type of the result of a `linalg.init_tensor` by making the result
/// type statically sized along dimension that in the original operation where
/// defined as dynamic, but the size was defined using a `constant` op. For
/// example
///
/// %c5 = constant 5: index
/// %0 = linalg.init_tensor [%arg0, %c5] : tensor<?x?xf32>
///
/// to
///
/// %0 = linalg.init_tensor [%arg0, 5] : tensor<?x5xf32>
struct ReplaceStaticShapeDims : OpRewritePattern<InitTensorOp> {
using OpRewritePattern<InitTensorOp>::OpRewritePattern;
LogicalResult matchAndRewrite(InitTensorOp op,
PatternRewriter &rewriter) const override {
SmallVector<Value, 4> dynamicSizes;
SmallVector<int64_t, 4> staticSizes;
for (unsigned i = 0, e = op.getType().getRank(); i != e; ++i) {
// If the size is already static, nothing to do.
if (!op.isDynamicSize(i)) {
staticSizes.push_back(op.getStaticSize(i));
continue;
}
// If the size is dynamic but defined using a `constant` op, get the
// constant value to find the static size to use.
unsigned operandNum = op.getIndexOfDynamicSize(i);
Value sizeOperand = op.getOperand(operandNum);
if (auto constantIndexOp = sizeOperand.getDefiningOp<ConstantIndexOp>()) {
staticSizes.push_back(constantIndexOp.getValue());
continue;
}
// Fallback case. Keep the size dynamic.
dynamicSizes.push_back(sizeOperand);
staticSizes.push_back(ShapedType::kDynamicSize);
}
RankedTensorType newType =
RankedTensorType::get(staticSizes, op.getType().getElementType());
if (newType == op.getType())
return failure();
auto newOp =
rewriter.create<InitTensorOp>(op.getLoc(), newType, dynamicSizes,
rewriter.getI64ArrayAttr(staticSizes));
rewriter.replaceOpWithNewOp<tensor::CastOp>(op, op.getType(), newOp);
return success();
}
};
} // namespace
namespace {
/// Since `init_tensor` operation creates a tensor needed only for its shape, a
/// slice of this is also needed only for its shape. The result can be
/// replaced by a new init_tensor operation of the same size as the extract
/// slice op.
struct FoldInitTensorWithExtractSliceOp
: public OpRewritePattern<tensor::ExtractSliceOp> {
using OpRewritePattern<tensor::ExtractSliceOp>::OpRewritePattern;
LogicalResult matchAndRewrite(tensor::ExtractSliceOp sliceOp,
PatternRewriter &rewriter) const override {
if (!sliceOp.source().getDefiningOp<linalg::InitTensorOp>())
return failure();
// ExtractSliceOp may be rank-reducing; its dynamic sizes must be preserved
// as well as its result type.
rewriter.replaceOpWithNewOp<linalg::InitTensorOp>(
sliceOp, sliceOp.sizes(),
sliceOp.result().getType().cast<RankedTensorType>().getShape(),
sliceOp.getSourceType().getElementType());
return success();
}
};
template <typename TensorReshapeOp>
struct FoldInitTensorWithTensorReshapeOp
: public OpRewritePattern<TensorReshapeOp> {
using OpRewritePattern<TensorReshapeOp>::OpRewritePattern;
LogicalResult matchAndRewrite(TensorReshapeOp reshapeOp,
PatternRewriter &rewriter) const override {
if (!reshapeOp.src().template getDefiningOp<InitTensorOp>())
return failure();
Location loc = reshapeOp.getLoc();
ReifiedRankedShapedTypeDims resultShapes;
if (failed(reshapeOp.reifyResultShapes(rewriter, resultShapes)) ||
!llvm::hasSingleElement(resultShapes))
return failure();
Value initTensor = rewriter.create<InitTensorOp>(
loc, getAsOpFoldResult(resultShapes[0]),
reshapeOp.getResultType().getElementType());
if (initTensor.getType() != reshapeOp.getResultType()) {
rewriter.replaceOpWithNewOp<tensor::CastOp>(
reshapeOp, reshapeOp.getResultType(), initTensor);
} else {
rewriter.replaceOp(reshapeOp, initTensor);
}
return success();
}
};
struct FoldInitTensorWithDimOp : public OpRewritePattern<tensor::DimOp> {
using OpRewritePattern<tensor::DimOp>::OpRewritePattern;
LogicalResult matchAndRewrite(tensor::DimOp dimOp,
PatternRewriter &rewriter) const override {
Optional<int64_t> maybeConstantIndex = dimOp.getConstantIndex();
auto initTensorOp = dimOp.source().getDefiningOp<linalg::InitTensorOp>();
if (!initTensorOp || !maybeConstantIndex)
return failure();
if (initTensorOp.isDynamicSize(*maybeConstantIndex)) {
rewriter.replaceOp(dimOp,
initTensorOp.getDynamicSize(*maybeConstantIndex));
return success();
}
rewriter.replaceOpWithNewOp<ConstantIndexOp>(dimOp, *maybeConstantIndex);
return success();
}
};
} // namespace
void InitTensorOp::getCanonicalizationPatterns(RewritePatternSet &results,
MLIRContext *context) {
results.add<FoldInitTensorWithDimOp, FoldInitTensorWithExtractSliceOp,
FoldInitTensorWithTensorReshapeOp<TensorExpandShapeOp>,
FoldInitTensorWithTensorReshapeOp<TensorCollapseShapeOp>,
ReplaceStaticShapeDims>(context);
}
LogicalResult InitTensorOp::reifyResultShapes(
OpBuilder &builder, ReifiedRankedShapedTypeDims &reifiedReturnShapes) {
auto shapes = llvm::to_vector<4>(llvm::map_range(
llvm::seq<int64_t>(0, getType().getRank()), [&](int64_t dim) -> Value {
if (isDynamicSize(dim))
return getDynamicSize(dim);
return builder.create<ConstantIndexOp>(getLoc(), getStaticSize(dim));
}));
reifiedReturnShapes.emplace_back(std::move(shapes));
return success();
}
//===----------------------------------------------------------------------===//
// PadTensorOp
//===----------------------------------------------------------------------===//
// TODO: Replace custom<InferType> directive with AllTypesMatch as soon as it
// supports optional types.
void printInferType(OpAsmPrinter &printer, Operation *op, Value optOperand,
Type typeToInfer, Type typeToInferFrom) {}
ParseResult parseInferType(OpAsmParser &parser,
Optional<OpAsmParser::OperandType> optOperand,
Type &typeToInfer, Type typeToInferFrom) {
if (optOperand)
typeToInfer = typeToInferFrom;
return success();
}
static LogicalResult verify(PadTensorOp op) {
auto sourceType = op.source().getType().cast<RankedTensorType>();
auto resultType = op.result().getType().cast<RankedTensorType>();
auto expectedType = PadTensorOp::inferResultType(
sourceType, extractFromI64ArrayAttr(op.static_low()),
extractFromI64ArrayAttr(op.static_high()));
for (int i = 0, e = sourceType.getRank(); i < e; ++i) {
if (resultType.getDimSize(i) == expectedType.getDimSize(i))
continue;
if (expectedType.isDynamicDim(i))
continue;
return op.emitError("specified type ")
<< resultType << " does not match the inferred type "
<< expectedType;
}
if (op.output() && op.output().getType() != op.getResultType()) {
op.emitError("expected that output operand type equals result type");
}
auto ®ion = op.region();
unsigned rank = resultType.getRank();
Block &block = region.front();
if (block.getNumArguments() != rank)
return op.emitError("expected the block to have ") << rank << " arguments";
// Note: the number and type of yield values are checked in the YieldOp.
for (auto en : llvm::enumerate(block.getArgumentTypes())) {
if (!en.value().isIndex())
return op.emitOpError("expected block argument ")
<< (en.index() + 1) << " to be an index";
}
return success();
}
RankedTensorType PadTensorOp::inferResultType(RankedTensorType sourceType,
ArrayRef<int64_t> staticLow,
ArrayRef<int64_t> staticHigh) {
unsigned rank = sourceType.getRank();
assert(staticLow.size() == rank && "unexpected staticLow size mismatch");
assert(staticHigh.size() == rank && "unexpected staticHigh size mismatch");
SmallVector<int64_t, 4> resultShape;
for (auto i : llvm::seq<unsigned>(0, rank)) {
if (sourceType.isDynamicDim(i) ||
staticLow[i] == ShapedType::kDynamicSize ||
staticHigh[i] == ShapedType::kDynamicSize) {
resultShape.push_back(ShapedType::kDynamicSize);
} else {
int64_t size = sourceType.getDimSize(i) + staticLow[i] + staticHigh[i];
resultShape.push_back(size);
}
}
return RankedTensorType::get(resultShape, sourceType.getElementType());
}
void PadTensorOp::build(OpBuilder &b, OperationState &result, Value source,
ArrayRef<int64_t> staticLow,
ArrayRef<int64_t> staticHigh, ValueRange low,
ValueRange high, ArrayRef<NamedAttribute> attrs) {
auto sourceType = source.getType().cast<RankedTensorType>();
auto resultType = inferResultType(sourceType, staticLow, staticHigh);
build(b, result, resultType, source, low, high, b.getI64ArrayAttr(staticLow),
b.getI64ArrayAttr(staticHigh), /*output=*/Value());
result.addAttributes(attrs);
}
void PadTensorOp::build(OpBuilder &b, OperationState &result, Value source,
ValueRange low, ValueRange high,
ArrayRef<NamedAttribute> attrs) {
auto sourceType = source.getType().cast<RankedTensorType>();
unsigned rank = sourceType.getRank();
SmallVector<int64_t, 4> staticVector(rank, ShapedType::kDynamicSize);
build(b, result, source, staticVector, staticVector, low, high, attrs);
}
void PadTensorOp::build(OpBuilder &b, OperationState &result, Type resultType,
Value source, ArrayRef<OpFoldResult> low,
ArrayRef<OpFoldResult> high,
ArrayRef<NamedAttribute> attrs) {
assert(resultType.isa<RankedTensorType>());
auto sourceType = source.getType().cast<RankedTensorType>();
unsigned rank = sourceType.getRank();
SmallVector<Value, 4> dynamicLow, dynamicHigh;
SmallVector<int64_t, 4> staticLow, staticHigh;
for (unsigned i = 0; i < rank; ++i) {
// staticLow and staticHigh have full information of the padding config.
