1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
|
//===- ModuleCombiner.cpp - MLIR SPIR-V Module Combiner ---------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the SPIR-V module combiner library.
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/SPIRV/Linking/ModuleCombiner.h"
#include "mlir/Dialect/SPIRV/IR/SPIRVDialect.h"
#include "mlir/Dialect/SPIRV/IR/SPIRVOps.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/SymbolTable.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/Hashing.h"
#include "llvm/ADT/StringExtras.h"
using namespace mlir;
static constexpr unsigned maxFreeID = 1 << 20;
static SmallString<64> renameSymbol(StringRef oldSymName, unsigned &lastUsedID,
spirv::ModuleOp combinedModule) {
SmallString<64> newSymName(oldSymName);
newSymName.push_back('_');
while (lastUsedID < maxFreeID) {
std::string possible = (newSymName + llvm::utostr(++lastUsedID)).str();
if (!SymbolTable::lookupSymbolIn(combinedModule, possible)) {
newSymName += llvm::utostr(lastUsedID);
break;
}
}
return newSymName;
}
/// Check if a symbol with the same name as op already exists in source. If so,
/// rename op and update all its references in target.
static LogicalResult updateSymbolAndAllUses(SymbolOpInterface op,
spirv::ModuleOp target,
spirv::ModuleOp source,
unsigned &lastUsedID) {
if (!SymbolTable::lookupSymbolIn(source, op.getName()))
return success();
StringRef oldSymName = op.getName();
SmallString<64> newSymName = renameSymbol(oldSymName, lastUsedID, target);
if (failed(SymbolTable::replaceAllSymbolUses(op, newSymName, target)))
return op.emitError("unable to update all symbol uses for ")
<< oldSymName << " to " << newSymName;
SymbolTable::setSymbolName(op, newSymName);
return success();
}
template <typename KeyTy, typename SymbolOpTy>
static SymbolOpTy
emplaceOrGetReplacementSymbol(KeyTy key, SymbolOpTy symbolOp,
DenseMap<KeyTy, SymbolOpTy> &deduplicationMap) {
auto result = deduplicationMap.try_emplace(key, symbolOp);
if (result.second)
return SymbolOpTy();
return result.first->second;
}
/// Computes a hash code to represent the argument SymbolOpInterface based on
/// all the Op's attributes except for the symbol name.
///
/// \return the hash code computed from the Op's attributes as described above.
///
/// Note: We use the operation's name (not the symbol name) as part of the hash
/// computation. This prevents, for example, mistakenly considering a global
/// variable and a spec constant as duplicates because their descriptor set +
/// binding and spec_id, respectively, happen to hash to the same value.
static llvm::hash_code computeHash(SymbolOpInterface symbolOp) {
llvm::hash_code hashCode(0);
hashCode = llvm::hash_combine(symbolOp->getName());
for (auto attr : symbolOp->getAttrs()) {
if (attr.first == SymbolTable::getSymbolAttrName())
continue;
hashCode = llvm::hash_combine(hashCode, attr);
}
return hashCode;
}
/// Computes a hash code from the argument Block.
llvm::hash_code computeHash(Block *block) {
// TODO: Consider extracting BlockEquivalenceData into a common header and
// re-using it here.
llvm::hash_code hash(0);
for (Operation &op : *block) {
// TODO: Properly handle operations with regions.
if (op.getNumRegions() > 0)
return 0;
hash = llvm::hash_combine(
hash, OperationEquivalence::computeHash(
&op, OperationEquivalence::Flags::IgnoreOperands));
}
return hash;
}
namespace mlir {
namespace spirv {
// TODO Properly test symbol rename listener mechanism.
OwningOpRef<spirv::ModuleOp>
combine(llvm::MutableArrayRef<spirv::ModuleOp> modules,
OpBuilder &combinedModuleBuilder,
llvm::function_ref<void(ModuleOp, StringRef, StringRef)>
symRenameListener) {
unsigned lastUsedID = 0;
if (modules.empty())
return nullptr;
auto addressingModel = modules[0].addressing_model();
auto memoryModel = modules[0].memory_model();
auto combinedModule = combinedModuleBuilder.create<spirv::ModuleOp>(
modules[0].getLoc(), addressingModel, memoryModel);
combinedModuleBuilder.setInsertionPointToStart(combinedModule.getBody());
// In some cases, a symbol in the (current state of the) combined module is
// renamed in order to maintain the conflicting symbol in the input module
// being merged. For example, if the conflict is between a global variable in
// the current combined module and a function in the input module, the global
// variable is renamed. In order to notify listeners of the symbol updates in
// such cases, we need to keep track of the module from which the renamed
// symbol in the combined module originated. This map keeps such information.
