File: SparseTensorDialect.cpp

package info (click to toggle)
llvm-toolchain-13 1%3A13.0.1-6~deb10u4
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 1,418,792 kB
  • sloc: cpp: 5,290,827; ansic: 996,570; asm: 544,593; python: 188,212; objc: 72,027; lisp: 30,291; f90: 25,395; sh: 24,900; javascript: 9,780; pascal: 9,398; perl: 7,484; ml: 5,432; awk: 3,523; makefile: 2,892; xml: 953; cs: 573; fortran: 539
file content (290 lines) | stat: -rw-r--r-- 10,746 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
//===- SparseTensorDialect.cpp - Sparse tensor dialect implementation -----===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "mlir/Dialect/SparseTensor/IR/SparseTensor.h"
#include "mlir/Dialect/StandardOps/IR/Ops.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/DialectImplementation.h"
#include "mlir/IR/OpImplementation.h"
#include "llvm/ADT/TypeSwitch.h"

using namespace mlir;
using namespace mlir::sparse_tensor;

#include "mlir/Dialect/SparseTensor/IR/SparseTensorOpsDialect.cpp.inc"

//===----------------------------------------------------------------------===//
// TensorDialect Attribute Methods.
//===----------------------------------------------------------------------===//

#define GET_ATTRDEF_CLASSES
#include "mlir/Dialect/SparseTensor/IR/SparseTensorAttrDefs.cpp.inc"

static bool acceptBitWidth(unsigned bitWidth) {
  switch (bitWidth) {
  case 0:
  case 8:
  case 16:
  case 32:
  case 64:
    return true;
  default:
    return false;
  }
}

Attribute SparseTensorEncodingAttr::parse(MLIRContext *context,
                                          DialectAsmParser &parser, Type type) {
  if (failed(parser.parseLess()))
    return {};
  // Parse the data as a dictionary.
  DictionaryAttr dict;
  if (failed(parser.parseAttribute(dict)))
    return {};
  if (failed(parser.parseGreater()))
    return {};
  // Process the data from the parsed dictionary value into struct-like data.
  SmallVector<SparseTensorEncodingAttr::DimLevelType, 4> dlt;
  AffineMap map = {};
  unsigned ptr = 0;
  unsigned ind = 0;
  for (const NamedAttribute &attr : dict) {
    if (attr.first == "dimLevelType") {
      auto arrayAttr = attr.second.dyn_cast<ArrayAttr>();
      if (!arrayAttr) {
        parser.emitError(parser.getNameLoc(),
                         "expected an array for dimension level types");
        return {};
      }
      for (unsigned i = 0, e = arrayAttr.size(); i < e; i++) {
        auto strAttr = arrayAttr[i].dyn_cast<StringAttr>();
        if (!strAttr) {
          parser.emitError(parser.getNameLoc(),
                           "expected a string value in dimension level types");
          return {};
        }
        auto strVal = strAttr.getValue();
        if (strVal == "dense") {
          dlt.push_back(SparseTensorEncodingAttr::DimLevelType::Dense);
        } else if (strVal == "compressed") {
          dlt.push_back(SparseTensorEncodingAttr::DimLevelType::Compressed);
        } else if (strVal == "singleton") {
          dlt.push_back(SparseTensorEncodingAttr::DimLevelType::Singleton);
        } else {
          parser.emitError(parser.getNameLoc(),
                           "unexpected dimension level type: ")
              << strVal;
          return {};
        }
      }
    } else if (attr.first == "dimOrdering") {
      auto affineAttr = attr.second.dyn_cast<AffineMapAttr>();
      if (!affineAttr) {
        parser.emitError(parser.getNameLoc(),
                         "expected an affine map for dimension ordering");
        return {};
      }
      map = affineAttr.getValue();
    } else if (attr.first == "pointerBitWidth") {
      auto intAttr = attr.second.dyn_cast<IntegerAttr>();
      if (!intAttr) {
        parser.emitError(parser.getNameLoc(),
                         "expected an integral pointer bitwidth");
        return {};
      }
      ptr = intAttr.getInt();
    } else if (attr.first == "indexBitWidth") {
      auto intAttr = attr.second.dyn_cast<IntegerAttr>();
      if (!intAttr) {
        parser.emitError(parser.getNameLoc(),
                         "expected an integral index bitwidth");
        return {};
      }
      ind = intAttr.getInt();
    } else {
      parser.emitError(parser.getNameLoc(), "unexpected key: ")
          << attr.first.str();
      return {};
    }
  }
  // Construct struct-like storage for attribute.
  return parser.getChecked<SparseTensorEncodingAttr>(context, dlt, map, ptr,
                                                     ind);
}

void SparseTensorEncodingAttr::print(DialectAsmPrinter &printer) const {
  // Print the struct-like storage in dictionary fashion.
  printer << "encoding<{ dimLevelType = [ ";
  for (unsigned i = 0, e = getDimLevelType().size(); i < e; i++) {
    switch (getDimLevelType()[i]) {
    case DimLevelType::Dense:
      printer << "\"dense\"";
      break;
    case DimLevelType::Compressed:
      printer << "\"compressed\"";
      break;
    case DimLevelType::Singleton:
      printer << "\"singleton\"";
      break;
    }
    if (i != e - 1)
      printer << ", ";
  }
  printer << " ]";
  if (getDimOrdering())
    printer << ", dimOrdering = affine_map<" << getDimOrdering() << ">";
  printer << ", pointerBitWidth = " << getPointerBitWidth()
          << ", indexBitWidth = " << getIndexBitWidth() << " }>";
}

