1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
|
//===-- PThreadEvent.cpp ----------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Created by Greg Clayton on 6/16/07.
//
//===----------------------------------------------------------------------===//
#include "PThreadEvent.h"
#include "DNBLog.h"
#include <cerrno>
PThreadEvent::PThreadEvent(uint32_t bits, uint32_t validBits)
: m_mutex(), m_set_condition(), m_reset_condition(), m_bits(bits),
m_validBits(validBits), m_reset_ack_mask(0) {
// DNBLogThreadedIf(LOG_EVENTS, "%p PThreadEvent::%s (0x%8.8x, 0x%8.8x)",
// this, __FUNCTION__, bits, validBits);
}
PThreadEvent::~PThreadEvent() {
// DNBLogThreadedIf(LOG_EVENTS, "%p %s", this, LLVM_PRETTY_FUNCTION);
}
uint32_t PThreadEvent::NewEventBit() {
// DNBLogThreadedIf(LOG_EVENTS, "%p %s", this, LLVM_PRETTY_FUNCTION);
PTHREAD_MUTEX_LOCKER(locker, m_mutex);
uint32_t mask = 1;
while (mask & m_validBits)
mask <<= 1;
m_validBits |= mask;
return mask;
}
void PThreadEvent::FreeEventBits(const uint32_t mask) {
// DNBLogThreadedIf(LOG_EVENTS, "%p PThreadEvent::%s (0x%8.8x)", this,
// __FUNCTION__, mask);
if (mask) {
PTHREAD_MUTEX_LOCKER(locker, m_mutex);
m_bits &= ~mask;
m_validBits &= ~mask;
}
}
uint32_t PThreadEvent::GetEventBits() const {
// DNBLogThreadedIf(LOG_EVENTS, "%p %s", this, LLVM_PRETTY_FUNCTION);
PTHREAD_MUTEX_LOCKER(locker, m_mutex);
uint32_t bits = m_bits;
return bits;
}
// Replace the event bits with a new bitmask value
void PThreadEvent::ReplaceEventBits(const uint32_t bits) {
// DNBLogThreadedIf(LOG_EVENTS, "%p PThreadEvent::%s (0x%8.8x)", this,
// __FUNCTION__, bits);
PTHREAD_MUTEX_LOCKER(locker, m_mutex);
// Make sure we have some bits and that they aren't already set...
if (m_bits != bits) {
// Figure out which bits are changing
uint32_t changed_bits = m_bits ^ bits;
// Set the new bit values
m_bits = bits;
// If any new bits are set, then broadcast
if (changed_bits & m_bits)
m_set_condition.Broadcast();
}
}
// Set one or more event bits and broadcast if any new event bits get set
// that weren't already set.
void PThreadEvent::SetEvents(const uint32_t mask) {
// DNBLogThreadedIf(LOG_EVENTS, "%p PThreadEvent::%s (0x%8.8x)", this,
// __FUNCTION__, mask);
// Make sure we have some bits to set
if (mask) {
PTHREAD_MUTEX_LOCKER(locker, m_mutex);
// Save the old event bit state so we can tell if things change
uint32_t old = m_bits;
// Set the all event bits that are set in 'mask'
m_bits |= mask;
// Broadcast only if any extra bits got set.
if (old != m_bits)
m_set_condition.Broadcast();
}
}
// Reset one or more event bits
void PThreadEvent::ResetEvents(const uint32_t mask) {
// DNBLogThreadedIf(LOG_EVENTS, "%p PThreadEvent::%s (0x%8.8x)", this,
// __FUNCTION__, mask);
if (mask) {
PTHREAD_MUTEX_LOCKER(locker, m_mutex);
// Save the old event bit state so we can tell if things change
uint32_t old = m_bits;
// Clear the all event bits that are set in 'mask'
m_bits &= ~mask;
// Broadcast only if any extra bits got reset.