// This will grow staticLow and staticHigh with 1 value. If the config is
// dynamic (ie not a constant), dynamicLow and dynamicHigh will grow with 1
// value as well.
dispatchIndexOpFoldResult(low[i], dynamicLow, staticLow,
ShapedType::kDynamicSize);
dispatchIndexOpFoldResult(high[i], dynamicHigh, staticHigh,
ShapedType::kDynamicSize);
}
if (!resultType) {
resultType =
PadTensorOp::inferResultType(sourceType, staticLow, staticHigh);
}
build(b, result, resultType, source, dynamicLow, dynamicHigh,
b.getI64ArrayAttr(staticLow), b.getI64ArrayAttr(staticHigh),
/*output=*/Value());
}
void PadTensorOp::build(OpBuilder &b, OperationState &result, Type resultType,
Value source, ArrayRef<Value> low, ArrayRef<Value> high,
ArrayAttr staticLow, ArrayAttr staticHigh) {
build(b, result, resultType, source, low, high, staticLow, staticHigh,
/*output=*/{});
}
PadTensorOp PadTensorOp::createPadScalarOp(Type type, Value source, Value pad,
ArrayRef<OpFoldResult> low,
ArrayRef<OpFoldResult> high,
Location loc, OpBuilder &builder) {
auto padTensorOp =
builder.create<linalg::PadTensorOp>(loc, type, source, low, high);
int rank = padTensorOp.getResultType().getRank();
SmallVector<Type, 4> blockArgTypes;
blockArgTypes.assign(rank, builder.getIndexType());
auto ®ion = padTensorOp.region();
// `builder.createBlock` changes the insertion point within the block. Create
// a guard to reset the insertion point of the builder after it is destroyed.
OpBuilder::InsertionGuard guard(builder);
builder.createBlock(®ion, region.end(), blockArgTypes);
builder.create<linalg::YieldOp>(loc, pad);
return padTensorOp;
}
PadTensorOp PadTensorOp::createPadHighOp(Type type, Value source, Value pad,
Location loc, OpBuilder &builder) {
SmallVector<OpFoldResult, 4> low, high;
auto rankedTensorType = type.cast<RankedTensorType>();
assert(rankedTensorType.hasStaticShape());
int rank = rankedTensorType.getRank();
for (int i = 0; i < rank; ++i) {
auto dimOp = builder.createOrFold<tensor::DimOp>(loc, source, i);
auto resultDimSize = builder.createOrFold<ConstantIndexOp>(
loc, rankedTensorType.getDimSize(i));
auto highValue = builder.createOrFold<SubIOp>(loc, resultDimSize, dimOp);
high.push_back(highValue);
low.push_back(builder.createOrFold<ConstantIndexOp>(loc, 0));
}
return PadTensorOp::createPadScalarOp(type, source, pad, low, high, loc,
builder);
}
LogicalResult PadTensorOp::reifyResultShapes(
OpBuilder &b, ReifiedRankedShapedTypeDims &reifiedReturnShapes) {
Location loc = getLoc();
auto lowPad = getMixedLowPad();
auto highPad = getMixedHighPad();
SmallVector<Value> shapes;
for (auto dim : llvm::seq<int64_t>(0, getSourceType().getRank())) {
// Shape along each dimension is source dim + low pad + high pad.
SmallVector<Value> mapOperands;
mapOperands.push_back(b.createOrFold<tensor::DimOp>(loc, source(), dim));
AffineExpr expr = b.getAffineDimExpr(0);
unsigned numSymbols = 0;
auto addOpFoldResult = [&](OpFoldResult valueOrAttr) {
if (Value v = valueOrAttr.dyn_cast<Value>()) {
expr = expr + b.getAffineSymbolExpr(numSymbols++);
mapOperands.push_back(v);
return;
}
int64_t staticValue =
valueOrAttr.get<Attribute>().cast<IntegerAttr>().getInt();
expr = expr + staticValue;
};
addOpFoldResult(lowPad[dim]);
addOpFoldResult(highPad[dim]);
shapes.push_back(applyMapToValues(
b, loc, AffineMap::get(1, numSymbols, expr), mapOperands)[0]);
}
reifiedReturnShapes.emplace_back(std::move(shapes));
return success();
}
namespace {
// Folds linalg.pad_tensor when padding is static zeros.
struct FoldStaticZeroPadding : public OpRewritePattern<PadTensorOp> {
using OpRewritePattern<PadTensorOp>::OpRewritePattern;
LogicalResult matchAndRewrite(PadTensorOp padTensorOp,
PatternRewriter &rewriter) const override {
if (!padTensorOp.hasZeroLowPad() || !padTensorOp.hasZeroHighPad())
return failure();
rewriter.replaceOpWithNewOp<tensor::CastOp>(
padTensorOp, padTensorOp.result().getType(), padTensorOp.source());
return success();
}
};
// Fold tensor.dim(pad_tensor(%input, %output)) to tensor.dim(%output).
struct FoldToDimOfOutputOperand : public OpRewritePattern<tensor::DimOp> {
using OpRewritePattern<tensor::DimOp>::OpRewritePattern;
LogicalResult matchAndRewrite(tensor::DimOp dimOp,
PatternRewriter &rewriter) const override {
auto padTensorOp = dimOp.source().getDefiningOp<PadTensorOp>();
if (!padTensorOp || !padTensorOp.output())
return failure();
rewriter.replaceOpWithNewOp<tensor::DimOp>(dimOp, padTensorOp.output(),
dimOp.index());
return success();
}
};
// Fold CastOp into PadTensorOp when adding static information.
struct FoldSourceTensorCast : public OpRewritePattern<PadTensorOp> {
using OpRewritePattern<PadTensorOp>::OpRewritePattern;
LogicalResult matchAndRewrite(PadTensorOp padTensorOp,
PatternRewriter &rewriter) const override {
auto castOp = padTensorOp.source().getDefiningOp<tensor::CastOp>();
if (!tensor::canFoldIntoConsumerOp(castOp))
return failure();
rewriter.updateRootInPlace(padTensorOp, [&]() {
padTensorOp.sourceMutable().assign(castOp.source());
});
return success();
}
};
} // namespace
void PadTensorOp::getCanonicalizationPatterns(RewritePatternSet &results,
MLIRContext *context) {
results.add<FoldStaticZeroPadding, FoldToDimOfOutputOperand,
FoldSourceTensorCast>(context);
}
/// Return the padding value of the PadTensorOp if it constant. In this context,
/// "constant" means an actual constant or "defined outside of the block".
///
/// Values are considered constant in three cases:
/// - A ConstantLike value.
/// - A basic block argument from a different block.
/// - A value defined outside of the block.
///
/// If the padding value is not constant, an empty Value is returned.
Value PadTensorOp::getConstantPaddingValue() {
auto yieldOp = dyn_cast<YieldOp>(getRegion().front().getTerminator());
if (!yieldOp || yieldOp.values().size() != 1)
return {};
Value padValue = yieldOp.values().front();
// Check if yield value is a constant.
if (matchPattern(padValue, m_Constant()))
return padValue;
// Check if yield value is defined inside the PadTensorOp block.
if (padValue.getParentBlock() == &getRegion().front())
return {};
// Else: Yield value defined outside of the PadTensorOp block.
return padValue;
}
OpFoldResult PadTensorOp::fold(ArrayRef<Attribute>) {
if (getResultType().hasStaticShape() && getResultType() == getSourceType())
return source();
return {};
}
//===----------------------------------------------------------------------===//
// ReshapeOp
//===----------------------------------------------------------------------===//
static void print(OpAsmPrinter &p, linalg::TensorExpandShapeOp op) {
::mlir::printReshapeOp<linalg::TensorExpandShapeOp>(p, op);
}
static void print(OpAsmPrinter &p, linalg::TensorCollapseShapeOp op) {
::mlir::printReshapeOp<linalg::TensorCollapseShapeOp>(p, op);
}
template <typename AffineExprTy>
unsigned getMaxPosOfType(ArrayRef<ReassociationExprs> exprArrays) {
unsigned pos = 0;
for (const auto &exprs : exprArrays) {
for (auto expr : exprs) {
expr.walk([&pos](AffineExpr e) {
if (auto d = e.dyn_cast<AffineExprTy>())
pos = std::max(pos, d.getPosition());
});
}
}
return pos;
}
SmallVector<AffineMap, 4> TensorCollapseShapeOp::getReassociationMaps() {
return getSymbolLessAffineMaps(getReassociationExprs());
}
SmallVector<ReassociationExprs, 4>
TensorCollapseShapeOp::getReassociationExprs() {
OpBuilder b(this->getContext());
return convertReassociationIndicesToExprs(b, getReassociationIndices());
}
SmallVector<AffineMap, 4> TensorExpandShapeOp::getReassociationMaps() {
return getSymbolLessAffineMaps(getReassociationExprs());
}
SmallVector<ReassociationExprs, 4>
TensorExpandShapeOp::getReassociationExprs() {
OpBuilder b(this->getContext());
return convertReassociationIndicesToExprs(b, getReassociationIndices());
}
/// For reshape op compute the shape at dimension `dimIndex` of the output in
/// terms of shape of the `src`, when the reshape op is a collapsing
/// operation. It is the product of the shape of the collapsed dimensions of the
/// `src`.
static OpFoldResult
getCollapsedOutputDimFromInputShape(OpBuilder &builder, Location loc,
int64_t dimIndex, Value src,
ArrayRef<AffineMap> reassociationMap) {
AffineMap map = reassociationMap[dimIndex];
unsigned startPos =
map.getResults().front().cast<AffineDimExpr>().getPosition();
unsigned endPos = map.getResults().back().cast<AffineDimExpr>().getPosition();
AffineExpr expr;
SmallVector<Value, 2> dynamicDims;
for (auto dim : llvm::seq_inclusive(startPos, endPos)) {
dynamicDims.push_back(builder.createOrFold<tensor::DimOp>(loc, src, dim));
AffineExpr currExpr = builder.getAffineSymbolExpr(dim - startPos);
expr = (expr ? expr * currExpr : currExpr);
}
return applyMapToValues(builder, loc,
AffineMap::get(0, endPos - startPos + 1, expr),
dynamicDims)[0];
}
/// Given the `src` of a collapsing reshape op and its reassociation maps,
/// compute the shape of the result of the reshape.
