| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349
 1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357
 1358
 1359
 1360
 1361
 1362
 1363
 1364
 1365
 1366
 1367
 1368
 1369
 1370
 1371
 1372
 1373
 1374
 1375
 1376
 1377
 1378
 1379
 1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403
 1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422
 1423
 1424
 1425
 1426
 1427
 1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457
 1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468
 1469
 1470
 1471
 1472
 1473
 1474
 1475
 1476
 1477
 1478
 1479
 1480
 1481
 1482
 1483
 1484
 1485
 1486
 1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511
 1512
 1513
 1514
 1515
 1516
 1517
 1518
 1519
 1520
 1521
 1522
 1523
 1524
 1525
 1526
 1527
 1528
 1529
 1530
 1531
 1532
 1533
 1534
 1535
 1536
 1537
 1538
 1539
 1540
 1541
 1542
 1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565
 1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619
 1620
 1621
 1622
 1623
 1624
 1625
 1626
 1627
 1628
 1629
 1630
 1631
 1632
 1633
 1634
 1635
 1636
 1637
 1638
 1639
 1640
 1641
 1642
 1643
 1644
 1645
 1646
 1647
 1648
 1649
 1650
 1651
 1652
 1653
 1654
 1655
 1656
 1657
 1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673
 1674
 1675
 1676
 1677
 1678
 1679
 1680
 1681
 1682
 1683
 1684
 1685
 1686
 1687
 1688
 1689
 1690
 1691
 1692
 1693
 1694
 1695
 1696
 1697
 1698
 1699
 1700
 1701
 1702
 1703
 1704
 1705
 1706
 1707
 1708
 1709
 1710
 1711
 1712
 1713
 1714
 1715
 1716
 1717
 1718
 1719
 1720
 1721
 1722
 1723
 1724
 1725
 1726
 1727
 1728
 1729
 1730
 1731
 1732
 1733
 1734
 1735
 1736
 1737
 1738
 1739
 1740
 1741
 1742
 1743
 1744
 1745
 1746
 1747
 1748
 1749
 1750
 1751
 1752
 1753
 1754
 1755
 1756
 1757
 1758
 1759
 1760
 1761
 1762
 1763
 1764
 1765
 1766
 1767
 1768
 1769
 1770
 1771
 1772
 1773
 1774
 1775
 1776
 1777
 1778
 1779
 1780
 1781
 1782
 1783
 1784
 1785
 1786
 1787
 1788
 1789
 1790
 1791
 1792
 1793
 1794
 1795
 1796
 1797
 1798
 1799
 1800
 1801
 1802
 1803
 1804
 1805
 1806
 1807
 1808
 1809
 1810
 1811
 1812
 1813
 1814
 1815
 1816
 1817
 1818
 1819
 1820
 1821
 1822
 1823
 1824
 1825
 1826
 1827
 1828
 1829
 1830
 1831
 1832
 1833
 1834
 1835
 1836
 1837
 1838
 1839
 1840
 1841
 1842
 1843
 1844
 1845
 1846
 1847
 1848
 1849
 1850
 1851
 1852
 1853
 1854
 1855
 1856
 1857
 1858
 1859
 1860
 1861
 1862
 1863
 1864
 1865
 1866
 1867
 1868
 1869
 1870
 1871
 1872
 1873
 1874
 1875
 1876
 1877
 1878
 1879
 1880
 1881
 1882
 1883
 1884
 1885
 1886
 1887
 1888
 1889
 1890
 1891
 1892
 1893
 1894
 1895
 1896
 1897
 1898
 1899
 1900
 1901
 1902
 1903
 1904
 1905
 1906
 1907
 1908
 1909
 1910
 1911
 1912
 1913
 1914
 1915
 1916
 1917
 1918
 1919
 1920
 1921
 1922
 1923
 1924
 1925
 1926
 1927
 1928
 1929
 1930
 1931
 1932
 1933
 1934
 1935
 1936
 1937
 1938
 1939
 1940
 1941
 1942
 1943
 1944
 1945
 1946
 1947
 1948
 1949
 1950
 1951
 1952
 1953
 1954
 1955
 1956
 1957
 1958
 1959
 1960
 1961
 1962
 1963
 1964
 1965
 1966
 1967
 1968
 1969
 1970
 1971
 1972
 1973
 1974
 1975
 1976
 1977
 1978
 1979
 1980
 1981
 1982
 1983
 1984
 1985
 1986
 1987
 1988
 1989
 1990
 1991
 1992
 1993
 1994
 1995
 1996
 1997
 1998
 1999
 2000
 2001
 2002
 2003
 2004
 2005
 2006
 2007
 2008
 2009
 2010
 2011
 2012
 2013
 2014
 2015
 2016
 2017
 2018
 2019
 2020
 2021
 2022
 2023
 2024
 2025
 2026
 2027
 2028
 2029
 2030
 2031
 2032
 2033
 2034
 2035
 2036
 2037
 2038
 2039
 2040
 2041
 2042
 2043
 2044
 2045
 2046
 2047
 2048
 2049
 2050
 2051
 2052
 2053
 2054
 2055
 2056
 2057
 2058
 2059
 2060
 2061