DenseMap<StringRef, spirv::ModuleOp> symNameToModuleMap;
for (auto module : modules) {
if (module.addressing_model() != addressingModel ||
module.memory_model() != memoryModel) {
module.emitError(
"input modules differ in addressing model and/or memory model");
return nullptr;
}
spirv::ModuleOp moduleClone = module.clone();
// In the combined module, rename all symbols that conflict with symbols
// from the current input module. This renaming applies to all ops except
// for spv.funcs. This way, if the conflicting op in the input module is
// non-spv.func, we rename that symbol instead and maintain the spv.func in
// the combined module name as it is.
for (auto &op : *combinedModule.getBody()) {
if (auto symbolOp = dyn_cast<SymbolOpInterface>(op)) {
StringRef oldSymName = symbolOp.getName();
if (!isa<FuncOp>(op) &&
failed(updateSymbolAndAllUses(symbolOp, combinedModule, moduleClone,
lastUsedID)))
return nullptr;
StringRef newSymName = symbolOp.getName();
if (symRenameListener && oldSymName != newSymName) {
spirv::ModuleOp originalModule =
symNameToModuleMap.lookup(oldSymName);
if (!originalModule) {
module.emitError("unable to find original ModuleOp for symbol ")
<< oldSymName;
return nullptr;
}
symRenameListener(originalModule, oldSymName, newSymName);
// Since the symbol name is updated, there is no need to maintain the
// entry that associates the old symbol name with the original module.
symNameToModuleMap.erase(oldSymName);
// Instead, add a new entry to map the new symbol name to the original
// module in case it gets renamed again later.
symNameToModuleMap[newSymName] = originalModule;
}
}
}
// In the current input module, rename all symbols that conflict with
// symbols from the combined module. This includes renaming spv.funcs.
for (auto &op : *moduleClone.getBody()) {
if (auto symbolOp = dyn_cast<SymbolOpInterface>(op)) {
StringRef oldSymName = symbolOp.getName();
if (failed(updateSymbolAndAllUses(symbolOp, moduleClone, combinedModule,
lastUsedID)))
return nullptr;
StringRef newSymName = symbolOp.getName();
if (symRenameListener && oldSymName != newSymName) {
symRenameListener(module, oldSymName, newSymName);
// Insert the module associated with the symbol name.
auto emplaceResult =
symNameToModuleMap.try_emplace(symbolOp.getName(), module);
// If an entry with the same symbol name is already present, this must
// be a problem with the implementation, specially clean-up of the map
// while iterating over the combined module above.
if (!emplaceResult.second) {
module.emitError("did not expect to find an entry for symbol ")
<< symbolOp.getName();
return nullptr;
}
}
}
}
// Clone all the module's ops to the combined module.
for (auto &op : *moduleClone.getBody())
combinedModuleBuilder.insert(op.clone());
}
// Deduplicate identical global variables, spec constants, and functions.
DenseMap<llvm::hash_code, SymbolOpInterface> hashToSymbolOp;
SmallVector<SymbolOpInterface, 0> eraseList;
for (auto &op : *combinedModule.getBody()) {
llvm::hash_code hashCode(0);
SymbolOpInterface symbolOp = dyn_cast<SymbolOpInterface>(op);
if (!symbolOp)
continue;
hashCode = computeHash(symbolOp);
// A 0 hash code means the op is not suitable for deduplication and should
// be skipped. An example of this is when a function has ops with regions
// which are not properly supported yet.
if (!hashCode)
continue;
if (auto funcOp = dyn_cast<FuncOp>(op))
for (auto &blk : funcOp)
hashCode = llvm::hash_combine(hashCode, computeHash(&blk));
SymbolOpInterface replacementSymOp =
emplaceOrGetReplacementSymbol(hashCode, symbolOp, hashToSymbolOp);
if (!replacementSymOp)
continue;
if (failed(SymbolTable::replaceAllSymbolUses(
symbolOp, replacementSymOp.getName(), combinedModule))) {
symbolOp.emitError("unable to update all symbol uses for ")
<< symbolOp.getName() << " to " << replacementSymOp.getName();
return nullptr;
}
eraseList.push_back(symbolOp);
}
for (auto symbolOp : eraseList)
symbolOp.erase();
return combinedModule;
}
} // namespace spirv
} // namespace mlir
|