static SmallVector<OpFoldResult, 4> getCollapsedOutputShapeFromInputShape(
OpBuilder &builder, Location loc, Value src,
ArrayRef<int64_t> dstStaticShape, ArrayRef<AffineMap> reassociation) {
return llvm::to_vector<4>(llvm::map_range(
llvm::seq<int64_t>(0, dstStaticShape.size()), [&](int64_t dim) {
return getCollapsedOutputDimFromInputShape(builder, loc, dim, src,
reassociation);
}));
}
/// Compute a map that for a given dimension of the expanded type gives the
/// dimension in the collapsed type it maps to. Essentially its the inverse of
/// the `reassocation` maps.
static llvm::DenseMap<int64_t, int64_t>
getExpandedDimToCollapsedDimMap(ArrayRef<AffineMap> reassociation) {
llvm::DenseMap<int64_t, int64_t> expandedDimToCollapsedDim;
for (auto map : enumerate(reassociation)) {
unsigned startPos =
map.value().getResults().front().cast<AffineDimExpr>().getPosition();
unsigned endPos =
map.value().getResults().back().cast<AffineDimExpr>().getPosition();
for (auto dim : llvm::seq_inclusive(startPos, endPos)) {
expandedDimToCollapsedDim[dim] = map.index();
}
}
return expandedDimToCollapsedDim;
}
/// For an expanding reshape op, compute the value for a dimension of the output
/// from the shape of the input.
static OpFoldResult getExpandedOutputDimFromInputShape(
OpBuilder &builder, Location loc, int64_t dimIndex, Value src,
ArrayRef<int64_t> dstStaticShape, ArrayRef<AffineMap> reassociation,
llvm::DenseMap<int64_t, int64_t> &expandedDimToCollapsedDim) {
if (!ShapedType::isDynamic(dstStaticShape[dimIndex])) {
return builder.getI64IntegerAttr(dstStaticShape[dimIndex]);
}
unsigned sourceDimPos = expandedDimToCollapsedDim[dimIndex];
unsigned startPos = reassociation[sourceDimPos]
.getResults()
.front()
.cast<AffineDimExpr>()
.getPosition();
unsigned endPos = reassociation[sourceDimPos]
.getResults()
.back()
.cast<AffineDimExpr>()
.getPosition();
int64_t linearizedStaticDim = 1;
for (auto d :
llvm::enumerate(dstStaticShape.slice(startPos, endPos - startPos + 1))) {
if (d.index() + startPos == static_cast<unsigned>(dimIndex))
continue;
assert(!ShapedType::isDynamic(d.value()) &&
"single dimension cannot be expanded into multiple dynamic "
"dimensions");
linearizedStaticDim *= d.value();
}
Value sourceDim = builder.create<tensor::DimOp>(loc, src, sourceDimPos);
return applyMapToValues(
builder, loc,
AffineMap::get(
0, 1, builder.getAffineSymbolExpr(0).floorDiv(linearizedStaticDim)),
sourceDim)[0];
}
/// Given the `src` of an expanding reshape op, the reassociation maps and the
/// result type, compute the shape of the result of the reshape.
static SmallVector<OpFoldResult, 4> getExpandedOutputShapeFromInputShape(
OpBuilder &builder, Location loc, Value src,
ArrayRef<int64_t> dstStaticShape, ArrayRef<AffineMap> reassociation) {
llvm::DenseMap<int64_t, int64_t> expandedDimToCollapsedDim =
getExpandedDimToCollapsedDimMap(reassociation);
return llvm::to_vector<4>(llvm::map_range(
llvm::seq<int64_t>(0, dstStaticShape.size()), [&](int64_t dim) {
return getExpandedOutputDimFromInputShape(builder, loc, dim, src,
dstStaticShape, reassociation,
expandedDimToCollapsedDim);
}));
}
static SmallVector<OpFoldResult, 4>
getReshapeOutputShapeFromInputShape(OpBuilder &builder, Location loc, Value src,
ArrayRef<int64_t> dstStaticShape,
ArrayRef<AffineMap> reassocation) {
return dstStaticShape.size() >
static_cast<size_t>(src.getType().cast<ShapedType>().getRank())
? getExpandedOutputShapeFromInputShape(
builder, loc, src, dstStaticShape, reassocation)
: getCollapsedOutputShapeFromInputShape(
builder, loc, src, dstStaticShape, reassocation);
}
//===----------------------------------------------------------------------===//
// TensorReshapeOp
//===----------------------------------------------------------------------===//
/// Compute the RankedTensorType obtained by applying `reassociation` to `type`.
static RankedTensorType
computeTensorReshapeCollapsedType(RankedTensorType type,
ArrayRef<AffineMap> reassociation) {
auto shape = type.getShape();
SmallVector<int64_t, 4> newShape;
newShape.reserve(reassociation.size());
// Use the fact that reassociation is valid to simplify the logic: only use
// each map's rank.
assert(isReassociationValid(reassociation) && "invalid reassociation");
unsigned currentDim = 0;
for (AffineMap m : reassociation) {
unsigned dim = m.getNumResults();
auto band = shape.slice(currentDim, dim);
int64_t size = 1;
if (llvm::is_contained(band, ShapedType::kDynamicSize))
size = ShapedType::kDynamicSize;
else
for (unsigned d = 0; d < dim; ++d)
size *= shape[currentDim + d];
newShape.push_back(size);
currentDim += dim;
}
return RankedTensorType::get(newShape, type.getElementType());
}
void mlir::linalg::TensorCollapseShapeOp::build(
OpBuilder &b, OperationState &result, Value src,
ArrayRef<ReassociationIndices> reassociation,
ArrayRef<NamedAttribute> attrs) {
auto resultType = computeTensorReshapeCollapsedType(
src.getType().cast<RankedTensorType>(),
getSymbolLessAffineMaps(
convertReassociationIndicesToExprs(b, reassociation)));
build(b, result, resultType, src, attrs);
result.addAttribute(getReassociationAttrName(),
getReassociationIndicesAttribute(b, reassociation));
}
void mlir::linalg::TensorExpandShapeOp::build(
OpBuilder &b, OperationState &result, Value src,
ArrayRef<ReassociationIndices> reassociation,
ArrayRef<NamedAttribute> attrs) {
auto resultType = computeTensorReshapeCollapsedType(
src.getType().cast<RankedTensorType>(),
getSymbolLessAffineMaps(
convertReassociationIndicesToExprs(b, reassociation)));
build(b, result, resultType, src, attrs);
result.addAttribute(getReassociationAttrName(),
getReassociationIndicesAttribute(b, reassociation));
}
template <typename TensorReshapeOp,
bool isExpansion =
std::is_same<TensorReshapeOp, TensorExpandShapeOp>::value>
static LogicalResult verifyTensorReshapeOp(TensorReshapeOp op,
RankedTensorType expandedType,
RankedTensorType collapsedType) {
if (failed(
verifyReshapeLikeTypes(op, expandedType, collapsedType, isExpansion)))
return failure();
auto maps = op.getReassociationMaps();
RankedTensorType expectedType =
computeTensorReshapeCollapsedType(expandedType, maps);
if (collapsedType != expectedType)
return op.emitOpError("expected collapsed type to be ")
<< expectedType << ", but got " << collapsedType;
return success();
}
static LogicalResult verify(TensorExpandShapeOp op) {
return verifyTensorReshapeOp(op, op.getResultType(), op.getSrcType());
}
static LogicalResult verify(TensorCollapseShapeOp op) {
return verifyTensorReshapeOp(op, op.getSrcType(), op.getResultType());
}
namespace {
/// Reshape of a splat constant can be replaced with a constant of the result
/// type.
template <typename TensorReshapeOp>
struct FoldReshapeWithConstant : OpRewritePattern<TensorReshapeOp> {
using OpRewritePattern<TensorReshapeOp>::OpRewritePattern;
LogicalResult matchAndRewrite(TensorReshapeOp reshapeOp,
PatternRewriter &rewriter) const override {
DenseElementsAttr attr;
if (!matchPattern(reshapeOp.src(), m_Constant(&attr)))
return failure();
if (!attr || !attr.isSplat())
return failure();
DenseElementsAttr newAttr = DenseElementsAttr::getFromRawBuffer(
reshapeOp.getResultType(), attr.getRawData(), true);
rewriter.replaceOpWithNewOp<ConstantOp>(reshapeOp, newAttr);
return success();
}
};
/// Fold linalg.fill -> linalg.tensor_reshape chain.
