1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
|
//===-- DNBBreakpoint.cpp ---------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Created by Greg Clayton on 6/29/07.
//
//===----------------------------------------------------------------------===//
#include "DNBBreakpoint.h"
#include "DNBLog.h"
#include "MachProcess.h"
#include <algorithm>
#include <cassert>
#include <cinttypes>
#pragma mark-- DNBBreakpoint
DNBBreakpoint::DNBBreakpoint(nub_addr_t addr, nub_size_t byte_size,
bool hardware)
: m_retain_count(1), m_byte_size(static_cast<uint32_t>(byte_size)),
m_opcode(), m_addr(addr), m_enabled(0), m_hw_preferred(hardware),
m_is_watchpoint(0), m_watch_read(0), m_watch_write(0),
m_hw_index(INVALID_NUB_HW_INDEX) {}
DNBBreakpoint::~DNBBreakpoint() {}
void DNBBreakpoint::Dump() const {
if (IsBreakpoint()) {
DNBLog("DNBBreakpoint addr = 0x%llx state = %s type = %s breakpoint "
"hw_index = %i",
(uint64_t)m_addr, m_enabled ? "enabled " : "disabled",
IsHardware() ? "hardware" : "software", GetHardwareIndex());
} else {
DNBLog("DNBBreakpoint addr = 0x%llx size = %llu state = %s type = %s "
"watchpoint (%s%s) hw_index = %i",
(uint64_t)m_addr, (uint64_t)m_byte_size,
m_enabled ? "enabled " : "disabled",
IsHardware() ? "hardware" : "software", m_watch_read ? "r" : "",
m_watch_write ? "w" : "", GetHardwareIndex());
}
}
#pragma mark-- DNBBreakpointList
DNBBreakpointList::DNBBreakpointList() {}
DNBBreakpointList::~DNBBreakpointList() {}
DNBBreakpoint *DNBBreakpointList::Add(nub_addr_t addr, nub_size_t length,
bool hardware) {
m_breakpoints.insert(
std::make_pair(addr, DNBBreakpoint(addr, length, hardware)));
iterator pos = m_breakpoints.find(addr);
return &pos->second;
}
bool DNBBreakpointList::Remove(nub_addr_t addr) {
iterator pos = m_breakpoints.find(addr);
if (pos != m_breakpoints.end()) {
m_breakpoints.erase(pos);
return true;
}
return false;
}
DNBBreakpoint *DNBBreakpointList::FindByAddress(nub_addr_t addr) {
iterator pos = m_breakpoints.find(addr);
if (pos != m_breakpoints.end())
return &pos->second;
return NULL;
}
const DNBBreakpoint *DNBBreakpointList::FindByAddress(nub_addr_t addr) const {
const_iterator pos = m_breakpoints.find(addr);
if (pos != m_breakpoints.end())
return &pos->second;
return NULL;
}
// Finds the next breakpoint at an address greater than or equal to "addr"
size_t DNBBreakpointList::FindBreakpointsThatOverlapRange(
nub_addr_t addr, nub_addr_t size, std::vector<DNBBreakpoint *> &bps) {
bps.clear();
iterator end = m_breakpoints.end();
// Find the first breakpoint with an address >= to "addr"
iterator pos = m_breakpoints.lower_bound(addr);
if (pos != end) {
if (pos != m_breakpoints.begin()) {
// Watch out for a breakpoint at an address less than "addr" that might
// still overlap
iterator prev_pos = pos;
--prev_pos;
if (prev_pos->second.IntersectsRange(addr, size, NULL, NULL, NULL))
bps.push_back(&pos->second);
}
while (pos != end) {
// When we hit a breakpoint whose start address is greater than "addr +
// size" we are done.
// Do the math in a way that doesn't risk unsigned overflow with bad
// input.
if ((pos->second.Address() - addr) >= size)
break;
// Check if this breakpoint overlaps, and if it does, add it to the list
if (pos->second.IntersectsRange(addr, size, NULL, NULL, NULL)) {
bps.push_back(&pos->second);
++pos;
}
}
}
return bps.size();
}
void DNBBreakpointList::Dump() const {
const_iterator pos;
const_iterator end = m_breakpoints.end();
for (pos = m_breakpoints.begin(); pos != end; ++pos)
pos->second.Dump();
}
void DNBBreakpointList::DisableAll() {
iterator pos, end = m_breakpoints.end();
for (pos = m_breakpoints.begin(); pos != end; ++pos)
pos->second.SetEnabled(false);
}
void DNBBreakpointList::RemoveTrapsFromBuffer(nub_addr_t addr, nub_size_t size,
void *p) const {
uint8_t *buf = (uint8_t *)p;
const_iterator end = m_breakpoints.end();
const_iterator pos = m_breakpoints.lower_bound(addr);
while (pos != end && (pos->first < (addr + size))) {
nub_addr_t intersect_addr;
nub_size_t intersect_size;
nub_size_t opcode_offset;
const DNBBreakpoint &bp = pos->second;
if (bp.IntersectsRange(addr, size, &intersect_addr, &intersect_size,
&opcode_offset)) {
assert(addr <= intersect_addr && intersect_addr < addr + size);
assert(addr < intersect_addr + intersect_size &&
intersect_addr + intersect_size <= addr + size);
assert(opcode_offset + intersect_size <= bp.ByteSize());
nub_size_t buf_offset = intersect_addr - addr;
::memcpy(buf + buf_offset, bp.SavedOpcodeBytes() + opcode_offset,
intersect_size);
}
++pos;
}
}
void DNBBreakpointList::DisableAllBreakpoints(MachProcess *process) {
iterator pos, end = m_breakpoints.end();
for (pos = m_breakpoints.begin(); pos != end; ++pos)
process->DisableBreakpoint(pos->second.Address(), false);
}
void DNBBreakpointList::DisableAllWatchpoints(MachProcess *process) {
iterator pos, end = m_breakpoints.end();
for (pos = m_breakpoints.begin(); pos != end; ++pos)
process->DisableWatchpoint(pos->second.Address(), false);
}
void DNBBreakpointList::RemoveDisabled() {
iterator pos = m_breakpoints.begin();
while (pos != m_breakpoints.end()) {
if (!pos->second.IsEnabled())
pos = m_breakpoints.erase(pos);
else
++pos;
}
}
|