 2062
 2063
 2064
 2065
 2066
 2067
 2068
 2069
 2070
 2071
 2072
 2073
 2074
 2075
 2076
 2077
 2078
 2079
 2080
 2081
 2082
 2083
 2084
 2085
 2086
 2087
 2088
 2089
 2090
 2091
 2092
 2093
 2094
 2095
 2096
 2097
 2098
 2099
 2100
 2101
 2102
 2103
 2104
 2105
 2106
 2107
 2108
 2109
 2110
 2111
 2112
 2113
 2114
 2115
 2116
 2117
 2118
 2119
 2120
 2121
 2122
 2123
 2124
 2125
 2126
 2127
 2128
 2129
 2130
 2131
 2132
 2133
 2134
 2135
 2136
 2137
 2138
 2139
 2140
 2141
 2142
 2143
 2144
 2145
 2146
 2147
 2148
 2149
 2150
 2151
 2152
 2153
 2154
 2155
 2156
 2157
 2158
 2159
 2160
 2161
 2162
 2163
 2164
 2165
 2166
 2167
 2168
 2169
 2170
 2171
 2172
 2173
 2174
 2175
 2176
 2177
 2178
 2179
 2180
 2181
 2182
 2183
 2184
 2185
 2186
 2187
 2188
 2189
 2190
 2191
 2192
 2193
 2194
 2195
 2196
 2197
 2198
 2199
 2200
 2201
 2202
 2203
 2204
 2205
 2206
 2207
 2208
 2209
 2210
 2211
 2212
 2213
 2214
 2215
 2216
 2217
 2218
 2219
 2220
 2221
 2222
 2223
 2224
 2225
 2226
 2227
 2228
 2229
 2230
 2231
 2232
 2233
 2234
 2235
 2236
 2237
 2238
 2239
 2240
 2241
 2242
 2243
 2244
 2245
 2246
 2247
 2248
 2249
 2250
 2251
 2252
 2253
 2254
 2255
 2256
 2257
 2258
 2259
 2260
 2261
 2262
 2263
 2264
 2265
 2266
 2267
 2268
 2269
 2270
 2271
 2272
 2273
 2274
 2275
 2276
 2277
 2278
 2279
 2280
 2281
 2282
 2283
 2284
 2285
 2286
 2287
 2288
 2289
 2290
 2291
 2292
 2293
 2294
 2295
 2296
 2297
 2298
 2299
 2300
 2301
 2302
 2303
 2304
 2305
 2306
 2307
 2308
 2309
 2310
 2311
 2312
 2313
 2314
 2315
 2316
 2317
 2318
 2319
 2320
 2321
 2322
 2323
 2324
 2325
 2326
 2327
 2328
 2329
 2330
 2331
 2332
 2333
 2334
 2335
 2336
 2337
 2338
 2339
 2340
 2341
 2342
 2343
 2344
 2345
 2346
 2347
 2348
 2349
 2350
 2351
 2352
 2353
 2354
 2355
 2356
 2357
 2358
 2359
 2360
 2361
 2362
 2363
 2364
 2365
 2366
 2367
 2368
 2369
 2370
 2371
 2372
 2373
 2374
 2375
 2376
 2377
 2378
 2379
 2380
 2381
 2382
 2383
 2384
 2385
 2386
 2387
 2388
 2389
 2390
 2391
 2392
 2393
 2394
 2395
 2396
 2397
 2398
 2399
 2400
 2401
 2402
 2403
 2404
 2405
 2406
 2407
 2408
 2409
 2410
 2411
 2412
 2413
 2414
 2415
 2416
 2417
 2418
 2419
 2420
 2421
 2422
 2423
 2424
 2425
 2426
 2427
 2428
 2429
 2430
 2431
 2432
 2433
 2434
 2435
 2436
 2437
 2438
 2439
 2440
 2441
 2442
 2443
 2444
 2445
 2446
 2447
 2448
 2449
 2450
 2451
 2452
 2453
 2454
 2455
 2456
 2457
 2458
 2459
 2460
 2461
 2462
 2463
 2464
 2465
 2466
 2467
 2468
 2469
 2470
 2471
 2472
 2473
 2474
 2475
 2476
 2477
 2478
 2479
 2480
 2481
 2482
 2483
 2484
 2485
 2486
 2487
 2488
 2489
 2490
 2491
 2492
 2493
 2494
 2495
 2496
 2497
 2498
 2499
 2500
 2501
 2502
 2503
 2504
 2505
 2506
 2507
 2508
 2509
 2510
 2511
 2512
 2513
 2514
 2515
 2516
 2517
 2518
 2519
 2520
 2521
 2522
 2523
 2524
 2525
 2526
 2527
 2528
 2529
 2530
 2531
 2532
 2533
 2534
 2535
 2536
 2537
 2538
 2539
 2540
 2541
 2542
 2543
 2544
 2545
 2546
 2547
 2548
 2549
 2550
 2551
 2552
 2553
 2554
 2555
 2556
 2557
 2558
 2559
 2560
 2561
 2562
 2563
 2564
 2565
 2566
 2567
 2568
 2569
 2570
 2571
 2572
 2573
 2574
 2575
 2576
 2577
 2578
 2579
 2580
 2581
 2582
 2583
 2584
 2585
 2586
 2587
 2588
 2589
 2590
 2591
 2592
 2593
 2594
 2595
 2596
 2597
 2598
 2599
 2600
 2601
 2602
 2603
 2604
 2605
 2606
 2607
 2608
 2609
 2610
 2611
 2612
 2613
 2614
 2615
 2616
 2617
 2618
 2619
 2620
 2621
 2622
 2623
 2624
 2625
 2626
 2627
 2628
 2629
 2630
 2631
 2632
 2633
 2634
 2635
 2636
 2637
 2638
 2639
 2640
 2641
 2642
 2643
 2644
 2645
 2646
 2647
 2648
 2649
 2650
 2651
 2652
 2653
 2654
 2655
 2656
 2657
 2658
 2659
 2660
 2661