///
/// For such op chains, we can create new linalg.fill ops with the result
/// type of the linalg.tensor_reshape op.
template <typename TensorReshapeOp>
struct FoldFillWithTensorReshape : OpRewritePattern<TensorReshapeOp> {
using OpRewritePattern<TensorReshapeOp>::OpRewritePattern;
LogicalResult matchAndRewrite(TensorReshapeOp reshapeOp,
PatternRewriter &rewriter) const override {
auto oldFill = reshapeOp.src().template getDefiningOp<FillOp>();
if (!oldFill)
return failure();
Location loc = oldFill.getLoc();
auto newInit = rewriter.create<TensorReshapeOp>(
loc, reshapeOp.getResultType(), oldFill.output(),
reshapeOp.reassociation());
rewriter.replaceOpWithNewOp<FillOp>(reshapeOp, oldFill.value(), newInit);
return success();
}
};
} // namespace
void TensorExpandShapeOp::getCanonicalizationPatterns(
RewritePatternSet &results, MLIRContext *context) {
results
.add<CollapseReshapeOps<TensorExpandShapeOp>,
CollapseMixedReshapeOps<TensorExpandShapeOp, TensorCollapseShapeOp>,
FoldFillWithTensorReshape<TensorExpandShapeOp>,
FoldInitTensorWithTensorReshapeOp<TensorExpandShapeOp>,
FoldReshapeWithConstant<TensorExpandShapeOp>>(context);
}
void TensorCollapseShapeOp::getCanonicalizationPatterns(
RewritePatternSet &results, MLIRContext *context) {
results
.add<CollapseReshapeOps<TensorCollapseShapeOp>,
CollapseMixedReshapeOps<TensorCollapseShapeOp, TensorExpandShapeOp>,
FoldFillWithTensorReshape<TensorCollapseShapeOp>,
FoldInitTensorWithTensorReshapeOp<TensorCollapseShapeOp>,
FoldReshapeWithConstant<TensorCollapseShapeOp>>(context);
}
LogicalResult TensorExpandShapeOp::reifyResultShapes(
OpBuilder &b, ReifiedRankedShapedTypeDims &reifiedReturnShapes) {
auto resultShape =
getAsValues(b, getLoc(),
getReshapeOutputShapeFromInputShape(
b, getLoc(), src(), getResultType().getShape(),
getReassociationMaps()));
reifiedReturnShapes.emplace_back(std::move(resultShape));
return success();
}
LogicalResult TensorCollapseShapeOp::reifyResultShapes(
OpBuilder &b, ReifiedRankedShapedTypeDims &reifiedReturnShapes) {
auto resultShape =
getAsValues(b, getLoc(),
getReshapeOutputShapeFromInputShape(
b, getLoc(), src(), getResultType().getShape(),
getReassociationMaps()));
reifiedReturnShapes.emplace_back(std::move(resultShape));
return success();
}
//===----------------------------------------------------------------------===//
// YieldOp
//===----------------------------------------------------------------------===//
static void print(OpAsmPrinter &p, linalg::YieldOp op) {
p << op.getOperationName();
if (op.getNumOperands() > 0)
p << ' ' << op.getOperands();
p.printOptionalAttrDict(op->getAttrs());
if (op.getNumOperands() > 0)
p << " : " << op.getOperandTypes();
}
static ParseResult parseYieldOp(OpAsmParser &parser, OperationState &result) {
SmallVector<OpAsmParser::OperandType, 2> opInfo;
SmallVector<Type, 2> types;
llvm::SMLoc loc = parser.getCurrentLocation();
return failure(parser.parseOperandList(opInfo) ||
parser.parseOptionalAttrDict(result.attributes) ||
(!opInfo.empty() && parser.parseColonTypeList(types)) ||
parser.resolveOperands(opInfo, types, loc, result.operands));
}
// Check the operand number and types must match the element types of the
// LinalgOp interface's shaped operands.
static LogicalResult verifyYield(linalg::YieldOp op, LinalgOp linalgOp) {
if (op.getNumOperands() != linalgOp.getNumOutputs())
return op.emitOpError("expected number of yield values (")
<< linalgOp.getNumOutputs()
<< ") to match the number of operands of the enclosing "
<< "LinalgOp (" << op.getNumOperands() << ")";
for (OpOperand &opOperand : op->getOpOperands()) {
OpOperand *outputOperand =
linalgOp.getOutputOperand(opOperand.getOperandNumber());
Type elementType = getElementTypeOrSelf(outputOperand->get().getType());
if (opOperand.get().getType() != elementType)
return op.emitOpError("type of yield operand ")
<< (opOperand.getOperandNumber() + 1) << " ("
<< opOperand.get().getType() << ") doesn't match "
<< "the element type of the enclosing linalg.generic op ("
<< elementType << ")";
}
return success();
}
static LogicalResult verify(linalg::YieldOp op) {
auto *parentOp = op->getParentOp();
if (parentOp->getNumRegions() != 1 || parentOp->getRegion(0).empty())
return op.emitOpError("expected single non-empty parent region");
if (auto linalgOp = dyn_cast<LinalgOp>(parentOp))
return verifyYield(op, cast<LinalgOp>(parentOp));
if (auto padTensorOp = dyn_cast<linalg::PadTensorOp>(parentOp)) {
if (op.getNumOperands() != 1)
return op.emitOpError("expected single yield operand (got ")
<< op->getNumOperands() << ")";
if (op.getOperand(0).getType() !=
padTensorOp.getType().cast<ShapedType>().getElementType())
return op.emitOpError("expected yield type to match shape element type");
return success();
}
if (auto tiledLoopOp = dyn_cast<linalg::TiledLoopOp>(parentOp)) {
// Check if output args with tensor types match results types.
SmallVector<Value, 2> tensorOuts;
llvm::copy_if(
tiledLoopOp.outputs(), std::back_inserter(tensorOuts),
[&](Value out) { return out.getType().isa<RankedTensorType>(); });
if (tensorOuts.size() != op.values().size())
return op.emitOpError("expected number of tensor output args = ")
<< tensorOuts.size() << " to match the number of yield operands = "
<< op.values().size();
TypeRange tensorTypes(llvm::makeArrayRef(tensorOuts));
for (auto &item :
llvm::enumerate(llvm::zip(tensorTypes, op.getOperandTypes()))) {
Type outType, resultType;
unsigned index = item.index();
std::tie(outType, resultType) = item.value();
if (outType != resultType)
return op.emitOpError("expected yield operand ")
<< index << " with type = " << resultType
<< " to match output arg type = " << outType;
}
return success();
}
return op.emitOpError("expected parent op with LinalgOp interface");
}
//===----------------------------------------------------------------------===//
// TiledLoopOp
//===----------------------------------------------------------------------===//
void TiledLoopOp::build(OpBuilder &builder, OperationState &result,
ValueRange lowerBounds, ValueRange upperBounds,
ValueRange steps, ValueRange inputs, ValueRange outputs,
ArrayAttr iteratorTypes,
function_ref<void(OpBuilder &, Location, ValueRange,
ValueRange, ValueRange)>
bodyBuilderFn) {
build(builder, result, lowerBounds, upperBounds, steps, inputs, outputs,
iteratorTypes, llvm::None, bodyBuilderFn);
}
void TiledLoopOp::build(OpBuilder &builder, OperationState &result,
ValueRange lowerBounds, ValueRange upperBounds,
ValueRange steps, ValueRange inputs, ValueRange outputs,
ArrayAttr iteratorTypes,
Optional<ArrayAttr> distributionTypes,
function_ref<void(OpBuilder &, Location, ValueRange,
ValueRange, ValueRange)>
bodyBuilderFn) {
result.addOperands(lowerBounds);
result.addOperands(upperBounds);
result.addOperands(steps);
result.addOperands(inputs);
result.addOperands(outputs);
result.addAttribute(
TiledLoopOp::getOperandSegmentSizeAttr(),
builder.getI32VectorAttr({static_cast<int32_t>(lowerBounds.size()),
static_cast<int32_t>(upperBounds.size()),
static_cast<int32_t>(steps.size()),
static_cast<int32_t>(inputs.size()),
static_cast<int32_t>(outputs.size())}));
result.addAttribute(getIteratorTypesAttrName(), iteratorTypes);
if (distributionTypes.hasValue())
result.addAttribute(getDistributionTypesAttrName(),
distributionTypes.getValue());
// Add output types for `RankedTensorType` output arguments.
for (Value output : outputs) {
Type outputType = output.getType();
if (outputType.isa<RankedTensorType>())
result.addTypes(outputType);
}
OpBuilder::InsertionGuard guard(builder);
unsigned numIVs = steps.size();
SmallVector<Type, 8> argTypes(numIVs, builder.getIndexType());
for (Type type : TypeRange(inputs))
argTypes.push_back(type);
for (Type type : TypeRange(outputs))
argTypes.push_back(type);
Region *bodyRegion = result.addRegion();
Block *bodyBlock = builder.createBlock(bodyRegion, {}, argTypes);
if (bodyBuilderFn) {
builder.setInsertionPointToStart(bodyBlock);
bodyBuilderFn(builder, result.location,
bodyBlock->getArguments().take_front(numIVs),
bodyBlock->getArguments().slice(numIVs, inputs.size()),
bodyBlock->getArguments().take_back(outputs.size()));
TiledLoopOp::ensureTerminator(*bodyRegion, builder, result.location);
}
}
static void print(OpAsmPrinter &p, TiledLoopOp op) {
p << op.getOperationName() << " (" << op.getInductionVars() << ") = ("
<< op.lowerBound() << ") to (" << op.upperBound() << ") step (" << op.step()
<< ")";
if (!op.inputs().empty()) {
p << " ins (";
llvm::interleaveComma(llvm::zip(op.getRegionInputArgs(), op.inputs()), p,
[&](auto it) {
p << std::get<0>(it) << " = " << std::get<1>(it)
<< ": " << std::get<1>(it).getType();
});
p << ")";
}
if (!op.outputs().empty()) {
p << " outs (";
llvm::interleaveComma(llvm::zip(op.getRegionOutputArgs(), op.outputs()), p,
[&](auto it) {
p << std::get<0>(it) << " = " << std::get<1>(it)
<< ": " << std::get<1>(it).getType();
});
p << ")";
}
if (llvm::any_of(op.iterator_types(), [](Attribute attr) {
return attr.cast<StringAttr>().getValue() !=
getParallelIteratorTypeName();
}))
p << " iterators" << op.iterator_types() << "";
if (op.distribution_types().hasValue())
p << " distribution" << op.distribution_types().getValue() << "";
p.printRegion(op.region(), /*printEntryBlockArgs=*/false);
p.printOptionalAttrDict(
op->getAttrs(), /*elidedAttrs=*/{TiledLoopOp::getOperandSegmentSizeAttr(),
getIteratorTypesAttrName(),
getDistributionTypesAttrName()});
}
static ParseResult parseTiledLoopOp(OpAsmParser &parser,
OperationState &result) {
auto &builder = parser.getBuilder();
// Parse an opening `(` followed by induction variables followed by `)`
SmallVector<OpAsmParser::OperandType, 4> ivs;
if (parser.parseRegionArgumentList(ivs, /*requiredOperandCount=*/-1,
OpAsmParser::Delimiter::Paren))
return failure();
// Parse loop bounds.
