| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 
 | /*
 * Copyright (c) 2014 Advanced Micro Devices, Inc.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */
#include <clc/clc.h>
#include "config.h"
#include "math.h"
#include "tables.h"
#include "../clcmacro.h"
/*
 compute pow using log and exp
 x^y = exp(y * log(x))
 we take care not to lose precision in the intermediate steps
 When computing log, calculate it in splits,
 r = f * (p_invead + p_inv_tail)
 r = rh + rt
 calculate log polynomial using r, in end addition, do
 poly = poly + ((rh-r) + rt)
 lth = -r
 ltt = ((xexp * log2_t) - poly) + logT
 lt = lth + ltt
 lh = (xexp * log2_h) + logH
 l = lh + lt
 Calculate final log answer as gh and gt,
 gh = l & higher-half bits
 gt = (((ltt - (lt - lth)) + ((lh - l) + lt)) + (l - gh))
 yh = y & higher-half bits
 yt = y - yh
 Before entering computation of exp,
 vs = ((yt*gt + yt*gh) + yh*gt)
 v = vs + yh*gh
 vt = ((yh*gh - v) + vs)
 In calculation of exp, add vt to r that is used for poly
 At the end of exp, do
 ((((expT * poly) + expT) + expH*poly) + expH)
*/
_CLC_DEF _CLC_OVERLOAD float __clc_pow(float x, float y)
{
    int ix = as_int(x);
    int ax = ix & EXSIGNBIT_SP32;
    int xpos = ix == ax;
    int iy = as_int(y);
    int ay = iy & EXSIGNBIT_SP32;
    int ypos = iy == ay;
    /* Extra precise log calculation
     *  First handle case that x is close to 1
     */
    float r = 1.0f - as_float(ax);
    int near1 = fabs(r) < 0x1.0p-4f;
    float r2 = r*r;
    /* Coefficients are just 1/3, 1/4, 1/5 and 1/6 */
    float poly = mad(r,
                     mad(r,
                         mad(r,
                             mad(r, 0x1.24924ap-3f, 0x1.555556p-3f),
                             0x1.99999ap-3f),
                         0x1.000000p-2f),
                     0x1.555556p-2f);
    poly *= r2*r;
    float lth_near1 = -r2 * 0.5f;
    float ltt_near1 = -poly;
    float lt_near1 = lth_near1 + ltt_near1;
    float lh_near1 = -r;
    float l_near1 = lh_near1 + lt_near1;
    /* Computations for x not near 1 */
    int m = (int)(ax >> EXPSHIFTBITS_SP32) - EXPBIAS_SP32;
    float mf = (float)m;
    int ixs = as_int(as_float(ax | 0x3f800000) - 1.0f);
    float mfs = (float)((ixs >> EXPSHIFTBITS_SP32) - 253);
    int c = m == -127;
    int ixn = c ? ixs : ax;
    float mfn = c ? mfs : mf;
    int indx = (ixn & 0x007f0000) + ((ixn & 0x00008000) << 1);
    /* F - Y */
    float f = as_float(0x3f000000 | indx) - as_float(0x3f000000 | (ixn & MANTBITS_SP32));
    indx = indx >> 16;
    float2 tv = USE_TABLE(log_inv_tbl_ep, indx);
    float rh = f * tv.s0;
    float rt = f * tv.s1;
    r = rh + rt;
    poly = mad(r, mad(r, 0x1.0p-2f, 0x1.555556p-2f), 0x1.0p-1f) * (r*r);
    poly += (rh - r) + rt;
    const float LOG2_HEAD = 0x1.62e000p-1f;  /* 0.693115234 */
    const float LOG2_TAIL = 0x1.0bfbe8p-15f; /* 0.0000319461833 */
    tv = USE_TABLE(loge_tbl, indx);
    float lth = -r;
    float ltt = mad(mfn, LOG2_TAIL, -poly) + tv.s1;
    float lt = lth + ltt;
    float lh = mad(mfn, LOG2_HEAD, tv.s0);
    float l = lh + lt;
    /* Select near 1 or not */
    lth = near1 ? lth_near1 : lth;
    ltt = near1 ? ltt_near1 : ltt;
    lt = near1 ? lt_near1 : lt;
    lh = near1 ? lh_near1 : lh;
    l = near1 ? l_near1 : l;
    float gh = as_float(as_int(l) & 0xfffff000);
    float gt = ((ltt - (lt - lth)) + ((lh - l) + lt)) + (l - gh);
    float yh = as_float(iy & 0xfffff000);
    float yt = y - yh;
    float ylogx_s = mad(gt, yh, mad(gh, yt, yt*gt));
    float ylogx = mad(yh, gh, ylogx_s);
    float ylogx_t = mad(yh, gh, -ylogx) + ylogx_s;
    /* Extra precise exp of ylogx */
    const float R_64_BY_LOG2 = 0x1.715476p+6f; /* 64/log2 : 92.332482616893657 */