 2662
 2663
 2664
 2665
 2666
 2667
 2668
 2669
 2670
 2671
 2672
 2673
 2674
 2675
 2676
 2677
 2678
 2679
 2680
 2681
 2682
 2683
 2684
 2685
 2686
 2687
 2688
 2689
 2690
 2691
 2692
 2693
 2694
 2695
 2696
 2697
 2698
 2699
 2700
 2701
 2702
 2703
 2704
 2705
 2706
 2707
 2708
 2709
 2710
 2711
 2712
 2713
 2714
 2715
 2716
 2717
 2718
 2719
 2720
 2721
 2722
 2723
 2724
 2725
 2726
 2727
 2728
 2729
 2730
 2731
 2732
 2733
 2734
 2735
 2736
 2737
 2738
 2739
 2740
 2741
 2742
 2743
 2744
 2745
 2746
 2747
 2748
 2749
 2750
 2751
 2752
 2753
 2754
 2755
 2756
 2757
 2758
 2759
 2760
 2761
 2762
 2763
 2764
 2765
 2766
 2767
 2768
 2769
 2770
 2771
 2772
 2773
 2774
 2775
 2776
 2777
 2778
 2779
 2780
 2781
 2782
 2783
 2784
 2785
 2786
 2787
 2788
 2789
 2790
 2791
 2792
 2793
 2794
 2795
 2796
 2797
 2798
 2799
 2800
 2801
 2802
 2803
 2804
 2805
 2806
 2807
 2808
 2809
 2810
 2811
 2812
 2813
 2814
 2815
 2816
 2817
 2818
 2819
 2820
 2821
 2822
 2823
 2824
 2825
 2826
 2827
 2828
 2829
 2830
 2831
 2832
 2833
 2834
 2835
 2836
 2837
 2838
 2839
 2840
 2841
 2842
 2843
 2844
 2845
 2846
 2847
 2848
 2849
 2850
 2851
 2852
 2853
 2854
 2855
 2856
 2857
 2858
 2859
 2860
 2861
 2862
 2863
 2864
 2865
 2866
 2867
 2868
 2869
 2870
 2871
 2872
 2873
 2874
 2875
 2876
 2877
 2878
 2879
 2880
 2881
 2882
 2883
 2884
 2885
 2886
 2887
 2888
 2889
 2890
 2891
 2892
 2893
 2894
 2895
 2896
 2897
 2898
 2899
 2900
 2901
 2902
 2903
 2904
 2905
 2906
 2907
 2908
 2909
 2910
 2911
 2912
 2913
 2914
 2915
 2916
 2917
 2918
 2919
 2920
 2921
 2922
 2923
 2924
 2925
 2926
 2927
 2928
 2929
 2930
 2931
 2932
 2933
 2934
 2935
 2936
 2937
 2938
 2939
 2940
 2941
 2942
 2943
 2944
 2945
 2946
 2947
 2948
 2949
 2950
 2951
 2952
 2953
 2954
 2955
 2956
 2957
 2958
 2959
 2960
 2961
 2962
 2963
 2964
 2965
 2966
 2967
 2968
 2969
 2970
 2971
 2972
 2973
 2974
 2975
 2976
 2977
 2978
 2979
 2980
 2981
 2982
 2983
 2984
 2985
 2986
 2987
 2988
 2989
 2990
 2991
 2992
 2993
 2994
 2995
 2996
 2997
 2998
 2999
 3000
 3001
 3002
 3003
 3004
 3005
 3006
 3007
 3008
 3009
 3010
 3011
 3012
 3013
 3014
 3015
 3016
 3017
 3018
 3019
 3020
 3021
 3022
 3023
 3024
 3025
 3026
 3027
 3028
 3029
 3030
 3031
 3032
 3033
 3034
 3035
 3036
 3037
 3038
 3039
 3040
 3041
 3042
 3043
 3044
 3045
 3046
 3047
 3048
 3049
 3050
 3051
 3052
 3053
 3054
 3055
 3056
 3057
 3058
 3059
 3060
 3061
 3062
 3063
 3064
 3065
 3066
 3067
 3068
 3069
 3070
 3071
 3072
 3073
 3074
 3075
 3076
 3077
 3078
 3079
 3080
 3081
 3082
 3083
 3084
 3085
 3086
 3087
 3088
 3089
 3090
 3091
 3092
 3093
 3094
 3095
 3096
 3097
 3098
 3099
 3100
 3101
 3102
 3103
 3104
 3105
 3106
 3107
 3108
 3109
 3110
 3111
 3112
 3113
 3114
 3115
 3116
 3117
 3118
 3119
 3120
 3121
 3122
 3123
 3124
 3125
 3126
 3127
 3128
 3129
 3130
 3131
 3132
 3133
 3134
 3135
 3136
 3137
 3138
 3139
 3140
 3141
 3142
 3143
 3144
 3145
 3146
 3147
 3148
 3149
 3150
 3151
 3152
 3153
 3154
 3155
 3156
 3157
 3158
 3159
 3160
 3161
 3162
 3163
 3164
 3165
 3166
 3167
 3168
 3169
 3170
 3171
 3172
 3173
 3174
 3175
 3176
 3177
 3178
 3179
 3180
 3181
 3182
 3183
 3184
 3185
 3186
 3187
 3188
 3189
 3190
 3191
 3192
 3193
 3194
 3195
 3196
 3197
 3198
 3199
 3200
 3201
 3202
 3203
 3204
 3205
 3206
 3207
 3208
 3209
 3210
 3211
 3212
 3213
 3214
 3215
 3216
 3217
 3218
 3219
 3220
 3221
 3222
 3223
 3224
 3225
 3226
 3227
 3228
 3229
 3230
 3231
 3232
 3233
 3234
 3235
 3236
 3237
 3238
 3239
 3240
 3241
 3242
 3243
 3244
 3245
 3246
 3247
 3248
 3249
 3250
 3251
 3252
 3253
 3254
 3255
 3256
 3257
 3258
 3259
 3260
 3261
 3262