if (old != m_bits)
m_reset_condition.Broadcast();
}
}
// Wait until 'timeout_abstime' for any events that are set in
// 'mask'. If 'timeout_abstime' is NULL, then wait forever.
uint32_t
PThreadEvent::WaitForSetEvents(const uint32_t mask,
const struct timespec *timeout_abstime) const {
// DNBLogThreadedIf(LOG_EVENTS, "%p PThreadEvent::%s (0x%8.8x, %p)", this,
// __FUNCTION__, mask, timeout_abstime);
int err = 0;
// pthread_cond_timedwait() or pthread_cond_wait() will atomically
// unlock the mutex and wait for the condition to be set. When either
// function returns, they will re-lock the mutex. We use an auto lock/unlock
// class (PThreadMutex::Locker) to allow us to return at any point in this
// function and not have to worry about unlocking the mutex.
PTHREAD_MUTEX_LOCKER(locker, m_mutex);
do {
// Check our predicate (event bits) in case any are already set
if (mask & m_bits) {
uint32_t bits_set = mask & m_bits;
// Our PThreadMutex::Locker will automatically unlock our mutex
return bits_set;
}
if (timeout_abstime) {
// Wait for condition to get broadcast, or for a timeout. If we get
// a timeout we will drop out of the do loop and return false which
// is what we want.
err = ::pthread_cond_timedwait(m_set_condition.Condition(),
m_mutex.Mutex(), timeout_abstime);
// Retest our predicate in case of a race condition right at the end
// of the timeout.
if (err == ETIMEDOUT) {
uint32_t bits_set = mask & m_bits;
return bits_set;
}
} else {
// Wait for condition to get broadcast. The only error this function
// should return is if
err = ::pthread_cond_wait(m_set_condition.Condition(), m_mutex.Mutex());
}
} while (err == 0);
return 0;
}
// Wait until 'timeout_abstime' for any events in 'mask' to reset.
// If 'timeout_abstime' is NULL, then wait forever.
uint32_t PThreadEvent::WaitForEventsToReset(
const uint32_t mask, const struct timespec *timeout_abstime) const {
// DNBLogThreadedIf(LOG_EVENTS, "%p PThreadEvent::%s (0x%8.8x, %p)", this,
// __FUNCTION__, mask, timeout_abstime);
int err = 0;
// pthread_cond_timedwait() or pthread_cond_wait() will atomically
// unlock the mutex and wait for the condition to be set. When either
// function returns, they will re-lock the mutex. We use an auto lock/unlock
// class (PThreadMutex::Locker) to allow us to return at any point in this
// function and not have to worry about unlocking the mutex.
PTHREAD_MUTEX_LOCKER(locker, m_mutex);
do {
// Check our predicate (event bits) each time through this do loop
if ((mask & m_bits) == 0) {
// All the bits requested have been reset, return zero indicating
// which bits from the mask were still set (none of them)
return 0;
}
if (timeout_abstime) {
// Wait for condition to get broadcast, or for a timeout. If we get
// a timeout we will drop out of the do loop and return false which
// is what we want.
err = ::pthread_cond_timedwait(m_reset_condition.Condition(),
m_mutex.Mutex(), timeout_abstime);
} else {
// Wait for condition to get broadcast. The only error this function
// should return is if
err = ::pthread_cond_wait(m_reset_condition.Condition(), m_mutex.Mutex());
}
} while (err == 0);
// Return a mask indicating which bits (if any) were still set
return mask & m_bits;
}
uint32_t
PThreadEvent::WaitForResetAck(const uint32_t mask,
const struct timespec *timeout_abstime) const {
if (mask & m_reset_ack_mask) {
// DNBLogThreadedIf(LOG_EVENTS, "%p PThreadEvent::%s (0x%8.8x, %p)", this,
// __FUNCTION__, mask, timeout_abstime);
return WaitForEventsToReset(mask & m_reset_ack_mask, timeout_abstime);
}
return 0;
}
|