    int n = convert_int(ylogx * R_64_BY_LOG2);
    float nf = (float) n;
    int j = n & 0x3f;
    m = n >> 6;
    int m2 = m << EXPSHIFTBITS_SP32;
    const float R_LOG2_BY_64_LD = 0x1.620000p-7f;  /* log2/64 lead: 0.0108032227 */
    const float R_LOG2_BY_64_TL = 0x1.c85fdep-16f; /* log2/64 tail: 0.0000272020388 */
    r = mad(nf, -R_LOG2_BY_64_TL, mad(nf, -R_LOG2_BY_64_LD, ylogx)) + ylogx_t;
    /* Truncated Taylor series for e^r */
    poly = mad(mad(mad(r, 0x1.555556p-5f, 0x1.555556p-3f), r, 0x1.000000p-1f), r*r, r);
    tv = USE_TABLE(exp_tbl_ep, j);
    float expylogx = mad(tv.s0, poly, mad(tv.s1, poly, tv.s1)) + tv.s0;
    float sexpylogx = expylogx * as_float(0x1 << (m + 149));
    float texpylogx = as_float(as_int(expylogx) + m2);
    expylogx = m < -125 ? sexpylogx : texpylogx;
    /* Result is +-Inf if (ylogx + ylogx_t) > 128*log2 */
    expylogx = (ylogx > 0x1.62e430p+6f) | (ylogx == 0x1.62e430p+6f & ylogx_t > -0x1.05c610p-22f) ? as_float(PINFBITPATT_SP32) : expylogx;
    /* Result is 0 if ylogx < -149*log2 */
    expylogx = ylogx <  -0x1.9d1da0p+6f ? 0.0f : expylogx;
    /* Classify y:
     *   inty = 0 means not an integer.
     *   inty = 1 means odd integer.
     *   inty = 2 means even integer.
     */
    int yexp = (int)(ay >> EXPSHIFTBITS_SP32) - EXPBIAS_SP32 + 1;
    int mask = (1 << (24 - yexp)) - 1;
    int yodd = ((iy >> (24 - yexp)) & 0x1) != 0;
    int inty = yodd ? 1 : 2;
    inty = (iy & mask) != 0 ? 0 : inty;
    inty = yexp < 1 ? 0 : inty;
    inty = yexp > 24 ? 2 : inty;
    float signval = as_float((as_uint(expylogx) ^ SIGNBIT_SP32));
    expylogx = ((inty == 1) & !xpos) ? signval : expylogx;
    int ret = as_int(expylogx);
    /* Corner case handling */
    ret = (!xpos & (inty == 0)) ? QNANBITPATT_SP32 : ret;
    ret = ax < 0x3f800000 & iy == NINFBITPATT_SP32 ? PINFBITPATT_SP32 : ret;
    ret = ax > 0x3f800000 & iy == NINFBITPATT_SP32 ? 0 : ret;
    ret = ax < 0x3f800000 & iy == PINFBITPATT_SP32 ? 0 : ret;
    ret = ax > 0x3f800000 & iy == PINFBITPATT_SP32 ? PINFBITPATT_SP32 : ret;
    int xinf = xpos ? PINFBITPATT_SP32 : NINFBITPATT_SP32;
    ret = ((ax == 0) & !ypos & (inty == 1)) ? xinf : ret;
    ret = ((ax == 0) & !ypos & (inty != 1)) ? PINFBITPATT_SP32 : ret;
    int xzero = xpos ? 0 : 0x80000000;
    ret = ((ax == 0) & ypos & (inty == 1)) ? xzero : ret;
    ret = ((ax == 0) & ypos & (inty != 1)) ? 0 : ret;
    ret = ((ax == 0) & (iy == NINFBITPATT_SP32)) ? PINFBITPATT_SP32 : ret;
    ret = ((ix == 0xbf800000) & (ay == PINFBITPATT_SP32)) ? 0x3f800000 : ret;
    ret = ((ix == NINFBITPATT_SP32) & !ypos & (inty == 1)) ? 0x80000000 : ret;
    ret = ((ix == NINFBITPATT_SP32) & !ypos & (inty != 1)) ? 0 : ret;
    ret = ((ix == NINFBITPATT_SP32) & ypos & (inty == 1)) ? NINFBITPATT_SP32 : ret;
    ret = ((ix == NINFBITPATT_SP32) & ypos & (inty != 1)) ? PINFBITPATT_SP32 : ret;
    ret = ((ix == PINFBITPATT_SP32) & !ypos) ? 0 : ret;
    ret = ((ix == PINFBITPATT_SP32) & ypos) ? PINFBITPATT_SP32 : ret;
    ret = (ax > PINFBITPATT_SP32) ? ix : ret;
    ret = (ay > PINFBITPATT_SP32) ? iy : ret;
    ret = ay == 0 ? 0x3f800000 : ret;
    ret = ix == 0x3f800000 ? 0x3f800000 : ret;
    return as_float(ret);
}
_CLC_BINARY_VECTORIZE(_CLC_DEF _CLC_OVERLOAD, float, __clc_pow, float, float)
#ifdef cl_khr_fp64
_CLC_DEF _CLC_OVERLOAD double __clc_pow(double x, double y)
{
    const double real_log2_tail = 5.76999904754328540596e-08;
    const double real_log2_lead = 6.93147122859954833984e-01;
    long ux = as_long(x);
    long ax = ux & (~SIGNBIT_DP64);
    int xpos = ax == ux;
    long uy = as_long(y);
    long ay = uy & (~SIGNBIT_DP64);
    int ypos = ay == uy;
    // Extended precision log
