1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
|
//===--- LexicallyOrderedRecursiveASTVisitor.h - ----------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines the LexicallyOrderedRecursiveASTVisitor interface, which
// recursively traverses the entire AST in a lexical order.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_AST_LEXICALLY_ORDERED_RECURSIVEASTVISITOR_H
#define LLVM_CLANG_AST_LEXICALLY_ORDERED_RECURSIVEASTVISITOR_H
#include "clang/AST/RecursiveASTVisitor.h"
#include "clang/Basic/LLVM.h"
#include "clang/Basic/SourceManager.h"
#include "llvm/Support/SaveAndRestore.h"
namespace clang {
/// A RecursiveASTVisitor subclass that guarantees that AST traversal is
/// performed in a lexical order (i.e. the order in which declarations are
/// written in the source).
///
/// RecursiveASTVisitor doesn't guarantee lexical ordering because there are
/// some declarations, like Objective-C @implementation declarations
/// that might be represented in the AST differently to how they were written
/// in the source.
/// In particular, Objective-C @implementation declarations may contain
/// non-Objective-C declarations, like functions:
///
/// @implementation MyClass
///
/// - (void) method { }
/// void normalFunction() { }
///
/// @end
///
/// Clang's AST stores these declarations outside of the @implementation
/// declaration, so the example above would be represented using the following
/// AST:
/// |-ObjCImplementationDecl ... MyClass
/// | `-ObjCMethodDecl ... method
/// | ...
/// `-FunctionDecl ... normalFunction
/// ...
///
/// This class ensures that these declarations are traversed before the
/// corresponding TraverseDecl for the @implementation returns. This ensures
/// that the lexical parent relationship between these declarations and the
/// @implementation is preserved while traversing the AST. Note that the
/// current implementation doesn't mix these declarations with the declarations
/// contained in the @implementation, so the traversal of all of the
/// declarations in the @implementation still doesn't follow the lexical order.
template <typename Derived>
class LexicallyOrderedRecursiveASTVisitor
: public RecursiveASTVisitor<Derived> {
using BaseType = RecursiveASTVisitor<Derived>;
public:
LexicallyOrderedRecursiveASTVisitor(const SourceManager &SM) : SM(SM) {}
bool TraverseObjCImplementationDecl(ObjCImplementationDecl *D) {
// Objective-C @implementation declarations should not trigger early exit
// until the additional decls are traversed as their children are not
// lexically ordered.
bool Result = BaseType::TraverseObjCImplementationDecl(D);
return TraverseAdditionalLexicallyNestedDeclarations() ? Result : false;
}
bool TraverseObjCCategoryImplDecl(ObjCCategoryImplDecl *D) {
bool Result = BaseType::TraverseObjCCategoryImplDecl(D);
return TraverseAdditionalLexicallyNestedDeclarations() ? Result : false;
}
bool TraverseDeclContextHelper(DeclContext *DC) {
if (!DC)
return true;
for (auto I = DC->decls_begin(), E = DC->decls_end(); I != E;) {
Decl *Child = *I;
if (BaseType::canIgnoreChildDeclWhileTraversingDeclContext(Child)) {
++I;
continue;
}
if (!isa<ObjCImplementationDecl>(Child) &&
!isa<ObjCCategoryImplDecl>(Child)) {
if (!BaseType::getDerived().TraverseDecl(Child))
return false;
++I;
continue;
}
// Gather declarations that follow the Objective-C implementation
// declarations but are lexically contained in the implementation.
LexicallyNestedDeclarations.clear();
for (++I; I != E; ++I) {
Decl *Sibling = *I;
if (!SM.isBeforeInTranslationUnit(Sibling->getBeginLoc(),
Child->getEndLoc()))
break;
if (!BaseType::canIgnoreChildDeclWhileTraversingDeclContext(Sibling))
LexicallyNestedDeclarations.push_back(Sibling);
}
if (!BaseType::getDerived().TraverseDecl(Child))
return false;
}
return true;
}
Stmt::child_range getStmtChildren(Stmt *S) { return S->children(); }
SmallVector<Stmt *, 8> getStmtChildren(CXXOperatorCallExpr *CE) {
SmallVector<Stmt *, 8> Children(CE->children());
bool Swap;
// Switch the operator and the first operand for all infix and postfix
// operations.
switch (CE->getOperator()) {
case OO_Arrow:
case OO_Call:
case OO_Subscript:
Swap = true;
break;
case OO_PlusPlus:
case OO_MinusMinus:
// These are postfix unless there is exactly one argument.
Swap = Children.size() != 2;
break;
default:
Swap = CE->isInfixBinaryOp();
break;
}
if (Swap && Children.size() > 1)
std::swap(Children[0], Children[1]);
return Children;
}
private:
bool TraverseAdditionalLexicallyNestedDeclarations() {
// FIXME: Ideally the gathered declarations and the declarations in the
// @implementation should be mixed and sorted to get a true lexical order,
// but right now we only care about getting the correct lexical parent, so
// we can traverse the gathered nested declarations after the declarations
// in the decl context.
assert(!BaseType::getDerived().shouldTraversePostOrder() &&
"post-order traversal is not supported for lexically ordered "
"recursive ast visitor");
for (Decl *D : LexicallyNestedDeclarations) {
if (!BaseType::getDerived().TraverseDecl(D))
return false;
}
return true;
}
const SourceManager &SM;
llvm::SmallVector<Decl *, 8> LexicallyNestedDeclarations;
};
} // end namespace clang
#endif // LLVM_CLANG_AST_LEXICALLY_ORDERED_RECURSIVEASTVISITOR_H
|