File: Utils.cpp

package info (click to toggle)
llvm-toolchain-13 1%3A13.0.1-6~deb10u4
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 1,418,792 kB
  • sloc: cpp: 5,290,827; ansic: 996,570; asm: 544,593; python: 188,212; objc: 72,027; lisp: 30,291; f90: 25,395; sh: 24,900; javascript: 9,780; pascal: 9,398; perl: 7,484; ml: 5,432; awk: 3,523; makefile: 2,892; xml: 953; cs: 573; fortran: 539
file content (187 lines) | stat: -rw-r--r-- 7,966 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
//===- LoopUtils.cpp ---- Misc utilities for loop transformation ----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements miscellaneous loop transformation routines.
//
//===----------------------------------------------------------------------===//

#include "mlir/Dialect/SCF/Utils.h"

#include "mlir/Dialect/SCF/SCF.h"
#include "mlir/Dialect/StandardOps/IR/Ops.h"
#include "mlir/IR/BlockAndValueMapping.h"
#include "mlir/IR/BuiltinOps.h"
#include "mlir/Transforms/RegionUtils.h"

#include "llvm/ADT/SetVector.h"

using namespace mlir;

scf::ForOp mlir::cloneWithNewYields(OpBuilder &b, scf::ForOp loop,
                                    ValueRange newIterOperands,
                                    ValueRange newYieldedValues,
                                    bool replaceLoopResults) {
  assert(newIterOperands.size() == newYieldedValues.size() &&
         "newIterOperands must be of the same size as newYieldedValues");

  // Create a new loop before the existing one, with the extra operands.
  OpBuilder::InsertionGuard g(b);
  b.setInsertionPoint(loop);
  auto operands = llvm::to_vector<4>(loop.getIterOperands());
  operands.append(newIterOperands.begin(), newIterOperands.end());
  scf::ForOp newLoop =
      b.create<scf::ForOp>(loop.getLoc(), loop.lowerBound(), loop.upperBound(),
                           loop.step(), operands);

  auto &loopBody = *loop.getBody();
  auto &newLoopBody = *newLoop.getBody();
  // Clone / erase the yield inside the original loop to both:
  //   1. augment its operands with the newYieldedValues.
  //   2. automatically apply the BlockAndValueMapping on its operand
  auto yield = cast<scf::YieldOp>(loopBody.getTerminator());
  b.setInsertionPoint(yield);
  auto yieldOperands = llvm::to_vector<4>(yield.getOperands());
  yieldOperands.append(newYieldedValues.begin(), newYieldedValues.end());
  auto newYield = b.create<scf::YieldOp>(yield.getLoc(), yieldOperands);

  // Clone the loop body with remaps.
  BlockAndValueMapping bvm;
  // a. remap the induction variable.
  bvm.map(loop.getInductionVar(), newLoop.getInductionVar());
  // b. remap the BB args.
  bvm.map(loopBody.getArguments(),
          newLoopBody.getArguments().take_front(loopBody.getNumArguments()));
  // c. remap the iter args.
  bvm.map(newIterOperands,
          newLoop.getRegionIterArgs().take_back(newIterOperands.size()));
  b.setInsertionPointToStart(&newLoopBody);
  // Skip the original yield terminator which does not have enough operands.
  for (auto &o : loopBody.without_terminator())
    b.clone(o, bvm);

  // Replace `loop`'s results if requested.
  if (replaceLoopResults) {
    for (auto it : llvm::zip(loop.getResults(), newLoop.getResults().take_front(
                                                    loop.getNumResults())))
      std::get<0>(it).replaceAllUsesWith(std::get<1>(it));
  }

  // TODO: this is unsafe in the context of a PatternRewrite.
  newYield.erase();

  return newLoop;
}

void mlir::outlineIfOp(OpBuilder &b, scf::IfOp ifOp, FuncOp *thenFn,
                       StringRef thenFnName, FuncOp *elseFn,
                       StringRef elseFnName) {
  Location loc = ifOp.getLoc();
  MLIRContext *ctx = ifOp.getContext();
  auto outline = [&](Region &ifOrElseRegion, StringRef funcName) {
    assert(!funcName.empty() && "Expected function name for outlining");
    assert(ifOrElseRegion.getBlocks().size() <= 1 &&
           "Expected at most one block");

    // Outline before current function.
    OpBuilder::InsertionGuard g(b);
    b.setInsertionPoint(ifOp->getParentOfType<FuncOp>());

    SetVector<Value> captures;
    getUsedValuesDefinedAbove(ifOrElseRegion, captures);

