1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
|
// Benchmark for Python.
#include <map>
#include <string>
#include <vector>
#include "pybind11/operators.h"
#include "pybind11/pybind11.h"
#include "pybind11/stl.h"
#include "pybind11/stl_bind.h"
#include "benchmark/benchmark.h"
PYBIND11_MAKE_OPAQUE(benchmark::UserCounters);
namespace {
namespace py = ::pybind11;
std::vector<std::string> Initialize(const std::vector<std::string>& argv) {
// The `argv` pointers here become invalid when this function returns, but
// benchmark holds the pointer to `argv[0]`. We create a static copy of it
// so it persists, and replace the pointer below.
static std::string executable_name(argv[0]);
std::vector<char*> ptrs;
ptrs.reserve(argv.size());
for (auto& arg : argv) {
ptrs.push_back(const_cast<char*>(arg.c_str()));
}
ptrs[0] = const_cast<char*>(executable_name.c_str());
int argc = static_cast<int>(argv.size());
benchmark::Initialize(&argc, ptrs.data());
std::vector<std::string> remaining_argv;
remaining_argv.reserve(argc);
for (int i = 0; i < argc; ++i) {
remaining_argv.emplace_back(ptrs[i]);
}
return remaining_argv;
}
benchmark::internal::Benchmark* RegisterBenchmark(const char* name,
py::function f) {
return benchmark::RegisterBenchmark(
name, [f](benchmark::State& state) { f(&state); });
}
PYBIND11_MODULE(_benchmark, m) {
using benchmark::TimeUnit;
py::enum_<TimeUnit>(m, "TimeUnit")
.value("kNanosecond", TimeUnit::kNanosecond)
.value("kMicrosecond", TimeUnit::kMicrosecond)
.value("kMillisecond", TimeUnit::kMillisecond)
.value("kSecond", TimeUnit::kSecond)
.export_values();
using benchmark::BigO;
py::enum_<BigO>(m, "BigO")
.value("oNone", BigO::oNone)
.value("o1", BigO::o1)
.value("oN", BigO::oN)
.value("oNSquared", BigO::oNSquared)
.value("oNCubed", BigO::oNCubed)
.value("oLogN", BigO::oLogN)
.value("oNLogN", BigO::oLogN)
.value("oAuto", BigO::oAuto)
.value("oLambda", BigO::oLambda)
.export_values();
using benchmark::internal::Benchmark;
py::class_<Benchmark>(m, "Benchmark")
// For methods returning a pointer tor the current object, reference
// return policy is used to ask pybind not to take ownership oof the
// returned object and avoid calling delete on it.
// https://pybind11.readthedocs.io/en/stable/advanced/functions.html#return-value-policies
//
// For methods taking a const std::vector<...>&, a copy is created
// because a it is bound to a Python list.
// https://pybind11.readthedocs.io/en/stable/advanced/cast/stl.html
.def("unit", &Benchmark::Unit, py::return_value_policy::reference)
.def("arg", &Benchmark::Arg, py::return_value_policy::reference)
.def("args", &Benchmark::Args, py::return_value_policy::reference)
.def("range", &Benchmark::Range, py::return_value_policy::reference,
py::arg("start"), py::arg("limit"))
.def("dense_range", &Benchmark::DenseRange,
py::return_value_policy::reference, py::arg("start"),
py::arg("limit"), py::arg("step") = 1)
.def("ranges", &Benchmark::Ranges, py::return_value_policy::reference)
.def("args_product", &Benchmark::ArgsProduct,
py::return_value_policy::reference)
.def("arg_name", &Benchmark::ArgName, py::return_value_policy::reference)
.def("arg_names", &Benchmark::ArgNames,
py::return_value_policy::reference)
.def("range_pair", &Benchmark::RangePair,
py::return_value_policy::reference, py::arg("lo1"), py::arg("hi1"),
py::arg("lo2"), py::arg("hi2"))
.def("range_multiplier", &Benchmark::RangeMultiplier,
py::return_value_policy::reference)