    double v, vt;
    {
        int exp = (int)(ax >> 52) - 1023;
        int mask_exp_1023 = exp == -1023;
        double xexp = (double) exp;
        long mantissa = ax & 0x000FFFFFFFFFFFFFL;
        long temp_ux = as_long(as_double(0x3ff0000000000000L | mantissa) - 1.0);
        exp = ((temp_ux & 0x7FF0000000000000L) >> 52) - 2045;
        double xexp1 = (double) exp;
        long mantissa1 = temp_ux & 0x000FFFFFFFFFFFFFL;
        xexp = mask_exp_1023 ? xexp1 : xexp;
        mantissa = mask_exp_1023 ? mantissa1 : mantissa;
        long rax = (mantissa & 0x000ff00000000000) + ((mantissa & 0x0000080000000000) << 1);
        int index = rax >> 44;
        double F = as_double(rax | 0x3FE0000000000000L);
        double Y = as_double(mantissa | 0x3FE0000000000000L);
        double f = F - Y;
        double2 tv = USE_TABLE(log_f_inv_tbl, index);
        double log_h = tv.s0;
        double log_t = tv.s1;
        double f_inv = (log_h + log_t) * f;
        double r1 = as_double(as_long(f_inv) & 0xfffffffff8000000L);
        double r2 = fma(-F, r1, f) * (log_h + log_t);
        double r = r1 + r2;
        double poly = fma(r,
                          fma(r,
                              fma(r,
                                  fma(r, 1.0/7.0, 1.0/6.0),
                                  1.0/5.0),
                              1.0/4.0),
                          1.0/3.0);
        poly = poly * r * r * r;
        double hr1r1 = 0.5*r1*r1;
        double poly0h = r1 + hr1r1;
        double poly0t = r1 - poly0h + hr1r1;
        poly = fma(r1, r2, fma(0.5*r2, r2, poly)) + r2 + poly0t;
        tv = USE_TABLE(powlog_tbl, index);
        log_h = tv.s0;
        log_t = tv.s1;
        double resT_t = fma(xexp, real_log2_tail, + log_t) - poly;
        double resT = resT_t - poly0h;
        double resH = fma(xexp, real_log2_lead, log_h);
        double resT_h = poly0h;
        double H = resT + resH;
        double H_h = as_double(as_long(H) & 0xfffffffff8000000L);
        double T = (resH - H + resT) + (resT_t - (resT + resT_h)) + (H - H_h);
        H = H_h;
        double y_head = as_double(uy & 0xfffffffff8000000L);
        double y_tail = y - y_head;
        double temp = fma(y_tail, H, fma(y_head, T, y_tail*T));
        v = fma(y_head, H, temp);
        vt = fma(y_head, H, -v) + temp;
    }
    // Now calculate exp of (v,vt)
    double expv;
    {
        const double max_exp_arg = 709.782712893384;
        const double min_exp_arg = -745.1332191019411;
        const double sixtyfour_by_lnof2 = 92.33248261689366;
        const double lnof2_by_64_head = 0.010830424260348081;
        const double lnof2_by_64_tail = -4.359010638708991e-10;
        double temp = v * sixtyfour_by_lnof2;
        int n = (int)temp;
        double dn = (double)n;
        int j = n & 0x0000003f;
        int m = n >> 6;
        double2 tv = USE_TABLE(two_to_jby64_ep_tbl, j);
        double f1 = tv.s0;
        double f2 = tv.s1;
        double f = f1 + f2;
        double r1 = fma(dn, -lnof2_by_64_head, v);
        double r2 = dn * lnof2_by_64_tail;
        double r = (r1 + r2) + vt;
        double q = fma(r,
                       fma(r,
                           fma(r,
                               fma(r, 1.38889490863777199667e-03, 8.33336798434219616221e-03),
                               4.16666666662260795726e-02),
                           1.66666666665260878863e-01),
                       5.00000000000000008883e-01);
        q = fma(r*r, q, r);
        expv = fma(f, q, f2) + f1;
	      expv = ldexp(expv, m);
        expv = v > max_exp_arg ? as_double(0x7FF0000000000000L) : expv;
        expv = v < min_exp_arg ? 0.0 : expv;
    }
    // See whether y is an integer.