SmallVector<OpAsmParser::OperandType, 4> lower;
if (parser.parseEqual() ||
parser.parseOperandList(lower, ivs.size(),
OpAsmParser::Delimiter::Paren) ||
parser.resolveOperands(lower, builder.getIndexType(), result.operands))
return failure();
SmallVector<OpAsmParser::OperandType, 4> upper;
if (parser.parseKeyword("to") ||
parser.parseOperandList(upper, ivs.size(),
OpAsmParser::Delimiter::Paren) ||
parser.resolveOperands(upper, builder.getIndexType(), result.operands))
return failure();
// Parse step values.
SmallVector<OpAsmParser::OperandType, 4> steps;
if (parser.parseKeyword("step") ||
parser.parseOperandList(steps, ivs.size(),
OpAsmParser::Delimiter::Paren) ||
parser.resolveOperands(steps, builder.getIndexType(), result.operands))
return failure();
// Parse input tensors.
SmallVector<OpAsmParser::OperandType, 4> inputs, input_region_args;
SmallVector<Type, 4> inputTypes;
if (succeeded(parser.parseOptionalKeyword("ins"))) {
llvm::SMLoc inputsOperandsLoc = parser.getCurrentLocation();
if (parser.parseAssignmentListWithTypes(input_region_args, inputs,
inputTypes))
return failure();
if (parser.resolveOperands(inputs, inputTypes, inputsOperandsLoc,
result.operands))
return failure();
}
// Parse output tensors.
SmallVector<OpAsmParser::OperandType, 4> outputs, output_region_args;
SmallVector<Type, 4> outputTypes;
if (succeeded(parser.parseOptionalKeyword("outs"))) {
llvm::SMLoc outputsOperandsLoc = parser.getCurrentLocation();
if (parser.parseAssignmentListWithTypes(output_region_args, outputs,
outputTypes))
return failure();
if (parser.resolveOperands(outputs, outputTypes, outputsOperandsLoc,
result.operands))
return failure();
for (Type outputType : outputTypes)
if (outputType.isa<RankedTensorType>())
result.addTypes(outputType);
}
// Parse attributes.
SmallVector<Attribute, 4> iterTypes, distributionTypes;
auto parseAttr = [&](StringRef keyword, SmallVector<Attribute, 4> *attrs) {
if (succeeded(parser.parseOptionalKeyword(keyword))) {
StringAttr attr;
if (parser.parseLSquare() || parser.parseAttribute(attr))
return failure();
attrs->push_back(attr);
for (int i = 1, e = ivs.size(); i < e; ++i) {
if (parser.parseComma() || parser.parseAttribute(attr))
return failure();
attrs->push_back(attr);
}
if (parser.parseRSquare())
return failure();
}
return success();
};
if (failed(parseAttr("iterators", &iterTypes)) ||
failed(parseAttr("distribution", &distributionTypes)))
return failure();
// Set all loop iterator types to "parallel" if they are not printed in IR.
if (iterTypes.empty()) {
auto parallelIter = builder.getStringAttr(getParallelIteratorTypeName());
iterTypes = SmallVector<Attribute, 4>(ivs.size(), parallelIter);
}
result.addAttribute(getIteratorTypesAttrName(),
builder.getArrayAttr(iterTypes));
if (!distributionTypes.empty())
result.addAttribute(getDistributionTypesAttrName(),
builder.getArrayAttr(distributionTypes));
result.addAttribute(
TiledLoopOp::getOperandSegmentSizeAttr(),
builder.getI32VectorAttr({static_cast<int32_t>(lower.size()),
static_cast<int32_t>(upper.size()),
static_cast<int32_t>(steps.size()),
static_cast<int32_t>(inputs.size()),
static_cast<int32_t>(outputs.size())}));
// Parse the body.
Region *body = result.addRegion();
SmallVector<Type, 4> region_types(ivs.size(), builder.getIndexType());
region_types.append(inputTypes);
region_types.append(outputTypes);
SmallVector<OpAsmParser::OperandType, 4> region_args(ivs);
region_args.append(input_region_args);
region_args.append(output_region_args);
if (parser.parseRegion(*body, region_args, region_types))
return failure();
// Parse optional attributes.
parser.parseOptionalAttrDict(result.attributes);
return success();
}
Region &TiledLoopOp::getLoopBody() { return region(); }
LogicalResult TiledLoopOp::moveOutOfLoop(ArrayRef<Operation *> ops) {
for (auto *op : ops)
op->moveBefore(*this);
return success();
}
bool TiledLoopOp::isDefinedOutsideOfLoop(Value value) {
return !region().isAncestor(value.getParentRegion());
}
static LogicalResult verify(TiledLoopOp op) {
// Check if iterator types are provided for every loop dimension.
if (op.iterator_types().size() != op.getNumLoops())
return op.emitOpError("expected iterator types array attribute size = ")
<< op.iterator_types().size()
<< " to match the number of loops = " << op.getNumLoops();
// Check if types of input arguments match region args types.
for (auto &item :
llvm::enumerate(llvm::zip(op.inputs(), op.getRegionInputArgs()))) {
Value input, inputRegionArg;
unsigned index = item.index();
std::tie(input, inputRegionArg) = item.value();
if (input.getType() != inputRegionArg.getType())
return op.emitOpError("expected input arg ")
<< index << " with type = " << input.getType()
<< " to match region arg " << index + op.getNumLoops()
<< " type = " << inputRegionArg.getType();
}
// Check if types of input arguments match region args types.
for (auto &item :
llvm::enumerate(llvm::zip(op.outputs(), op.getRegionOutputArgs()))) {
Value output, outputRegionArg;
unsigned index = item.index();
std::tie(output, outputRegionArg) = item.value();
if (output.getType() != outputRegionArg.getType())
return op.emitOpError("expected output arg ")
<< index << " with type = " << output.getType()
<< " to match region arg "
<< index + op.getNumLoops() + op.inputs().size()
<< " type = " << outputRegionArg.getType();
}
return success();
}
namespace {
static constexpr int64_t kNoMatch = -1;
// Folds away TiledLoopOp inputs if they have no uses within the body.
//
// Example:
//
// %0 = linalg.tiled_loop ... ins (%in_ = %in: tensor<...>,
// %in_buf_ = %in_buf: memref<...>) {...}
// Becomes
//
// linalg.tiled_loop ... ins (%in_buf_ = %in_buf: memref<...>) {...}
struct TiledLoopInputsFolder : public OpRewritePattern<linalg::TiledLoopOp> {
using OpRewritePattern<linalg::TiledLoopOp>::OpRewritePattern;
LogicalResult matchAndRewrite(linalg::TiledLoopOp tiledLoop,
PatternRewriter &rewriter) const final {
SmallVector<Value, 2> newInputs, regionInputTensorArgs;
// Store ids of the corresponding old and new input operands.
SmallVector<int64_t, 2> oldInputIdToNew(tiledLoop.inputs().size(),
kNoMatch);
for (auto en : llvm::enumerate(
llvm::zip(tiledLoop.inputs(), tiledLoop.getRegionInputArgs()))) {
Value in, bbArg;
size_t index = en.index();
std::tie(in, bbArg) = en.value();
if (!bbArg.use_empty()) {
oldInputIdToNew[index] = newInputs.size();
newInputs.push_back(in);
}
}
if (newInputs.size() == tiledLoop.inputs().size())
return failure();
Location loc = tiledLoop.getLoc();
auto newTiledLoop = rewriter.create<TiledLoopOp>(
loc, tiledLoop.lowerBound(), tiledLoop.upperBound(), tiledLoop.step(),
newInputs, tiledLoop.outputs(), tiledLoop.iterator_types(),
tiledLoop.distribution_types());
// Clone the region.
BlockAndValueMapping bvm;
bvm.map(tiledLoop.getInductionVars(), newTiledLoop.getInductionVars());
bvm.map(tiledLoop.getRegionOutputArgs(),
newTiledLoop.getRegionOutputArgs());
for (const auto &en : llvm::enumerate(oldInputIdToNew))
if (en.value() != kNoMatch)
bvm.map(tiledLoop.getRegionInputArgs()[en.index()],
newTiledLoop.getRegionInputArgs()[en.value()]);
OpBuilder innerBuilder =
OpBuilder::atBlockEnd(newTiledLoop.getBody(), rewriter.getListener());
for (auto &op : *tiledLoop.getBody())
innerBuilder.clone(op, bvm);
rewriter.replaceOp(tiledLoop, newTiledLoop.getResults());
return success();
}
};
// Folds away TiledLoopOp output tensors when the following conditions are met:
// * result of `linalg.tiled_loop` has no uses
// * output tensor is the argument of `linalg.yield`
//
// Example:
//
// %0 = linalg.tiled_loop ... outs (%o_ = %out: tensor<...>,
// %obuf_ = %out_buf: memref<...>) {
// ...
// linalg.yield %o_ : tensor ...
// }
//
// Becomes
//
// linalg.tiled_loop ... outs (%obuf_ = %out_buf: memref<...>) {
// ...
// linalg.yield
// }
struct TiledLoopResultsFolder : public OpRewritePattern<linalg::TiledLoopOp> {
using OpRewritePattern<linalg::TiledLoopOp>::OpRewritePattern;
LogicalResult matchAndRewrite(linalg::TiledLoopOp tiledLoop,
PatternRewriter &rewriter) const final {
if (tiledLoop.getNumResults() == 0)
return failure();
Block *block = tiledLoop.getBody();
auto yieldOp = cast<linalg::YieldOp>(block->getTerminator());
// Match the pattern and collect output buffers that will replace the output
// tensors and also the ops that will be ignored when cloning the body.
SmallVector<Value, 2> newOutputOperands, newYieldArgs;
int resultId = 0;
// Store ids of the corresponding old and new output operands.
SmallVector<int64_t, 2> oldOutputIdToNew(tiledLoop.outputs().size(),
kNoMatch);
// Store ids of the corresponding old and new results.
