| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 
 | /*
 * Copyright (c) 2014 Advanced Micro Devices, Inc.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */
#include <clc/clc.h>
#include "math.h"
#include "tables.h"
#include "../clcmacro.h"
_CLC_OVERLOAD _CLC_DEF float atan2(float y, float x)
{
    const float pi = 0x1.921fb6p+1f;
    const float piby2 = 0x1.921fb6p+0f;
    const float piby4 = 0x1.921fb6p-1f;
    const float threepiby4 = 0x1.2d97c8p+1f;
    float ax = fabs(x);
    float ay = fabs(y);
    float v = min(ax, ay);
    float u = max(ax, ay);
    // Scale since u could be large, as in "regular" divide
    float s = u > 0x1.0p+96f ? 0x1.0p-32f : 1.0f;
    float vbyu = s * MATH_DIVIDE(v, s*u);
    float vbyu2 = vbyu * vbyu;
#define USE_2_2_APPROXIMATION
#if defined USE_2_2_APPROXIMATION
    float p = mad(vbyu2, mad(vbyu2, -0x1.7e1f78p-9f, -0x1.7d1b98p-3f), -0x1.5554d0p-2f) * vbyu2 * vbyu;
    float q = mad(vbyu2, mad(vbyu2, 0x1.1a714cp-2f, 0x1.287c56p+0f), 1.0f);
#else
    float p = mad(vbyu2, mad(vbyu2, -0x1.55cd22p-5f, -0x1.26cf76p-2f), -0x1.55554ep-2f) * vbyu2 * vbyu;
    float q = mad(vbyu2, mad(vbyu2, mad(vbyu2, 0x1.9f1304p-5f, 0x1.2656fap-1f), 0x1.76b4b8p+0f), 1.0f);
#endif
    // Octant 0 result
    float a = mad(p, MATH_RECIP(q), vbyu);
    // Fix up 3 other octants
    float at = piby2 - a;
    a = ay > ax ? at : a;
    at = pi - a;
    a = x < 0.0F ? at : a;
    // y == 0 => 0 for x >= 0, pi for x < 0
    at = as_int(x) < 0 ? pi : 0.0f;
    a = y == 0.0f ? at : a;
    // if (!FINITE_ONLY()) {
        // x and y are +- Inf
        at = x > 0.0f ? piby4 : threepiby4;
        a = ax == INFINITY & ay == INFINITY ? at : a;
	// x or y is NaN
	a = isnan(x) | isnan(y) ? as_float(QNANBITPATT_SP32) : a;
    // }
    // Fixup sign and return
    return copysign(a, y);
}
_CLC_BINARY_VECTORIZE(_CLC_OVERLOAD _CLC_DEF, float, atan2, float, float);
#ifdef cl_khr_fp64
#pragma OPENCL EXTENSION cl_khr_fp64 : enable
_CLC_OVERLOAD _CLC_DEF double atan2(double y, double x)
{
    const double pi = 3.1415926535897932e+00;          /* 0x400921fb54442d18 */
    const double piby2 = 1.5707963267948966e+00;       /* 0x3ff921fb54442d18 */
    const double piby4 = 7.8539816339744831e-01;       /* 0x3fe921fb54442d18 */
    const double three_piby4 = 2.3561944901923449e+00; /* 0x4002d97c7f3321d2 */
    const double pi_head = 3.1415926218032836e+00;     /* 0x400921fb50000000 */
    const double pi_tail = 3.1786509547056392e-08;     /* 0x3e6110b4611a6263 */
    const double piby2_head = 1.5707963267948965e+00;  /* 0x3ff921fb54442d18 */
    const double piby2_tail = 6.1232339957367660e-17;  /* 0x3c91a62633145c07 */
    double x2 = x;
    int xneg = as_int2(x).hi < 0;
    int xexp = (as_int2(x).hi >> 20) & 0x7ff;
    double y2 = y;
    int yneg = as_int2(y).hi < 0;
    int yexp = (as_int2(y).hi >> 20) & 0x7ff;
    int cond2 = (xexp < 1021) & (yexp < 1021);
    int diffexp = yexp - xexp;
    // Scale up both x and y if they are both below 1/4
    double x1 = ldexp(x, 1024);
    int xexp1 = (as_int2(x1).hi >> 20) & 0x7ff;
    double y1 = ldexp(y, 1024);
    int yexp1 = (as_int2(y1).hi >> 20) & 0x7ff;
    int diffexp1 = yexp1 - xexp1;
    diffexp = cond2 ? diffexp1 : diffexp;
    x = cond2 ? x1 : x;
    y = cond2 ? y1 : y;
    // General case: take absolute values of arguments
    double u = fabs(x);
    double v = fabs(y);
    // Swap u and v if necessary to obtain 0 < v < u. Compute v/u.
    int swap_vu = u < v;
    double uu = u;
    u = swap_vu ? v : u;
    v = swap_vu ? uu : v;
    double vbyu = v / u;
    double q1, q2;
    // General values of v/u. Use a look-up table and series expansion.