 3263
 3264
 3265
 3266
 3267
 3268
 3269
 3270
 3271
 3272
 3273
 3274
 3275
 3276
 3277
 3278
 3279
 3280
 3281
 3282
 3283
 3284
 3285
 3286
 3287
 3288
 3289
 3290
 3291
 3292
 3293
 3294
 3295
 3296
 3297
 3298
 3299
 3300
 3301
 3302
 3303
 3304
 3305
 3306
 3307
 3308
 3309
 3310
 3311
 3312
 3313
 3314
 3315
 3316
 3317
 3318
 3319
 3320
 3321
 3322
 3323
 3324
 3325
 3326
 3327
 3328
 3329
 3330
 3331
 3332
 3333
 3334
 3335
 3336
 3337
 3338
 3339
 3340
 3341
 3342
 3343
 3344
 3345
 3346
 3347
 3348
 3349
 3350
 3351
 3352
 3353
 3354
 3355
 3356
 3357
 3358
 3359
 3360
 3361
 3362
 3363
 3364
 3365
 3366
 3367
 3368
 3369
 3370
 3371
 3372
 3373
 3374
 3375
 3376
 3377
 3378
 3379
 3380
 3381
 3382
 3383
 3384
 3385
 3386
 3387
 3388
 3389
 3390
 3391
 3392
 3393
 3394
 3395
 3396
 3397
 3398
 3399
 3400
 3401
 3402
 3403
 3404
 3405
 3406
 3407
 3408
 3409
 3410
 3411
 3412
 3413
 3414
 3415
 3416
 3417
 3418
 3419
 3420
 3421
 3422
 3423
 3424
 3425
 3426
 3427
 3428
 3429
 3430
 3431
 3432
 3433
 3434
 3435
 3436
 3437
 3438
 3439
 3440
 3441
 3442
 3443
 3444
 3445
 3446
 3447
 3448
 3449
 3450
 3451
 3452
 3453
 3454
 3455
 3456
 3457
 3458
 3459
 3460
 3461
 3462
 3463
 3464
 3465
 3466
 3467
 3468
 3469
 3470
 3471
 3472
 3473
 3474
 3475
 3476
 3477
 3478
 3479
 3480
 3481
 3482
 3483
 3484
 3485
 3486
 3487
 3488
 3489
 3490
 3491
 3492
 3493
 3494
 3495
 3496
 3497
 3498
 3499
 3500
 3501
 3502
 3503
 3504
 3505
 3506
 3507
 3508
 3509
 3510
 3511
 3512
 3513
 3514
 3515
 3516
 3517
 3518
 3519
 3520
 3521
 3522
 3523
 3524
 3525
 3526
 3527
 3528
 3529
 3530
 3531
 3532
 3533
 3534
 3535
 3536
 3537
 3538
 3539
 3540
 3541
 3542
 3543
 3544
 3545
 3546
 3547
 3548
 3549
 3550
 3551
 3552
 3553
 3554
 3555
 3556
 3557
 3558
 3559
 3560
 3561
 3562
 3563
 3564
 3565
 3566
 3567
 3568
 3569
 3570
 3571
 3572
 3573
 3574
 3575
 3576
 3577
 3578
 3579
 3580
 3581
 3582
 3583
 3584
 3585
 3586
 3587
 3588
 3589
 3590
 3591
 3592
 3593
 3594
 3595
 3596
 3597
 3598
 3599
 3600
 3601
 3602
 3603
 3604
 3605
 3606
 3607
 3608
 3609
 3610
 3611
 3612
 3613
 3614
 3615
 3616
 3617
 3618
 3619
 3620
 3621
 3622
 3623
 3624
 3625
 3626
 3627
 3628
 3629
 3630
 3631
 3632
 3633
 3634
 3635
 3636
 3637
 3638
 3639
 3640
 3641
 3642
 3643
 3644
 3645
 3646
 3647
 3648
 3649
 3650
 3651
 3652
 3653
 3654
 3655
 3656
 3657
 3658
 3659
 3660
 3661
 3662
 3663
 3664
 3665
 3666
 3667
 3668
 3669
 3670
 3671
 3672
 3673
 3674
 3675
 3676
 3677
 3678
 3679
 3680
 3681
 3682
 3683
 3684
 3685
 3686
 3687
 3688
 3689
 3690
 3691
 3692
 3693
 3694
 3695
 3696
 3697
 3698
 3699
 3700
 3701
 3702
 3703
 3704
 3705
 3706
 3707
 3708
 3709
 3710
 3711
 3712
 3713
 3714
 3715
 3716
 3717
 3718
 3719
 3720
 3721
 3722
 3723
 3724
 3725
 3726
 3727
 3728
 3729
 3730
 3731
 3732
 3733
 3734
 3735
 3736
 3737
 3738
 3739
 3740
 3741
 3742
 3743
 3744
 3745
 3746
 3747
 3748
 3749
 3750
 3751
 3752
 3753
 3754
 3755
 3756
 3757
 3758
 3759
 3760
 3761
 3762
 3763
 3764
 3765
 3766
 3767
 3768
 3769
 3770
 3771
 3772
 3773
 3774
 3775
 3776
 3777
 3778
 3779
 3780
 3781
 3782
 3783
 3784
 3785
 3786
 3787
 3788
 3789
 3790
 3791
 3792
 3793
 3794
 3795
 3796
 3797
 3798
 3799
 3800
 3801
 3802
 3803
 3804
 3805
 3806
 3807
 3808
 3809
 3810
 3811
 3812
 3813
 3814
 3815
 3816
 3817
 3818
 3819
 3820
 3821
 3822
 3823
 3824
 3825
 3826
 3827
 3828
 3829
 3830
 3831
 3832
 3833
 3834
 3835
 3836
 3837
 3838
 3839
 3840
 3841
 3842
 3843
 3844
 3845
 3846
 3847
 3848
 3849
 3850
 3851
 3852
 3853
 3854
 3855
 3856
 3857
 3858
 3859
 3860
 3861
 3862