SmallVector<int64_t, 2> oldResultIdToNew(tiledLoop.getNumResults(),
kNoMatch);
SmallVector<Value, 2> resultReplacement(tiledLoop.getNumResults());
for (auto en : llvm::enumerate(
llvm::zip(tiledLoop.outputs(), tiledLoop.getRegionOutputArgs()))) {
size_t index = en.index();
Value out = std::get<0>(en.value());
Value outRegionArg = std::get<1>(en.value());
if (!out.getType().isa<RankedTensorType>()) {
oldOutputIdToNew[index] = newOutputOperands.size();
newOutputOperands.push_back(out);
continue;
}
Value result = tiledLoop.getResult(resultId);
Value yieldArg = yieldOp.getOperand(resultId);
if (yieldArg != outRegionArg || !result.use_empty()) {
oldOutputIdToNew[index] = newOutputOperands.size();
oldResultIdToNew[resultId] = newYieldArgs.size();
resultReplacement[resultId] = out;
newOutputOperands.push_back(out);
newYieldArgs.push_back(yieldArg);
}
++resultId;
}
if (newOutputOperands.size() == tiledLoop.outputs().size())
return failure();
Location loc = tiledLoop.getLoc();
auto newTiledLoop = rewriter.create<TiledLoopOp>(
loc, tiledLoop.lowerBound(), tiledLoop.upperBound(), tiledLoop.step(),
tiledLoop.inputs(), newOutputOperands, tiledLoop.iterator_types(),
tiledLoop.distribution_types());
// Clone the region.
BlockAndValueMapping bvm;
bvm.map(tiledLoop.getInductionVars(), newTiledLoop.getInductionVars());
bvm.map(tiledLoop.getRegionInputArgs(), newTiledLoop.getRegionInputArgs());
for (const auto &en : llvm::enumerate(oldOutputIdToNew)) {
if (en.value() != kNoMatch)
bvm.map(tiledLoop.getRegionOutputArgs()[en.index()],
newTiledLoop.getRegionOutputArgs()[en.value()]);
else
bvm.map(tiledLoop.getRegionOutputArgs()[en.index()],
tiledLoop.outputs()[en.index()]);
}
OpBuilder innerBuilder =
OpBuilder::atBlockEnd(newTiledLoop.getBody(), rewriter.getListener());
for (auto &op : tiledLoop.getBody()->without_terminator())
innerBuilder.clone(op, bvm);
innerBuilder.create<linalg::YieldOp>(
loc, llvm::to_vector<2>(llvm::map_range(
newYieldArgs, [&](Value arg) { return bvm.lookup(arg); })));
for (const auto &en : llvm::enumerate(oldResultIdToNew))
if (en.value() != kNoMatch)
resultReplacement[en.index()] = newTiledLoop.getResult(en.value());
rewriter.replaceOp(tiledLoop, resultReplacement);
return success();
}
};
} // namespace
void TiledLoopOp::getCanonicalizationPatterns(OwningRewritePatternList &results,
MLIRContext *context) {
results.insert<TiledLoopInputsFolder, TiledLoopResultsFolder>(context);
}
LogicalResult TiledLoopOp::fold(ArrayRef<Attribute>,
SmallVectorImpl<OpFoldResult> &) {
return foldMemRefCastInTiledLoopOp(*this);
}
//===----------------------------------------------------------------------===//
// IndexOp
//===----------------------------------------------------------------------===//
static LogicalResult verify(IndexOp op) {
auto linalgOp = dyn_cast<LinalgOp>(op->getParentOp());
if (!linalgOp)
return op.emitOpError("expected parent op with LinalgOp interface");
if (linalgOp.getNumLoops() <= op.dim())
return op.emitOpError("expected dim (")
<< op.dim() << ") to be lower than the number of loops ("
<< linalgOp.getNumLoops() << ") of the enclosing LinalgOp";
return success();
}
/////// Operations corresponding to library calls defined with Tablegen ////////
template <typename LinalgPoolingOp>
static LogicalResult verifyStrideOrDilation(LinalgPoolingOp op,
ArrayRef<Attribute> attrs,
bool isStride) {
auto strideOrDilation = isStride ? "stride" : "dilation";
if (attrs.size() != op.getNumWindowLoops())
return op.emitOpError("expects num ")
<< strideOrDilation
<< "s equal to number of window dimensions: " << attrs.size()
<< " vs " << op.getNumWindowLoops();
return success();
}
void ConvOp::getEffects(
SmallVectorImpl<SideEffects::EffectInstance<MemoryEffects::Effect>>
&effects) {
effects.emplace_back(MemoryEffects::Read::get(), input(),
SideEffects::DefaultResource::get());
effects.emplace_back(MemoryEffects::Read::get(), filter(),
SideEffects::DefaultResource::get());
effects.emplace_back(MemoryEffects::Write::get(), output(),
SideEffects::DefaultResource::get());
}
static LogicalResult verify(ConvOp op) {
auto oType = op.output().getType().cast<MemRefType>();
auto fType = op.filter().getType().cast<MemRefType>();
auto iType = op.input().getType().cast<MemRefType>();
if (oType.getElementType() != iType.getElementType() ||
oType.getElementType() != fType.getElementType())
return op.emitOpError("expects memref elemental types to match");
if (oType.getRank() != iType.getRank() || oType.getRank() != fType.getRank())
return op.emitOpError("expects memref ranks to match");
if (auto strides = op.strides()) {
if (failed(verifyStrideOrDilation(op, strides->getValue(),
/*isStride=*/true)))
return failure();
}
if (auto dilations = op.dilations()) {
if (failed(verifyStrideOrDilation(op, dilations->getValue(),
/*isStride=*/false)))
return failure();
}
return success();
}
template <typename PoolingOp>
static LogicalResult verifySingleInputPoolingOp(PoolingOp op) {
auto inputType = op.input().getType().template cast<MemRefType>();
auto outputType = op.output().getType().template cast<MemRefType>();
if (outputType.getElementType() != inputType.getElementType())
return op.emitOpError("expects memref elemental types to match");
auto windowDimsType = op.windowDims().getType().template cast<MemRefType>();
if (outputType.getRank() != inputType.getRank() ||
outputType.getRank() != windowDimsType.getRank())
return op.emitOpError("expects memref ranks to match");
if (auto strides = op.strides()) {
if (failed(verifyStrideOrDilation(op, strides->getValue(),
/*isStride=*/true)))
return failure();
}
if (auto dilations = op.dilations()) {
if (failed(verifyStrideOrDilation(op, dilations->getValue(),
/*isStride=*/false)))
return failure();
}
return success();
}
#define DEFINE_POOLING_OP_GET_EFFECTS(OP_NAME) \
void OP_NAME::getEffects( \
SmallVectorImpl<SideEffects::EffectInstance<MemoryEffects::Effect>> \
&effects) { \
effects.emplace_back(MemoryEffects::Read::get(), input(), \
SideEffects::DefaultResource::get()); \
effects.emplace_back(MemoryEffects::Write::get(), output(), \
SideEffects::DefaultResource::get()); \
}
static LogicalResult verify(PoolingMaxOp op) {
return verifySingleInputPoolingOp(op);
}
static LogicalResult verify(PoolingMinOp op) {
return verifySingleInputPoolingOp(op);
}
static LogicalResult verify(PoolingSumOp op) {
return verifySingleInputPoolingOp(op);
}
DEFINE_POOLING_OP_GET_EFFECTS(PoolingMaxOp)
DEFINE_POOLING_OP_GET_EFFECTS(PoolingMinOp)
DEFINE_POOLING_OP_GET_EFFECTS(PoolingSumOp)
#include "mlir/Dialect/Linalg/IR/LinalgNamedStructuredOps.tcgen.cpp.inc"
#include "mlir/Dialect/Linalg/IR/LinalgNamedStructuredOps.yamlgen.cpp.inc"
#define GET_OP_CLASSES
#include "mlir/Dialect/Linalg/IR/LinalgOps.cpp.inc"
#define GET_OP_CLASSES
#include "mlir/Dialect/Linalg/IR/LinalgStructuredOps.cpp.inc"
/// Return the dims that are `iteratorTypeName` loops in the LinalgOp `op`.
/// Assumes `op` is a LinalgOp.
void mlir::linalg::getDimsOfType(Operation *op, StringRef iteratorTypeName,
SmallVectorImpl<AffineExpr> &res) {
if (!cast<LinalgOp>(op).iterator_types())
return;
unsigned dim = 0;
MLIRContext *ctx = op->getContext();
for (auto tn :
cast<LinalgOp>(op).iterator_types().getAsValueRange<StringAttr>()) {
if (tn == iteratorTypeName)
res.push_back(getAffineDimExpr(dim, ctx));
++dim;
}
}
AffineMap mlir::linalg::extractOrIdentityMap(Optional<AffineMap> maybeMap,
unsigned rank,
MLIRContext *context) {
if (maybeMap)
return maybeMap.getValue();
if (rank == 0)
return AffineMap::get(context);
return AffineMap::getMultiDimIdentityMap(rank, context);
}
SmallVector<AffineExpr, 4>
mlir::linalg::makeAffineDimExprs(unsigned num, unsigned &startIdx,
MLIRContext *context) {
SmallVector<AffineExpr, 4> res;
res.reserve(num);
for (unsigned i = 0; i < num; ++i)
res.push_back(getAffineDimExpr(startIdx++, context));
return res;
}
template <typename PoolingOp>
SmallVector<AffineExpr, 4>
mlir::linalg::weightedPoolingInputIndex(PoolingOp op,
ArrayRef<AffineExpr> outputDims,
ArrayRef<AffineExpr> windowDims) {
assert(outputDims.size() == windowDims.size());
SmallVector<AffineExpr, 4> res;
res.reserve(outputDims.size());
for (unsigned i = 0, e = outputDims.size(); i < e; ++i) {
// TODO: add a level of indirection to linalg.generic.
