1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
|
//===-- Benchmark memory specific tools -------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
// This file complements the `benchmark` header with memory specific tools and
// benchmarking facilities.
#ifndef LLVM_LIBC_UTILS_BENCHMARK_MEMORY_BENCHMARK_H
#define LLVM_LIBC_UTILS_BENCHMARK_MEMORY_BENCHMARK_H
#include "LibcBenchmark.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Support/Alignment.h"
#include <cstdint>
#include <random>
namespace llvm {
namespace libc_benchmarks {
//--------------
// Configuration
//--------------
struct StudyConfiguration {
// One of 'memcpy', 'memset', 'memcmp'.
// The underlying implementation is always the llvm libc one.
// e.g. 'memcpy' will test '__llvm_libc::memcpy'
std::string Function;
// The number of trials to run for this benchmark.
// If in SweepMode, each individual sizes are measured 'NumTrials' time.
// i.e 'NumTrials' measurements for 0, 'NumTrials' measurements for 1 ...
uint32_t NumTrials = 1;
// Toggles between Sweep Mode and Distribution Mode (default).
// See 'SweepModeMaxSize' and 'SizeDistributionName' below.
bool IsSweepMode = false;
// Maximum size to use when measuring a ramp of size values (SweepMode).
// The benchmark measures all sizes from 0 to SweepModeMaxSize.
// Note: in sweep mode the same size is sampled several times in a row this
// will allow the processor to learn it and optimize the branching pattern.
// The resulting measurement is likely to be idealized.
uint32_t SweepModeMaxSize = 0; // inclusive
// The name of the distribution to be used to randomize the size parameter.
// This is used when SweepMode is false (default).
std::string SizeDistributionName;
// This parameter allows to control how the buffers are accessed during
// benchmark:
// None : Use a fixed address that is at least cache line aligned,
// 1 : Use random address,
// >1 : Use random address aligned to value.
MaybeAlign AccessAlignment = None;
// When Function == 'memcmp', this is the buffers mismatch position.
// 0 : Buffers always compare equal,
// >0 : Buffers compare different at byte N-1.
uint32_t MemcmpMismatchAt = 0;
};
struct Runtime {
// Details about the Host (cpu name, cpu frequency, cache hierarchy).
HostState Host;
// The framework will populate this value so all data accessed during the
// benchmark will stay in L1 data cache. This includes bookkeeping data.
uint32_t BufferSize = 0;
// This is the number of distinct parameters used in a single batch.
// The framework always tests a batch of randomized parameter to prevent the
// cpu from learning branching patterns.
uint32_t BatchParameterCount = 0;
// The benchmark options that were used to perform the measurement.
// This is decided by the framework.
BenchmarkOptions BenchmarkOptions;
};
//--------
// Results
//--------
// The root object containing all the data (configuration and measurements).
struct Study {
std::string StudyName;
Runtime Runtime;
StudyConfiguration Configuration;
std::vector<Duration> Measurements;
};
//------
// Utils
//------
// Provides an aligned, dynamically allocated buffer.
class AlignedBuffer {
char *const Buffer = nullptr;
size_t Size = 0;
public:
static constexpr size_t Alignment = 1024;
explicit AlignedBuffer(size_t Size)
: Buffer(static_cast<char *>(aligned_alloc(Alignment, Size))),
Size(Size) {}
~AlignedBuffer() { free(Buffer); }
inline char *operator+(size_t Index) { return Buffer + Index; }
inline const char *operator+(size_t Index) const { return Buffer + Index; }
inline char &operator[](size_t Index) { return Buffer[Index]; }
inline const char &operator[](size_t Index) const { return Buffer[Index]; }
inline char *begin() { return Buffer; }
inline char *end() { return Buffer + Size; }
};
// Helper to generate random buffer offsets that satisfy the configuration
// constraints.
class OffsetDistribution {
std::uniform_int_distribution<uint32_t> Distribution;
uint32_t Factor;
public:
explicit OffsetDistribution(size_t BufferSize, size_t MaxSizeValue,
MaybeAlign AccessAlignment);
template <class Generator> uint32_t operator()(Generator &G) {
return Distribution(G) * Factor;
}
};
// Helper to generate random buffer offsets that satisfy the configuration
// constraints. It is specifically designed to benchmark `memcmp` functions
// where we may want the Nth byte to differ.
class MismatchOffsetDistribution {
std::uniform_int_distribution<size_t> MismatchIndexSelector;
llvm::SmallVector<uint32_t, 16> MismatchIndices;
const uint32_t MismatchAt;
public:
explicit MismatchOffsetDistribution(size_t BufferSize, size_t MaxSizeValue,
size_t MismatchAt);
explicit operator bool() const { return !MismatchIndices.empty(); }
const llvm::SmallVectorImpl<uint32_t> &getMismatchIndices() const {
return MismatchIndices;
}
template <class Generator> uint32_t operator()(Generator &G, uint32_t Size) {
const uint32_t MismatchIndex = MismatchIndices[MismatchIndexSelector(G)];
// We need to position the offset so that a mismatch occurs at MismatchAt.
if (Size >= MismatchAt)
return MismatchIndex - MismatchAt;
// Size is too small to trigger the mismatch.
return MismatchIndex - Size - 1;
}
};
} // namespace libc_benchmarks
} // namespace llvm
#endif // LLVM_LIBC_UTILS_BENCHMARK_MEMORY_BENCHMARK_H
|