1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
|
//===----------------------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
// UNSUPPORTED: c++03
// Self assignement post-conditions are tested.
// ADDITIONAL_COMPILE_FLAGS: -Wno-self-move
// <memory>
// unique_ptr
// Test unique_ptr move assignment
// test move assignment. Should only require a MoveConstructible deleter, or if
// deleter is a reference, not even that.
#include <memory>
#include <utility>
#include <cassert>
#include "test_macros.h"
#include "deleter_types.h"
#include "unique_ptr_test_helper.h"
struct GenericDeleter {
void operator()(void*) const;
};
template <bool IsArray>
void test_basic() {
typedef typename std::conditional<IsArray, A[], A>::type VT;
const int expect_alive = IsArray ? 5 : 1;
{
std::unique_ptr<VT> s1(newValue<VT>(expect_alive));
A* p = s1.get();
std::unique_ptr<VT> s2(newValue<VT>(expect_alive));
assert(A::count == (expect_alive * 2));
s2 = std::move(s1);
assert(A::count == expect_alive);
assert(s2.get() == p);
assert(s1.get() == 0);
}
assert(A::count == 0);
{
std::unique_ptr<VT, Deleter<VT> > s1(newValue<VT>(expect_alive),
Deleter<VT>(5));
A* p = s1.get();
std::unique_ptr<VT, Deleter<VT> > s2(newValue<VT>(expect_alive));
assert(A::count == (expect_alive * 2));
s2 = std::move(s1);
assert(s2.get() == p);
assert(s1.get() == 0);
assert(A::count == expect_alive);
assert(s2.get_deleter().state() == 5);
assert(s1.get_deleter().state() == 0);
}
assert(A::count == 0);
{
CDeleter<VT> d1(5);
std::unique_ptr<VT, CDeleter<VT>&> s1(newValue<VT>(expect_alive), d1);
A* p = s1.get();
CDeleter<VT> d2(6);
std::unique_ptr<VT, CDeleter<VT>&> s2(newValue<VT>(expect_alive), d2);
s2 = std::move(s1);
assert(s2.get() == p);
assert(s1.get() == 0);
assert(A::count == expect_alive);
assert(d1.state() == 5);
assert(d2.state() == 5);
}
assert(A::count == 0);
{
std::unique_ptr<VT> s(newValue<VT>(expect_alive));
A* p = s.get();
s = std::move(s);
assert(A::count == expect_alive);
assert(s.get() == p);
}
assert(A::count == 0);
}
template <bool IsArray>
void test_sfinae() {
typedef typename std::conditional<IsArray, int[], int>::type VT;
{
typedef std::unique_ptr<VT> U;
static_assert(!std::is_assignable<U, U&>::value, "");
static_assert(!std::is_assignable<U, const U&>::value, "");
static_assert(!std::is_assignable<U, const U&&>::value, "");
static_assert(std::is_nothrow_assignable<U, U&&>::value, "");
}
{
typedef std::unique_ptr<VT, GenericDeleter> U;
static_assert(!std::is_assignable<U, U&>::value, "");
static_assert(!std::is_assignable<U, const U&>::value, "");
static_assert(!std::is_assignable<U, const U&&>::value, "");
static_assert(std::is_nothrow_assignable<U, U&&>::value, "");
}
{
typedef std::unique_ptr<VT, NCDeleter<VT>&> U;
static_assert(!std::is_assignable<U, U&>::value, "");
static_assert(!std::is_assignable<U, const U&>::value, "");
static_assert(!std::is_assignable<U, const U&&>::value, "");
static_assert(std::is_nothrow_assignable<U, U&&>::value, "");
}
{
typedef std::unique_ptr<VT, const NCDeleter<VT>&> U;
static_assert(!std::is_assignable<U, U&>::value, "");
static_assert(!std::is_assignable<U, const U&>::value, "");
static_assert(!std::is_assignable<U, const U&&>::value, "");
static_assert(std::is_nothrow_assignable<U, U&&>::value, "");
}
}
int main(int, char**) {
{
test_basic</*IsArray*/ false>();
test_sfinae<false>();
}
{
test_basic</*IsArray*/ true>();
test_sfinae<true>();
}
return 0;
}
|