 3863
 3864
 3865
 3866
 3867
 3868
 3869
 3870
 3871
 3872
 3873
 3874
 3875
 3876
 3877
 3878
 3879
 3880
 3881
 3882
 3883
 3884
 3885
 3886
 3887
 3888
 3889
 3890
 3891
 3892
 3893
 3894
 3895
 3896
 3897
 3898
 3899
 3900
 3901
 3902
 3903
 3904
 3905
 3906
 3907
 3908
 3909
 3910
 3911
 3912
 3913
 3914
 3915
 3916
 3917
 3918
 3919
 3920
 3921
 3922
 3923
 3924
 3925
 3926
 3927
 3928
 3929
 3930
 3931
 3932
 3933
 3934
 3935
 3936
 3937
 3938
 3939
 3940
 3941
 3942
 3943
 3944
 3945
 3946
 3947
 3948
 3949
 3950
 3951
 3952
 3953
 3954
 3955
 3956
 3957
 3958
 3959
 3960
 3961
 3962
 3963
 3964
 3965
 3966
 3967
 3968
 3969
 3970
 3971
 3972
 3973
 3974
 3975
 3976
 3977
 3978
 3979
 3980
 3981
 3982
 3983
 3984
 3985
 3986
 3987
 3988
 3989
 3990
 3991
 3992
 3993
 3994
 3995
 3996
 3997
 3998
 3999
 4000
 4001
 4002
 4003
 4004
 4005
 4006
 4007
 4008
 4009
 4010
 4011
 4012
 4013
 4014
 4015
 4016
 4017
 4018
 4019
 4020
 4021
 4022
 4023
 4024
 4025
 4026
 4027
 4028
 4029
 4030
 4031
 4032
 4033
 4034
 4035
 4036
 4037
 4038
 4039
 4040
 4041
 4042
 4043
 4044
 4045
 4046
 4047
 4048
 4049
 4050
 4051
 4052
 4053
 4054
 4055
 4056
 4057
 4058
 4059
 4060
 4061
 4062
 4063
 4064
 4065
 4066
 4067
 4068
 4069
 4070
 4071
 4072
 4073
 4074
 4075
 4076
 4077
 4078
 4079
 4080
 4081
 4082
 4083
 4084
 4085
 4086
 4087
 4088
 4089
 4090
 4091
 4092
 4093
 4094
 4095
 4096
 4097
 4098
 4099
 4100
 4101
 4102
 4103
 4104
 4105
 4106
 4107
 4108
 4109
 4110
 4111
 4112
 4113
 4114
 4115
 4116
 4117
 4118
 4119
 4120
 4121
 4122
 4123
 4124
 4125
 4126
 4127
 4128
 4129
 4130
 4131
 4132
 4133
 4134
 4135
 4136
 4137
 4138
 4139
 4140
 4141
 4142
 4143
 4144
 4145
 4146
 4147
 4148
 4149
 4150
 4151
 4152
 4153
 4154
 4155
 4156
 4157
 4158
 4159
 4160
 4161
 4162
 4163
 4164
 4165
 4166
 4167
 4168
 4169
 4170
 4171
 4172
 4173
 4174
 4175
 4176
 4177
 4178
 4179
 4180
 4181
 4182
 4183
 4184
 4185
 4186
 4187
 4188
 4189
 4190
 4191
 4192
 4193
 4194
 4195
 4196
 4197
 4198
 4199
 4200
 4201
 4202
 4203
 4204
 4205
 4206
 4207
 4208
 4209
 4210
 4211
 4212
 4213
 4214
 4215
 4216
 4217
 4218
 4219
 4220
 4221
 4222
 4223
 4224
 4225
 4226
 4227
 4228
 4229
 4230
 4231
 4232
 4233
 4234
 4235
 4236
 4237
 4238
 4239
 4240
 4241
 4242
 4243
 4244
 4245
 4246
 4247
 4248
 4249
 4250
 4251
 4252
 4253
 4254
 4255
 4256
 4257
 4258
 4259
 4260
 4261
 4262
 4263
 4264
 4265
 4266
 4267
 4268
 4269
 4270
 4271
 4272
 4273
 4274
 4275
 
 | //===-- lib/CodeGen/GlobalISel/GICombinerHelper.cpp -----------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/GlobalISel/CombinerHelper.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallBitVector.h"
#include "llvm/CodeGen/GlobalISel/Combiner.h"
#include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h"
#include "llvm/CodeGen/GlobalISel/GISelKnownBits.h"
#include "llvm/CodeGen/GlobalISel/GenericMachineInstrs.h"
#include "llvm/CodeGen/GlobalISel/LegalizerInfo.h"
#include "llvm/CodeGen/GlobalISel/MIPatternMatch.h"
#include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
#include "llvm/CodeGen/GlobalISel/Utils.h"
#include "llvm/CodeGen/LowLevelType.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineMemOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/TargetLowering.h"
#include "llvm/CodeGen/TargetOpcodes.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Target/TargetMachine.h"
#include <tuple>
#define DEBUG_TYPE "gi-combiner"
using namespace llvm;
using namespace MIPatternMatch;
// Option to allow testing of the combiner while no targets know about indexed
// addressing.