    {
        double val = vbyu > 0.0625 ? vbyu : 0.063;
        int index = convert_int(fma(256.0, val, 0.5));
	double2 tv = USE_TABLE(atan_jby256_tbl, index - 16);
	q1 = tv.s0;
	q2 = tv.s1;
        double c = (double)index * 0x1.0p-8;
        // We're going to scale u and v by 2^(-u_exponent) to bring them close to 1
        // u_exponent could be EMAX so we have to do it in 2 steps
        int m = -((int)(as_ulong(u) >> EXPSHIFTBITS_DP64) - EXPBIAS_DP64);
	//double um = __amdil_ldexp_f64(u, m);
	//double vm = __amdil_ldexp_f64(v, m);
	double um = ldexp(u, m);
	double vm = ldexp(v, m);
        // 26 leading bits of u
        double u1 = as_double(as_ulong(um) & 0xfffffffff8000000UL);
        double u2 = um - u1;
        double r = MATH_DIVIDE(fma(-c, u2, fma(-c, u1, vm)), fma(c, vm, um));
        // Polynomial approximation to atan(r)
        double s = r * r;
        q2 = q2 + fma((s * fma(-s, 0.19999918038989143496, 0.33333333333224095522)), -r, r);
    }
    double q3, q4;
    {
        q3 = 0.0;
        q4 = vbyu;
    }
    double q5, q6;
    {
        double u1 = as_double(as_ulong(u) & 0xffffffff00000000UL);
        double u2 = u - u1;
        double vu1 = as_double(as_ulong(vbyu) & 0xffffffff00000000UL);
        double vu2 = vbyu - vu1;
        q5 = 0.0;
        double s = vbyu * vbyu;
        q6 = vbyu + fma(-vbyu * s,
                        fma(-s,
                            fma(-s,
                                fma(-s,
                                    fma(-s, 0.90029810285449784439E-01,
                                        0.11110736283514525407),
                                    0.14285713561807169030),
                                0.19999999999393223405),
                            0.33333333333333170500),
			 MATH_DIVIDE(fma(-u, vu2, fma(-u2, vu1, fma(-u1, vu1, v))), u));
    }
    q3 = vbyu < 0x1.d12ed0af1a27fp-27 ? q3 : q5;
    q4 = vbyu < 0x1.d12ed0af1a27fp-27 ? q4 : q6;
    q1 = vbyu > 0.0625 ? q1 : q3;
    q2 = vbyu > 0.0625 ? q2 : q4;
    // Tidy-up according to which quadrant the arguments lie in
    double res1, res2, res3, res4;
    q1 = swap_vu ? piby2_head - q1 : q1;
    q2 = swap_vu ? piby2_tail - q2 : q2;
    q1 = xneg ? pi_head - q1 : q1;
    q2 = xneg ? pi_tail - q2 : q2;
    q1 = q1 + q2;
    res4 = yneg ? -q1 : q1;
    res1 = yneg ? -three_piby4 : three_piby4;
    res2 = yneg ? -piby4 : piby4;
    res3 = xneg ? res1 : res2;
    res3 = isinf(x2) & isinf(y2) ? res3 : res4;
    res1 = yneg ? -pi : pi;
    // abs(x)/abs(y) > 2^56 and x < 0
    res3 = (diffexp < -56 && xneg) ? res1 : res3;
    res4 = MATH_DIVIDE(y, x);
    // x positive and dominant over y by a factor of 2^28
    res3 = diffexp < -28 & xneg == 0 ? res4 : res3;
    // abs(y)/abs(x) > 2^56
    res4 = yneg ? -piby2 : piby2;       // atan(y/x) is insignificant compared to piby2
    res3 = diffexp > 56 ? res4 : res3;
    res3 = x2 == 0.0 ? res4 : res3;   // Zero x gives +- pi/2 depending on sign of y
    res4 = xneg ? res1 : y2;
    res3 = y2 == 0.0 ? res4 : res3;   // Zero y gives +-0 for positive x and +-pi for negative x
    res3 = isnan(y2) ? y2 : res3;
    res3 = isnan(x2) ? x2 : res3;
    return res3;
}
_CLC_BINARY_VECTORIZE(_CLC_OVERLOAD _CLC_DEF, double, atan2, double, double);
#endif
 |