    ValueRange values(captures.getArrayRef());
    FunctionType type =
        FunctionType::get(ctx, values.getTypes(), ifOp.getResultTypes());
    auto outlinedFunc = b.create<FuncOp>(loc, funcName, type);
    b.setInsertionPointToStart(outlinedFunc.addEntryBlock());
    BlockAndValueMapping bvm;
    for (auto it : llvm::zip(values, outlinedFunc.getArguments()))
      bvm.map(std::get<0>(it), std::get<1>(it));
    for (Operation &op : ifOrElseRegion.front().without_terminator())
      b.clone(op, bvm);

    Operation *term = ifOrElseRegion.front().getTerminator();
    SmallVector<Value, 4> terminatorOperands;
    for (auto op : term->getOperands())
      terminatorOperands.push_back(bvm.lookup(op));
    b.create<ReturnOp>(loc, term->getResultTypes(), terminatorOperands);

    ifOrElseRegion.front().clear();
    b.setInsertionPointToEnd(&ifOrElseRegion.front());
    Operation *call = b.create<CallOp>(loc, outlinedFunc, values);
    b.create<scf::YieldOp>(loc, call->getResults());
    return outlinedFunc;
  };

  if (thenFn && !ifOp.thenRegion().empty())
    *thenFn = outline(ifOp.thenRegion(), thenFnName);
  if (elseFn && !ifOp.elseRegion().empty())
    *elseFn = outline(ifOp.elseRegion(), elseFnName);
}

bool mlir::getInnermostParallelLoops(Operation *rootOp,
                                     SmallVectorImpl<scf::ParallelOp> &result) {
  assert(rootOp != nullptr && "Root operation must not be a nullptr.");
  bool rootEnclosesPloops = false;
  for (Region &region : rootOp->getRegions()) {
    for (Block &block : region.getBlocks()) {
      for (Operation &op : block) {
        bool enclosesPloops = getInnermostParallelLoops(&op, result);
        rootEnclosesPloops |= enclosesPloops;
        if (auto ploop = dyn_cast<scf::ParallelOp>(op)) {
          rootEnclosesPloops = true;

          // Collect parallel loop if it is an innermost one.
          if (!enclosesPloops)
            result.push_back(ploop);
        }
      }
    }
  }
  return rootEnclosesPloops;
}

/// Given the `lbVal`, `ubVal` and `stepVal` of a loop, append `lbVal` and
/// `ubVal` to `dims` and `stepVal` to `symbols`.
/// Create new AffineDimExpr (`%lb` and `%ub`) and AffineSymbolExpr (`%step`)
/// with positions matching the newly appended values. Then create a min
/// expression (i.e. `%lb`) and a max expression
/// (i.e. `%lb + %step * floordiv(%ub -1 - %lb, %step)`.
static std::pair<AffineExpr, AffineExpr>
getMinMaxLoopIndVar(Value lbVal, Value ubVal, Value stepVal,
                    SmallVectorImpl<Value> &dims,
                    SmallVectorImpl<Value> &symbols) {
  MLIRContext *ctx = lbVal.getContext();
  AffineExpr lb = getAffineDimExpr(dims.size(), ctx);
  dims.push_back(lbVal);
  AffineExpr ub = getAffineDimExpr(dims.size(), ctx);
  dims.push_back(ubVal);
  AffineExpr step = getAffineSymbolExpr(symbols.size(), ctx);
  symbols.push_back(stepVal);
  return std::make_pair(lb, lb + step * ((ub - 1) - lb).floorDiv(step));
}

/// Return the min/max expressions for `value` if it is an induction variable
/// from scf.for or scf.parallel loop.
/// if `loopFilter` is passed, the filter determines which loop to consider.
/// Other induction variables are ignored.
Optional<std::pair<AffineExpr, AffineExpr>> mlir::getSCFMinMaxExpr(
    Value value, SmallVectorImpl<Value> &dims, SmallVectorImpl<Value> &symbols,
    llvm::function_ref<bool(Operation *)> substituteOperation) {
  if (auto forOp = scf::getForInductionVarOwner(value))
    return getMinMaxLoopIndVar(forOp.lowerBound(), forOp.upperBound(),
                               forOp.step(), dims, symbols);

  if (auto parallelForOp = scf::getParallelForInductionVarOwner(value))
    for (unsigned idx = 0, e = parallelForOp.getNumLoops(); idx < e; ++idx)
      if (parallelForOp.getInductionVars()[idx] == value)
        return getMinMaxLoopIndVar(parallelForOp.lowerBound()[idx],
                                   parallelForOp.upperBound()[idx],
                                   parallelForOp.step()[idx], dims, symbols);
  return {};
}