static cl::opt<bool>
    ForceLegalIndexing("force-legal-indexing", cl::Hidden, cl::init(false),
                       cl::desc("Force all indexed operations to be "
                                "legal for the GlobalISel combiner"));
CombinerHelper::CombinerHelper(GISelChangeObserver &Observer,
                               MachineIRBuilder &B, GISelKnownBits *KB,
                               MachineDominatorTree *MDT,
                               const LegalizerInfo *LI)
    : Builder(B), MRI(Builder.getMF().getRegInfo()), Observer(Observer),
      KB(KB), MDT(MDT), LI(LI) {
  (void)this->KB;
}
const TargetLowering &CombinerHelper::getTargetLowering() const {
  return *Builder.getMF().getSubtarget().getTargetLowering();
}
/// \returns The little endian in-memory byte position of byte \p I in a
/// \p ByteWidth bytes wide type.
///
/// E.g. Given a 4-byte type x, x[0] -> byte 0
static unsigned littleEndianByteAt(const unsigned ByteWidth, const unsigned I) {
  assert(I < ByteWidth && "I must be in [0, ByteWidth)");
  return I;
}
/// \returns The big endian in-memory byte position of byte \p I in a
/// \p ByteWidth bytes wide type.
///
/// E.g. Given a 4-byte type x, x[0] -> byte 3
static unsigned bigEndianByteAt(const unsigned ByteWidth, const unsigned I) {
  assert(I < ByteWidth && "I must be in [0, ByteWidth)");
  return ByteWidth - I - 1;
}
/// Given a map from byte offsets in memory to indices in a load/store,
/// determine if that map corresponds to a little or big endian byte pattern.
///
/// \param MemOffset2Idx maps memory offsets to address offsets.
/// \param LowestIdx is the lowest index in \p MemOffset2Idx.
///
/// \returns true if the map corresponds to a big endian byte pattern, false
/// if it corresponds to a little endian byte pattern, and None otherwise.
///
/// E.g. given a 32-bit type x, and x[AddrOffset], the in-memory byte patterns
/// are as follows:
///
/// AddrOffset   Little endian    Big endian
/// 0            0                3
/// 1            1                2
/// 2            2                1
/// 3            3                0
static Optional<bool>
isBigEndian(const SmallDenseMap<int64_t, int64_t, 8> &MemOffset2Idx,
            int64_t LowestIdx) {
  // Need at least two byte positions to decide on endianness.
  unsigned Width = MemOffset2Idx.size();
  if (Width < 2)
    return None;
  bool BigEndian = true, LittleEndian = true;
  for (unsigned MemOffset = 0; MemOffset < Width; ++ MemOffset) {
    auto MemOffsetAndIdx = MemOffset2Idx.find(MemOffset);
    if (MemOffsetAndIdx == MemOffset2Idx.end())
      return None;
    const int64_t Idx = MemOffsetAndIdx->second - LowestIdx;
    assert(Idx >= 0 && "Expected non-negative byte offset?");
    LittleEndian &= Idx == littleEndianByteAt(Width, MemOffset);
    BigEndian &= Idx == bigEndianByteAt(Width, MemOffset);
    if (!BigEndian && !LittleEndian)
      return None;
  }
  assert((BigEndian != LittleEndian) &&
         "Pattern cannot be both big and little endian!");
  return BigEndian;
}
bool CombinerHelper::isLegalOrBeforeLegalizer(
    const LegalityQuery &Query) const {
  return !LI || LI->getAction(Query).Action == LegalizeActions::Legal;
}
void CombinerHelper::replaceRegWith(MachineRegisterInfo &MRI, Register FromReg,
                                    Register ToReg) const {
  Observer.changingAllUsesOfReg(MRI, FromReg);
  if (MRI.constrainRegAttrs(ToReg, FromReg))
    MRI.replaceRegWith(FromReg, ToReg);
  else
    Builder.buildCopy(ToReg, FromReg);
  Observer.finishedChangingAllUsesOfReg();
}
void CombinerHelper::replaceRegOpWith(MachineRegisterInfo &MRI,
                                      MachineOperand &FromRegOp,
                                      Register ToReg) const {
  assert(FromRegOp.getParent() && "Expected an operand in an MI");
  Observer.changingInstr(*FromRegOp.getParent());
  FromRegOp.setReg(ToReg);
  Observer.changedInstr(*FromRegOp.getParent());
}
bool CombinerHelper::tryCombineCopy(MachineInstr &MI) {
  if (matchCombineCopy(MI)) {
    applyCombineCopy(MI);
    return true;
  }
  return false;
}
bool CombinerHelper::matchCombineCopy(MachineInstr &MI) {
  if (MI.getOpcode() != TargetOpcode::COPY)
    return false;
  Register DstReg = MI.getOperand(0).getReg();
  Register SrcReg = MI.getOperand(1).getReg();
  return canReplaceReg(DstReg, SrcReg, MRI);
}
void CombinerHelper::applyCombineCopy(MachineInstr &MI) {
  Register DstReg = MI.getOperand(0).getReg();
  Register SrcReg = MI.getOperand(1).getReg();
  MI.eraseFromParent();
  replaceRegWith(MRI, DstReg, SrcReg);
}
bool CombinerHelper::tryCombineConcatVectors(MachineInstr &MI) {
  bool IsUndef = false;
  SmallVector<Register, 4> Ops;
  if (matchCombineConcatVectors(MI, IsUndef, Ops)) {
    applyCombineConcatVectors(MI, IsUndef, Ops);
    return true;
  }
  return false;
}
bool CombinerHelper::matchCombineConcatVectors(MachineInstr &MI, bool &IsUndef,
                                               SmallVectorImpl<Register> &Ops) {
  assert(MI.getOpcode() == TargetOpcode::G_CONCAT_VECTORS &&
         "Invalid instruction");
  IsUndef = true;
  MachineInstr *Undef = nullptr;
  // Walk over all the operands of concat vectors and check if they are
  // build_vector themselves or undef.