.def("min_time", &Benchmark::MinTime, py::return_value_policy::reference)
.def("iterations", &Benchmark::Iterations,
py::return_value_policy::reference)
.def("repetitions", &Benchmark::Repetitions,
py::return_value_policy::reference)
.def("report_aggregates_only", &Benchmark::ReportAggregatesOnly,
py::return_value_policy::reference, py::arg("value") = true)
.def("display_aggregates_only", &Benchmark::DisplayAggregatesOnly,
py::return_value_policy::reference, py::arg("value") = true)
.def("measure_process_cpu_time", &Benchmark::MeasureProcessCPUTime,
py::return_value_policy::reference)
.def("use_real_time", &Benchmark::UseRealTime,
py::return_value_policy::reference)
.def("use_manual_time", &Benchmark::UseManualTime,
py::return_value_policy::reference)
.def(
"complexity",
(Benchmark * (Benchmark::*)(benchmark::BigO)) & Benchmark::Complexity,
py::return_value_policy::reference,
py::arg("complexity") = benchmark::oAuto);
using benchmark::Counter;
py::class_<Counter> py_counter(m, "Counter");
py::enum_<Counter::Flags>(py_counter, "Flags")
.value("kDefaults", Counter::Flags::kDefaults)
.value("kIsRate", Counter::Flags::kIsRate)
.value("kAvgThreads", Counter::Flags::kAvgThreads)
.value("kAvgThreadsRate", Counter::Flags::kAvgThreadsRate)
.value("kIsIterationInvariant", Counter::Flags::kIsIterationInvariant)
.value("kIsIterationInvariantRate",
Counter::Flags::kIsIterationInvariantRate)
.value("kAvgIterations", Counter::Flags::kAvgIterations)
.value("kAvgIterationsRate", Counter::Flags::kAvgIterationsRate)
.value("kInvert", Counter::Flags::kInvert)
.export_values()
.def(py::self | py::self);
py::enum_<Counter::OneK>(py_counter, "OneK")
.value("kIs1000", Counter::OneK::kIs1000)
.value("kIs1024", Counter::OneK::kIs1024)
.export_values();
py_counter
.def(py::init<double, Counter::Flags, Counter::OneK>(),
py::arg("value") = 0., py::arg("flags") = Counter::kDefaults,
py::arg("k") = Counter::kIs1000)
.def(py::init([](double value) { return Counter(value); }))
.def_readwrite("value", &Counter::value)
.def_readwrite("flags", &Counter::flags)
.def_readwrite("oneK", &Counter::oneK);
py::implicitly_convertible<py::float_, Counter>();
py::implicitly_convertible<py::int_, Counter>();
py::bind_map<benchmark::UserCounters>(m, "UserCounters");
using benchmark::State;
py::class_<State>(m, "State")
.def("__bool__", &State::KeepRunning)
.def_property_readonly("keep_running", &State::KeepRunning)
.def("pause_timing", &State::PauseTiming)
.def("resume_timing", &State::ResumeTiming)
.def("skip_with_error", &State::SkipWithError)
.def_property_readonly("error_occurred", &State::error_occurred)
.def("set_iteration_time", &State::SetIterationTime)
.def_property("bytes_processed", &State::bytes_processed,
&State::SetBytesProcessed)
.def_property("complexity_n", &State::complexity_length_n,
&State::SetComplexityN)
.def_property("items_processed", &State::items_processed,
&State::SetItemsProcessed)
.def("set_label", (void (State::*)(const char*)) & State::SetLabel)
.def("range", &State::range, py::arg("pos") = 0)
.def_property_readonly("iterations", &State::iterations)
.def_readwrite("counters", &State::counters)
.def_readonly("thread_index", &State::thread_index)
.def_readonly("threads", &State::threads);
m.def("Initialize", Initialize);
m.def("RegisterBenchmark", RegisterBenchmark,
py::return_value_policy::reference);
m.def("RunSpecifiedBenchmarks",
[]() { benchmark::RunSpecifiedBenchmarks(); });
};
} // namespace
|