LogicalResult SparseTensorEncodingAttr::verify(
    function_ref<InFlightDiagnostic()> emitError,
    ArrayRef<DimLevelType> dimLevelType, AffineMap dimOrdering,
    unsigned pointerBitWidth, unsigned indexBitWidth) {
  if (!acceptBitWidth(pointerBitWidth))
    return emitError() << "unexpected pointer bitwidth: " << pointerBitWidth;
  if (!acceptBitWidth(indexBitWidth))
    return emitError() << "unexpected index bitwidth: " << indexBitWidth;
  if (dimOrdering) {
    if (!dimOrdering.isPermutation())
      return emitError()
             << "expected a permutation affine map for dimension ordering";
    if (dimOrdering.getNumResults() != dimLevelType.size())
      return emitError() << "unexpected mismatch in ordering and dimension "
                            "level types size";
  }
  return success();
}

LogicalResult SparseTensorEncodingAttr::verifyEncoding(
    ArrayRef<int64_t> shape, Type elementType,
    function_ref<InFlightDiagnostic()> emitError) const {
  // Check structural integrity.
  if (failed(verify(emitError, getDimLevelType(), getDimOrdering(),
                    getPointerBitWidth(), getIndexBitWidth())))
    return failure();
  // Check integrity with tensor type specifics. Dimension ordering is optional,
  // but we always should have dimension level types for the full rank.
  unsigned size = shape.size();
  if (getDimOrdering() && getDimOrdering().getNumResults() != size)
    return emitError() << "expected an affine map of size " << size
                       << " for dimension ordering";
  if (getDimLevelType().size() != size)
    return emitError() << "expected an array of size " << size
                       << " for dimension level types";
  return success();
}

SparseTensorEncodingAttr
mlir::sparse_tensor::getSparseTensorEncoding(Type type) {
  if (auto ttp = type.dyn_cast<RankedTensorType>())
    return ttp.getEncoding().dyn_cast_or_null<SparseTensorEncodingAttr>();
  return nullptr;
}

//===----------------------------------------------------------------------===//
// TensorDialect Operations.
//===----------------------------------------------------------------------===//

static LogicalResult isInBounds(Value dim, Value tensor) {
  if (auto constantOp = dim.getDefiningOp<ConstantOp>()) {
    unsigned d = constantOp.getValue().cast<IntegerAttr>().getInt();
    if (d >= tensor.getType().cast<RankedTensorType>().getRank())
      return failure();
  }
  return success(); // in bounds, or symbolic
}

static LogicalResult isMatchingWidth(Value result, unsigned width) {
  Type etp = result.getType().cast<MemRefType>().getElementType();
  if ((width == 0 && etp.isIndex()) || (width > 0 && etp.isInteger(width)))
    return success();
  return failure();
}

static LogicalResult verify(NewOp op) {
  if (!getSparseTensorEncoding(op.getResult().getType()))
    return op.emitError("expected a sparse tensor result");
  return success();
}

static LogicalResult verify(ToPointersOp op) {
  if (auto e = getSparseTensorEncoding(op.tensor().getType())) {
    if (failed(isInBounds(op.dim(), op.tensor())))
      return op.emitError("requested pointers dimension out of bounds");
    if (failed(isMatchingWidth(op.result(), e.getPointerBitWidth())))
      return op.emitError("unexpected type for pointers");
    return success();
  }
  return op.emitError("expected a sparse tensor to get pointers");
}

static LogicalResult verify(ToIndicesOp op) {
  if (auto e = getSparseTensorEncoding(op.tensor().getType())) {
    if (failed(isInBounds(op.dim(), op.tensor())))
      return op.emitError("requested indices dimension out of bounds");
    if (failed(isMatchingWidth(op.result(), e.getIndexBitWidth())))
      return op.emitError("unexpected type for indices");
    return success();
  }
  return op.emitError("expected a sparse tensor to get indices");
}

static LogicalResult verify(ToValuesOp op) {
  if (!getSparseTensorEncoding(op.tensor().getType()))
    return op.emitError("expected a sparse tensor to get values");
  RankedTensorType ttp = op.tensor().getType().cast<RankedTensorType>();
  MemRefType mtp = op.result().getType().cast<MemRefType>();
  if (ttp.getElementType() != mtp.getElementType())
    return op.emitError("unexpected mismatch in element types");
  return success();
}

static LogicalResult verify(ToTensorOp op) {
  if (!getSparseTensorEncoding(op.result().getType()))
    return op.emitError("expected a sparse tensor as result");
  return success();
}

//===----------------------------------------------------------------------===//
// TensorDialect Methods.
//===----------------------------------------------------------------------===//

void SparseTensorDialect::initialize() {
  addAttributes<
#define GET_ATTRDEF_LIST
#include "mlir/Dialect/SparseTensor/IR/SparseTensorAttrDefs.cpp.inc"
      >();
  addOperations<
#define GET_OP_LIST
#include "mlir/Dialect/SparseTensor/IR/SparseTensorOps.cpp.inc"
      >();
}

#define GET_OP_CLASSES
#include "mlir/Dialect/SparseTensor/IR/SparseTensorOps.cpp.inc"

Attribute SparseTensorDialect::parseAttribute(DialectAsmParser &parser,
                                              Type type) const {
  StringRef attrTag;
  if (failed(parser.parseKeyword(&attrTag)))
    return Attribute();
  Attribute attr;
  auto parseResult =
      generatedAttributeParser(getContext(), parser, attrTag, type, attr);
  if (parseResult.hasValue())
    return attr;
  parser.emitError(parser.getNameLoc(), "unknown sparse tensor attribute");
  return Attribute();
}

void SparseTensorDialect::printAttribute(Attribute attr,
                                         DialectAsmPrinter &printer) const {
  if (succeeded(generatedAttributePrinter(attr, printer)))
    return;
}