    // inty = 0 means not an integer.
    // inty = 1 means odd integer.
    // inty = 2 means even integer.
    int inty;
    {
        int yexp = (int)(ay >> EXPSHIFTBITS_DP64) - EXPBIAS_DP64 + 1;
        inty = yexp < 1 ? 0 : 2;
        inty = yexp > 53 ? 2 : inty;
        long mask = (1L << (53 - yexp)) - 1L;
        int inty1 = (((ay & ~mask) >> (53 - yexp)) & 1L) == 1L ? 1 : 2;
        inty1 = (ay & mask) != 0 ? 0 : inty1;
        inty = !(yexp < 1) & !(yexp > 53) ? inty1 : inty;
    }
    expv *= (inty == 1) & !xpos ? -1.0 : 1.0;
    long ret = as_long(expv);
    // Now all the edge cases
    ret = !xpos & (inty == 0) ? QNANBITPATT_DP64 : ret;
    ret = ax < 0x3ff0000000000000L & uy == NINFBITPATT_DP64 ? PINFBITPATT_DP64 : ret;
    ret = ax > 0x3ff0000000000000L & uy == NINFBITPATT_DP64 ? 0L : ret;
    ret = ax < 0x3ff0000000000000L & uy == PINFBITPATT_DP64 ? 0L : ret;
    ret = ax > 0x3ff0000000000000L & uy == PINFBITPATT_DP64 ? PINFBITPATT_DP64 : ret;
    long xinf = xpos ? PINFBITPATT_DP64 : NINFBITPATT_DP64;
    ret = ((ax == 0L) & !ypos & (inty == 1)) ? xinf : ret;
    ret = ((ax == 0L) & !ypos & (inty != 1)) ? PINFBITPATT_DP64 : ret;
    long xzero = xpos ? 0L : 0x8000000000000000L;
    ret = ((ax == 0L) & ypos & (inty == 1)) ? xzero : ret;
    ret = ((ax == 0L) & ypos & (inty != 1)) ? 0L : ret;
    ret = ((ax == 0L) & (uy == NINFBITPATT_DP64)) ? PINFBITPATT_DP64 : ret;
    ret = ((ux == 0xbff0000000000000L) & (ay == PINFBITPATT_DP64)) ? 0x3ff0000000000000L : ret;
    ret = ((ux == NINFBITPATT_DP64) & !ypos & (inty == 1)) ? 0x8000000000000000L : ret;
    ret = ((ux == NINFBITPATT_DP64) & !ypos & (inty != 1)) ? 0L : ret;
    ret = ((ux == NINFBITPATT_DP64) & ypos & (inty == 1)) ? NINFBITPATT_DP64 : ret;
    ret = ((ux == NINFBITPATT_DP64) & ypos & (inty != 1)) ? PINFBITPATT_DP64 : ret;
    ret = (ux == PINFBITPATT_DP64) & !ypos ? 0L : ret;
    ret = (ux == PINFBITPATT_DP64) & ypos ? PINFBITPATT_DP64 : ret;
    ret = ax > PINFBITPATT_DP64 ? ux : ret;
    ret = ay > PINFBITPATT_DP64 ? uy : ret;
    ret = ay == 0L ? 0x3ff0000000000000L : ret;
    ret = ux == 0x3ff0000000000000L ? 0x3ff0000000000000L : ret;
    return as_double(ret);
}
_CLC_BINARY_VECTORIZE(_CLC_DEF _CLC_OVERLOAD, double, __clc_pow, double, double)
#endif
 |