| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 
 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
// int64_t __fixunstfdi(long double x);
// This file implements the PowerPC 128-bit double-double -> int64_t conversion
#include "../int_math.h"
#include "DD.h"
uint64_t __fixtfdi(long double input) {
  const DD x = {.ld = input};
  const doublebits hibits = {.d = x.s.hi};
  const uint32_t absHighWord =
      (uint32_t)(hibits.x >> 32) & UINT32_C(0x7fffffff);
  const uint32_t absHighWordMinusOne = absHighWord - UINT32_C(0x3ff00000);
  // If (1.0 - tiny) <= input < 0x1.0p63:
  if (UINT32_C(0x03f00000) > absHighWordMinusOne) {
    // Do an unsigned conversion of the absolute value, then restore the sign.
    const int unbiasedHeadExponent = absHighWordMinusOne >> 20;
    int64_t result = hibits.x & INT64_C(0x000fffffffffffff); // mantissa(hi)
    result |= INT64_C(0x0010000000000000); // matissa(hi) with implicit bit
    result <<= 10; // mantissa(hi) with one zero preceding bit.
    const int64_t hiNegationMask = ((int64_t)(hibits.x)) >> 63;
    // If the tail is non-zero, we need to patch in the tail bits.
    if (0.0 != x.s.lo) {
      const doublebits lobits = {.d = x.s.lo};
      int64_t tailMantissa = lobits.x & INT64_C(0x000fffffffffffff);
      tailMantissa |= INT64_C(0x0010000000000000);
      // At this point we have the mantissa of |tail|
      // We need to negate it if head and tail have different signs.
      const int64_t loNegationMask = ((int64_t)(lobits.x)) >> 63;
      const int64_t negationMask = loNegationMask ^ hiNegationMask;
      tailMantissa = (tailMantissa ^ negationMask) - negationMask;
      // Now we have the mantissa of tail as a signed 2s-complement integer
      const int biasedTailExponent = (int)(lobits.x >> 52) & 0x7ff;
      // Shift the tail mantissa into the right position, accounting for the
      // bias of 10 that we shifted the head mantissa by.
      tailMantissa >>=
          (unbiasedHeadExponent - (biasedTailExponent - (1023 - 10)));
      result += tailMantissa;
    }
    result >>= (62 - unbiasedHeadExponent);
    // Restore the sign of the result and return
    result = (result ^ hiNegationMask) - hiNegationMask;
    return result;
  }
  // Edge cases handled here:
  // |x| < 1, result is zero.
  if (1.0 > crt_fabs(x.s.hi))
    return INT64_C(0);
  // x very close to INT64_MIN, care must be taken to see which side we are on.
  if (x.s.hi == -0x1.0p63) {
    int64_t result = INT64_MIN;
    if (0.0 < x.s.lo) {
      // If the tail is positive, the correct result is something other than
      // INT64_MIN. we'll need to figure out what it is.
      const doublebits lobits = {.d = x.s.lo};
      int64_t tailMantissa = lobits.x & INT64_C(0x000fffffffffffff);
      tailMantissa |= INT64_C(0x0010000000000000);
      // Now we negate the tailMantissa
      tailMantissa = (tailMantissa ^ INT64_C(-1)) + INT64_C(1);
      // And shift it by the appropriate amount
      const int biasedTailExponent = (int)(lobits.x >> 52) & 0x7ff;
      tailMantissa >>= 1075 - biasedTailExponent;
      result -= tailMantissa;
    }
    return result;
  }
  // Signed overflows, infinities, and NaNs
  if (x.s.hi > 0.0)
    return INT64_MAX;
  else
    return INT64_MIN;
}
 |