auto expr = op.getStride(i) * outputDims[i] +
op.getDilation(i) * windowDims[i] - op.getLowPad(i);
res.push_back(expr);
}
return res;
}
#define INSTANTIATE_WEIGHTED_POOLING_INPUT_INDEX(OP_TYPE) \
template SmallVector<AffineExpr, 4> \
mlir::linalg::weightedPoolingInputIndex<OP_TYPE>( \
OP_TYPE op, ArrayRef<AffineExpr> outputDims, \
ArrayRef<AffineExpr> windowDims);
INSTANTIATE_WEIGHTED_POOLING_INPUT_INDEX(ConvOp)
INSTANTIATE_WEIGHTED_POOLING_INPUT_INDEX(PoolingMaxOp)
INSTANTIATE_WEIGHTED_POOLING_INPUT_INDEX(PoolingMinOp)
INSTANTIATE_WEIGHTED_POOLING_INPUT_INDEX(PoolingSumOp)
SmallVector<AffineExpr, 4> mlir::linalg::concat(ArrayRef<AffineExpr> a,
ArrayRef<AffineExpr> b) {
auto rangeA = llvm::make_range(a.begin(), a.end());
auto rangeB = llvm::make_range(b.begin(), b.end());
auto concatRanges = llvm::concat<const AffineExpr>(rangeA, rangeB);
return llvm::to_vector<4>(concatRanges);
}
static void appendMangledType(llvm::raw_string_ostream &ss, Type t) {
if (auto memref = t.dyn_cast<MemRefType>()) {
ss << "view";
for (auto size : memref.getShape())
if (size < 0)
ss << "sx";
else
ss << size << "x";
appendMangledType(ss, memref.getElementType());
} else if (auto vec = t.dyn_cast<VectorType>()) {
ss << "vector";
llvm::interleave(
vec.getShape(), [&](int64_t i) { ss << i; }, [&]() { ss << "x"; });
appendMangledType(ss, vec.getElementType());
} else if (t.isSignlessIntOrIndexOrFloat()) {
ss << t;
} else {
llvm_unreachable("Invalid type for linalg library name mangling");
}
}
std::string mlir::linalg::generateLibraryCallName(Operation *op) {
assert(isa<LinalgOp>(op));
std::string name(op->getName().getStringRef().str());
name.reserve(128);
std::replace(name.begin(), name.end(), '.', '_');
llvm::raw_string_ostream ss(name);
ss << "_";
auto types = op->getOperandTypes();
llvm::interleave(
types.begin(), types.end(), [&](Type t) { appendMangledType(ss, t); },
[&]() { ss << "_"; });
return ss.str();
}
// TODO: Consider making all this boilerplate easy to autogenerate
// with Tablegen. This seems a desirable property in the context of
// OpInterfaces where a Linalg "named" op **isa** LinalgOp.
OpFoldResult TensorExpandShapeOp::fold(ArrayRef<Attribute> operands) {
return foldReshapeOp<TensorExpandShapeOp, TensorCollapseShapeOp>(*this,
operands);
}
OpFoldResult TensorCollapseShapeOp::fold(ArrayRef<Attribute> operands) {
return foldReshapeOp<TensorCollapseShapeOp, TensorExpandShapeOp>(*this,
operands);
}
//===----------------------------------------------------------------------===//
// Support for named Linalg ops defined in ods-gen.
//===----------------------------------------------------------------------===//
/// Generic entry point to create the block for the region of a LinalgOp.
/// This is used by both named structured ops created by ods-gen and by manually
/// defined C++ ops.
/// This is used by both builders and parsers.
/// This function creates the block in the region with arguments corresponding
/// to the elemental types of `inputTypes` and `outputTypes`, which are asserted
/// to be ShapedType.
template <typename NamedStructuredOpType>
static void
fillStructuredOpRegion(OpBuilder &opBuilder, Region ®ion,
TypeRange inputTypes, TypeRange outputTypes,
std::function<void(unsigned, unsigned)> errorHandler) {
assert(llvm::all_of(outputTypes, [](Type t) { return t.isa<ShapedType>(); }));
// TODO: atm all operands go through getElementTypeOrSelf,
// reconsider when we have evidence we need to.
SmallVector<Type, 8> argTypes;
for (auto containers : {inputTypes, outputTypes})
for (auto t : containers)
argTypes.push_back(getElementTypeOrSelf(t));
// RAII.
OpBuilder::InsertionGuard guard(opBuilder);
Block *body = opBuilder.createBlock(®ion, /*insertPt=*/{}, argTypes);
unsigned actual = body->getNumArguments();
unsigned expected = NamedStructuredOpType::getNumRegionArgs();
if (expected != actual) {
if (errorHandler)
errorHandler(expected, actual);
return;
}
opBuilder.setInsertionPointToStart(body);
ImplicitLocOpBuilder b(opBuilder.getUnknownLoc(), opBuilder);
NamedStructuredOpType::regionBuilder(b, *body);
// indexing_maps is an auto-generated method.
// iterator_types is an auto-generated method.
}
/// Generic entry point to create both the region and the block of a LinalgOp.
template <typename NamedStructuredOpType>
void createAndFillStructuredOpRegion(OpBuilder &opBuilder,
OperationState &result,
TypeRange inputTypes,
TypeRange outputTypes) {
Region ®ion = *result.addRegion();
fillStructuredOpRegion<NamedStructuredOpType>(
opBuilder, region, inputTypes, outputTypes,
[&](unsigned expected, unsigned actual) {
assert(expected != actual && "incorrect number of arguments");
});
}
/// Common parsing used for both named structured ops created by ods-gen and by
/// manually defined C++ ops. Does not handle regions.
static ParseResult
parseCommonStructuredOpParts(OpAsmParser &parser, OperationState &result,
SmallVectorImpl<Type> &inputTypes,
SmallVectorImpl<Type> &outputTypes) {
llvm::SMLoc inputsOperandsLoc, outputsOperandsLoc;
SmallVector<OpAsmParser::OperandType, 4> inputsOperands, outputsOperands;
parser.parseOptionalAttrDict(result.attributes);
if (succeeded(parser.parseOptionalKeyword("ins"))) {
if (parser.parseLParen())
return failure();
inputsOperandsLoc = parser.getCurrentLocation();
if (parser.parseOperandList(inputsOperands) ||
parser.parseColonTypeList(inputTypes) || parser.parseRParen())
return failure();
}
if (succeeded(parser.parseOptionalKeyword("outs"))) {
outputsOperandsLoc = parser.getCurrentLocation();
if (parser.parseLParen() || parser.parseOperandList(outputsOperands) ||
parser.parseColonTypeList(outputTypes) || parser.parseRParen())
return failure();
}
if (parser.resolveOperands(inputsOperands, inputTypes, inputsOperandsLoc,
result.operands) ||
parser.resolveOperands(outputsOperands, outputTypes, outputsOperandsLoc,
result.operands))
return failure();
result.addAttribute("operand_segment_sizes",
parser.getBuilder().getI32VectorAttr(
{static_cast<int32_t>(inputsOperands.size()),
static_cast<int32_t>(outputsOperands.size())}));
return success();
}
template <typename NamedStructuredOpType>
static void printCommonStructuredOpParts(OpAsmPrinter &p,
NamedStructuredOpType op) {
if (!op.inputs().empty())
p << " ins(" << op.inputs() << " : " << op.inputs().getTypes() << ")";
if (!op.outputs().empty())
p << " outs(" << op.outputs() << " : " << op.outputs().getTypes() << ")";
}
//===----------------------------------------------------------------------===//
// Specific parsing and printing for named structured ops created by ods-gen.
//===----------------------------------------------------------------------===//
template <typename NamedStructuredOpType>
static ParseResult
parseNamedStructuredOpRegion(OpAsmParser &parser, Region ®ion,
TypeRange inputTypes, TypeRange outputTypes) {
ParseResult res = success();
OpBuilder opBuilder(parser.getBuilder().getContext());
// Resolve `captures` into `capturedValues` at parse time so we can build the
// region with captures.
SmallVector<Value> capturedValues;
fillStructuredOpRegion<NamedStructuredOpType>(
opBuilder, region, inputTypes, outputTypes,
[&](unsigned expected, unsigned actual) {
res = parser.emitError(
parser.getCurrentLocation(),
llvm::formatv("[parseNamedStructuredOpRegion] ods-gen generated "
"region expects {0} args, got {1}",
expected, actual));
region.front().dump();
});
return res;
}
static ParseResult
parseNamedStructuredOpResults(OpAsmParser &parser,
SmallVectorImpl<Type> &resultTypes) {
if (parser.parseOptionalArrowTypeList(resultTypes))
return failure();
return success();
}
template <typename NamedStructuredOpType>
static ParseResult parseNamedStructuredOp(OpAsmParser &parser,
OperationState &result) {
// TODO: Enable when ods-gen supports captures.
SmallVector<Type, 1> inputTypes, outputTypes;
if (parseCommonStructuredOpParts(parser, result, inputTypes, outputTypes))
return failure();
// TODO: consider merging results parsing into region parsing.
// Need to wait for declarative assembly resolution to decide.
SmallVector<Type, 1> outputTensorsTypes;
if (parseNamedStructuredOpResults(parser, outputTensorsTypes))
return failure();
result.addTypes(outputTensorsTypes);
std::unique_ptr<Region> region = std::make_unique<Region>();
if (parseNamedStructuredOpRegion<NamedStructuredOpType>(
parser, *region, inputTypes, outputTypes))
return failure();
result.addRegion(std::move(region));
return success();
}
static void printNamedStructuredOpResults(OpAsmPrinter &p,
TypeRange resultTypes) {
if (resultTypes.empty())
return;
p.printOptionalArrowTypeList(resultTypes);
}
template <typename NamedStructuredOpType>
static void printNamedStructuredOp(OpAsmPrinter &p, NamedStructuredOpType op) {
p << op.getOperationName();
p.printOptionalAttrDict(
op->getAttrs(),
/*elidedAttrs=*/{"operand_segment_sizes",
// See generated code in mlir-linalg-yaml-gen.cpp
"linalg.memoized_indexing_maps"});
// Printing is shared with generic ops, except for the region and
// attributes.
printCommonStructuredOpParts(p, op);
// Results printing.
printNamedStructuredOpResults(p, op.result_tensors().getTypes());
// Region is elided.
}
template <typename NamedStructuredOpType>
static LogicalResult verifyNamedStructuredOp(NamedStructuredOpType op) {
return verifyGenericOp<NamedStructuredOpType>(op);
}
//===----------------------------------------------------------------------===//
// Canonicalizers and Folders.
//===----------------------------------------------------------------------===//
namespace {
struct EraseDeadLinalgOp : public OpInterfaceRewritePattern<LinalgOp> {
using OpInterfaceRewritePattern<LinalgOp>::OpInterfaceRewritePattern;
LogicalResult matchAndRewrite(LinalgOp op,
PatternRewriter &rewriter) const override {
for (OpOperand *opOperand : op.getInputAndOutputOperands()) {
// Linalg "inputs" may be either tensor or memref type.
// tensor<0xelt_type> is a convention that may not always mean
// "0 iterations". Only erase in cases we see memref<...x0x...>.
auto mt = opOperand->get().getType().dyn_cast<MemRefType>();
if (!mt)
continue;
if (llvm::is_contained(op.getShape(opOperand), 0)) {
rewriter.eraseOp(op);
return success();
}
}
return failure();
}
};
struct FoldTensorCastOp : public OpInterfaceRewritePattern<LinalgOp> {
using OpInterfaceRewritePattern<LinalgOp>::OpInterfaceRewritePattern;
LogicalResult matchAndRewrite(LinalgOp op,
PatternRewriter &rewriter) const override {
// If no operand comes from a tensor::CastOp and can be folded then fail.
bool hasTensorCastOperand =
llvm::any_of(op.getInputAndOutputOperands(), [&](OpOperand *opOperand) {
if (opOperand->get().isa<BlockArgument>())
return false;
auto castOp = opOperand->get().getDefiningOp<tensor::CastOp>();
return castOp && canFoldIntoConsumerOp(castOp);
});
if (!hasTensorCastOperand)
return failure();
SmallVector<Type, 4> newResultTypes;
newResultTypes.reserve(op->getNumResults());
SmallVector<Value, 4> newOperands;
newOperands.reserve(op->getNumOperands());
// Inputs may fold.
for (OpOperand *opOperand : op.getInputOperands()) {
auto tensorCastOp = opOperand->get().getDefiningOp<tensor::CastOp>();
newOperands.push_back(canFoldIntoConsumerOp(tensorCastOp)
? tensorCastOp.source()
: opOperand->get());
}
// Init tensors may fold, in which case the resultType must also change.
for (OpOperand *opOperand : op.getOutputOperands()) {
auto tensorCastOp = opOperand->get().getDefiningOp<tensor::CastOp>();
bool fold = canFoldIntoConsumerOp(tensorCastOp);
newOperands.push_back(fold ? tensorCastOp.getOperand()
: opOperand->get());
newResultTypes.push_back(newOperands.back().getType());
}
// Clone op.
Operation *newOp =
op.clone(rewriter, op->getLoc(), newResultTypes, newOperands);
SmallVector<Value, 4> replacements;
replacements.reserve(newOp->getNumResults());
for (auto result : llvm::zip(op->getResults(), newOp->getResults())) {
Value oldResult = std::get<0>(result);
Value newResult = std::get<1>(result);
if (newResult.getType() != oldResult.getType()) {
replacements.push_back(rewriter.create<tensor::CastOp>(
op->getLoc(), oldResult.getType(), newResult));
} else {
replacements.push_back(newResult);
}
}
rewriter.replaceOp(op, replacements);
return success();
}
};
} // namespace
namespace {
// Deduplicate redundant args of a linalg op.
// An arg is redundant if it has the same Value and indexing map as another.
struct DeduplicateInputs : public OpInterfaceRewritePattern<LinalgOp> {
using OpInterfaceRewritePattern<LinalgOp>::OpInterfaceRewritePattern;
LogicalResult matchAndRewrite(LinalgOp op,
PatternRewriter &rewriter) const override {
// This pattern reduces the number of arguments of an op, which breaks
// the invariants of semantically charged named ops.
if (!isa<GenericOp>(op))
return failure();
// Associate each input to an equivalent "canonical" input that has the same
// Value and indexing map.
//
// In the non-duplicate case, input `i` will have canonical input `i`. But
// in the case of duplicated inputs, the canonical input could be some other
// input `< i`. That is, a later input will have some earlier input as its
// canonical input.
llvm::SmallDenseMap<std::pair<Value, AffineMap>, unsigned> canonicalInput;
// For later remapping tasks like deduplicating payload block arguments,
// having a simple "inputIndex -> canonicalInputIndex" integer mapping is
// convenient.
SmallVector<unsigned> canonicalInputIndices;
for (OpOperand *opOperand : op.getInputOperands()) {
AffineMap indexingMap = op.getTiedIndexingMap(opOperand);
// STL-like maps have a convenient behavior for our use case here. In the
// case of duplicate keys, the insertion is rejected, and the returned
// iterator gives access to the value already in the map.
auto pair = canonicalInput.insert(
{{opOperand->get(), indexingMap}, opOperand->getOperandNumber()});
canonicalInputIndices.push_back(pair.first->second);
}
// If there are no duplicate args, then bail out.
if (canonicalInput.size() == op.getNumInputs())
return failure();
// The operands for the newly canonicalized op.
SmallVector<Value> newOperands;
for (OpOperand *opOperand : op.getInputOperands())
if (canonicalInputIndices[opOperand->getOperandNumber()] ==
opOperand->getOperandNumber())
newOperands.push_back(opOperand->get());
SmallVector<Value> outputOperands = op.getOutputOperands();
llvm::append_range(newOperands, outputOperands);
// Repair the indexing maps by filtering out the ones that have been
// eliminated.
SmallVector<AffineMap> newIndexingMaps;
for (OpOperand *opOperand : op.getInputOperands())
if (canonicalInputIndices[opOperand->getOperandNumber()] ==
opOperand->getOperandNumber())
newIndexingMaps.push_back(op.getTiedIndexingMap(opOperand));
for (OpOperand *opOperand : op.getOutputOperands())
newIndexingMaps.push_back(op.getTiedIndexingMap(opOperand));
// Clone the old op with new operands.
Operation *newOp =
op.clone(rewriter, op->getLoc(), op->getResultTypes(), newOperands);
auto newLinalgOp = cast<LinalgOp>(newOp);
newOp->setAttr("indexing_maps",
rewriter.getAffineMapArrayAttr(newIndexingMaps));
// Set the number of inputs to the new value. The `clone` call above kept
// the value from the original op.
newLinalgOp.setNumInputs(canonicalInput.size());
// Repair the payload entry block by RAUW'ing redundant arguments and
// erasing them.
Block &payload = newOp->getRegion(0).front();
SmallVector<OpOperand *> inputOperands = op.getInputOperands();
for (OpOperand *opOperand : llvm::reverse(inputOperands)) {
// Iterate in reverse, so that we erase later args first, preventing the
// argument list from shifting unexpectedly and invalidating all our
// indices.
unsigned operandNumber = opOperand->getOperandNumber();
if (canonicalInputIndices[operandNumber] == operandNumber)
continue;
payload.getArgument(operandNumber)
.replaceAllUsesWith(
payload.getArgument(canonicalInputIndices[operandNumber]));
payload.eraseArgument(operandNumber);
}
rewriter.replaceOp(op, newOp->getResults());
return success();
}
};
/// Remove generic operations (on tensors) that are just copying
/// the values from inputs to the results. Requirements are
/// 1) All iterator types are parallel
/// 2) The body contains just a yield operation with the yielded values being
/// the arguments corresponding to the operands.
struct RemoveIdentityLinalgOps : public OpInterfaceRewritePattern<LinalgOp> {
using OpInterfaceRewritePattern<LinalgOp>::OpInterfaceRewritePattern;
LogicalResult matchAndRewrite(LinalgOp op,
PatternRewriter &rewriter) const override {
if (auto copyOp = dyn_cast<CopyOp>(*op)) {
assert(copyOp.hasBufferSemantics());
if (copyOp.input() == copyOp.output() &&
copyOp.inputPermutation() == copyOp.outputPermutation()) {
rewriter.eraseOp(op);
return success();
}
}
if (!isa<GenericOp>(op))
return failure();
if (!op.hasTensorSemantics())
return failure();
// Check all indexing maps are identity.
if (llvm::any_of(op.getIndexingMaps(),
[](AffineMap map) { return !map.isIdentity(); }))
return failure();
// Check that the body of the linalg operation is just a linalg.yield
// operation.
Block &body = op->getRegion(0).front();
if (!llvm::hasSingleElement(body))
return failure();
auto yieldOp = dyn_cast<linalg::YieldOp>(body.getTerminator());
if (!yieldOp)
return failure();
// Get the argument number of the returned values. That is the operand
// number to use for replacing uses of this operation.
SmallVector<Value, 4> returnedArgs;
for (Value yieldVal : yieldOp.values()) {
auto yieldArg = yieldVal.dyn_cast<BlockArgument>();
if (!yieldArg || yieldArg.getOwner() != &body)
return failure();
unsigned argumentNumber = yieldArg.getArgNumber();
returnedArgs.push_back(op->getOperand(argumentNumber));
}
if (returnedArgs.size() != op.getOperation()->getNumResults())
return failure();
rewriter.replaceOp(op, returnedArgs);
return success();
}
};
} // namespace
#define LINALGOP_FOLDERS(XXX) \
LogicalResult XXX::fold(ArrayRef<Attribute>, \
SmallVectorImpl<OpFoldResult> &) { \
return foldMemRefCast(*this); \
}
LINALGOP_FOLDERS(ConvOp)
LINALGOP_FOLDERS(PoolingMaxOp)
LINALGOP_FOLDERS(PoolingMinOp)
LINALGOP_FOLDERS(PoolingSumOp)
LINALGOP_FOLDERS(CopyOp)
LINALGOP_FOLDERS(FillOp)
LINALGOP_FOLDERS(GenericOp)
// All named ops canonicalizers and folders are auto-generated in the
// .cpp.inc.
//===----------------------------------------------------------------------===//
// LinalgDialect
//===----------------------------------------------------------------------===//
void LinalgDialect::getCanonicalizationPatterns(
RewritePatternSet &results) const {
results.add<DeduplicateInputs, EraseDeadLinalgOp, FoldTensorCastOp,
RemoveIdentityLinalgOps>(getContext());
}
|