  // Then collect their operands in Ops.
  for (const MachineOperand &MO : MI.uses()) {
    Register Reg = MO.getReg();
    MachineInstr *Def = MRI.getVRegDef(Reg);
    assert(Def && "Operand not defined");
    switch (Def->getOpcode()) {
    case TargetOpcode::G_BUILD_VECTOR:
      IsUndef = false;
      // Remember the operands of the build_vector to fold
      // them into the yet-to-build flattened concat vectors.
      for (const MachineOperand &BuildVecMO : Def->uses())
        Ops.push_back(BuildVecMO.getReg());
      break;
    case TargetOpcode::G_IMPLICIT_DEF: {
      LLT OpType = MRI.getType(Reg);
      // Keep one undef value for all the undef operands.
      if (!Undef) {
        Builder.setInsertPt(*MI.getParent(), MI);
        Undef = Builder.buildUndef(OpType.getScalarType());
      }
      assert(MRI.getType(Undef->getOperand(0).getReg()) ==
                 OpType.getScalarType() &&
             "All undefs should have the same type");
      // Break the undef vector in as many scalar elements as needed
      // for the flattening.
      for (unsigned EltIdx = 0, EltEnd = OpType.getNumElements();
           EltIdx != EltEnd; ++EltIdx)
        Ops.push_back(Undef->getOperand(0).getReg());
      break;
    }
    default:
      return false;
    }
  }
  return true;
}
void CombinerHelper::applyCombineConcatVectors(
    MachineInstr &MI, bool IsUndef, const ArrayRef<Register> Ops) {
  // We determined that the concat_vectors can be flatten.
  // Generate the flattened build_vector.
  Register DstReg = MI.getOperand(0).getReg();
  Builder.setInsertPt(*MI.getParent(), MI);
  Register NewDstReg = MRI.cloneVirtualRegister(DstReg);
  // Note: IsUndef is sort of redundant. We could have determine it by
  // checking that at all Ops are undef.  Alternatively, we could have
  // generate a build_vector of undefs and rely on another combine to
  // clean that up.  For now, given we already gather this information
  // in tryCombineConcatVectors, just save compile time and issue the
  // right thing.
  if (IsUndef)
    Builder.buildUndef(NewDstReg);
  else
    Builder.buildBuildVector(NewDstReg, Ops);
  MI.eraseFromParent();
  replaceRegWith(MRI, DstReg, NewDstReg);
}
bool CombinerHelper::tryCombineShuffleVector(MachineInstr &MI) {
  SmallVector<Register, 4> Ops;
  if (matchCombineShuffleVector(MI, Ops)) {
    applyCombineShuffleVector(MI, Ops);
    return true;
  }
  return false;
}
bool CombinerHelper::matchCombineShuffleVector(MachineInstr &MI,
                                               SmallVectorImpl<Register> &Ops) {
  assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR &&
         "Invalid instruction kind");
  LLT DstType = MRI.getType(MI.getOperand(0).getReg());
  Register Src1 = MI.getOperand(1).getReg();
  LLT SrcType = MRI.getType(Src1);
  // As bizarre as it may look, shuffle vector can actually produce
  // scalar! This is because at the IR level a <1 x ty> shuffle
  // vector is perfectly valid.
  unsigned DstNumElts = DstType.isVector() ? DstType.getNumElements() : 1;
  unsigned SrcNumElts = SrcType.isVector() ? SrcType.getNumElements() : 1;
  // If the resulting vector is smaller than the size of the source
  // vectors being concatenated, we won't be able to replace the
  // shuffle vector into a concat_vectors.
  //
  // Note: We may still be able to produce a concat_vectors fed by
  //       extract_vector_elt and so on. It is less clear that would
  //       be better though, so don't bother for now.
  //
  // If the destination is a scalar, the size of the sources doesn't
  // matter. we will lower the shuffle to a plain copy. This will
  // work only if the source and destination have the same size. But
  // that's covered by the next condition.
  //
  // TODO: If the size between the source and destination don't match
  //       we could still emit an extract vector element in that case.
  if (DstNumElts < 2 * SrcNumElts && DstNumElts != 1)
    return false;
  // Check that the shuffle mask can be broken evenly between the
  // different sources.
  if (DstNumElts % SrcNumElts != 0)
    return false;
  // Mask length is a multiple of the source vector length.
  // Check if the shuffle is some kind of concatenation of the input
  // vectors.
  unsigned NumConcat = DstNumElts / SrcNumElts;
  SmallVector<int, 8> ConcatSrcs(NumConcat, -1);
  ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask();
  for (unsigned i = 0; i != DstNumElts; ++i) {
    int Idx = Mask[i];
    // Undef value.
    if (Idx < 0)
      continue;
    // Ensure the indices in each SrcType sized piece are sequential and that
    // the same source is used for the whole piece.
    if ((Idx % SrcNumElts != (i % SrcNumElts)) ||
        (ConcatSrcs[i / SrcNumElts] >= 0 &&
         ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts)))
      return false;
    // Remember which source this index came from.
    ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts;
  }
  // The shuffle is concatenating multiple vectors together.
  // Collect the different operands for that.
  Register UndefReg;
  Register Src2 = MI.getOperand(2).getReg();
  for (auto Src : ConcatSrcs) {
    if (Src < 0) {
      if (!UndefReg) {
        Builder.setInsertPt(*MI.getParent(), MI);
        UndefReg = Builder.buildUndef(SrcType).getReg(0);
      }
      Ops.push_back(UndefReg);
    } else if (Src == 0)
      Ops.push_back(Src1);
    else
      Ops.push_back(Src2);
  }
  return true;
}
void CombinerHelper::applyCombineShuffleVector(MachineInstr &MI,
                                               const ArrayRef<Register> Ops) {
  Register DstReg = MI.getOperand(0).getReg();
  Builder.setInsertPt(*MI.getParent(), MI);
  Register NewDstReg = MRI.cloneVirtualRegister(DstReg);
  if (Ops.size() == 1)
    Builder.buildCopy(NewDstReg, Ops[0]);
  else
    Builder.buildMerge(NewDstReg, Ops);
  MI.eraseFromParent();
  replaceRegWith(MRI, DstReg, NewDstReg);
}
namespace {
/// Select a preference between two uses. CurrentUse is the current preference
/// while *ForCandidate is attributes of the candidate under consideration.
PreferredTuple ChoosePreferredUse(PreferredTuple &CurrentUse,
                                  const LLT TyForCandidate,
                                  unsigned OpcodeForCandidate,
                                  MachineInstr *MIForCandidate) {
  if (!CurrentUse.Ty.isValid()) {
    if (CurrentUse.ExtendOpcode == OpcodeForCandidate ||
        CurrentUse.ExtendOpcode == TargetOpcode::G_ANYEXT)
      return {TyForCandidate, OpcodeForCandidate, MIForCandidate};
    return CurrentUse;
  }
  // We permit the extend to hoist through basic blocks but this is only
  // sensible if the target has extending loads. If you end up lowering back
  // into a load and extend during the legalizer then the end result is
  // hoisting the extend up to the load.
  // Prefer defined extensions to undefined extensions as these are more
  // likely to reduce the number of instructions.
  if (OpcodeForCandidate == TargetOpcode::G_ANYEXT &&
      CurrentUse.ExtendOpcode != TargetOpcode::G_ANYEXT)
    return CurrentUse;
  else if (CurrentUse.ExtendOpcode == TargetOpcode::G_ANYEXT &&
           OpcodeForCandidate != TargetOpcode::G_ANYEXT)
    return {TyForCandidate, OpcodeForCandidate, MIForCandidate};
  // Prefer sign extensions to zero extensions as sign-extensions tend to be
  // more expensive.
  if (CurrentUse.Ty == TyForCandidate) {
    if (CurrentUse.ExtendOpcode == TargetOpcode::G_SEXT &&
        OpcodeForCandidate == TargetOpcode::G_ZEXT)
      return CurrentUse;
    else if (CurrentUse.ExtendOpcode == TargetOpcode::G_ZEXT &&
             OpcodeForCandidate == TargetOpcode::G_SEXT)
      return {TyForCandidate, OpcodeForCandidate, MIForCandidate};
  }
  // This is potentially target specific. We've chosen the largest type
  // because G_TRUNC is usually free. One potential catch with this is that
  // some targets have a reduced number of larger registers than smaller
  // registers and this choice potentially increases the live-range for the
  // larger value.
  if (TyForCandidate.getSizeInBits() > CurrentUse.Ty.getSizeInBits()) {
    return {TyForCandidate, OpcodeForCandidate, MIForCandidate};
  }
  return CurrentUse;
}
/// Find a suitable place to insert some instructions and insert them. This
/// function accounts for special cases like inserting before a PHI node.
/// The current strategy for inserting before PHI's is to duplicate the
/// instructions for each predecessor. However, while that's ok for G_TRUNC
/// on most targets since it generally requires no code, other targets/cases may
/// want to try harder to find a dominating block.
static void InsertInsnsWithoutSideEffectsBeforeUse(
    MachineIRBuilder &Builder, MachineInstr &DefMI, MachineOperand &UseMO,
    std::function<void(MachineBasicBlock *, MachineBasicBlock::iterator,
                       MachineOperand &UseMO)>
        Inserter) {
  MachineInstr &UseMI = *UseMO.getParent();
  MachineBasicBlock *InsertBB = UseMI.getParent();
  // If the use is a PHI then we want the predecessor block instead.
  if (UseMI.isPHI()) {
    MachineOperand *PredBB = std::next(&UseMO);
    InsertBB = PredBB->getMBB();
  }
  // If the block is the same block as the def then we want to insert just after
  // the def instead of at the start of the block.
  if (InsertBB == DefMI.getParent()) {
    MachineBasicBlock::iterator InsertPt = &DefMI;
    Inserter(InsertBB, std::next(InsertPt), UseMO);
    return;
  }
  // Otherwise we want the start of the BB
  Inserter(InsertBB, InsertBB->getFirstNonPHI(), UseMO);
}
} // end anonymous namespace
bool CombinerHelper::tryCombineExtendingLoads(MachineInstr &MI) {
  PreferredTuple Preferred;
  if (matchCombineExtendingLoads(MI, Preferred)) {
    applyCombineExtendingLoads(MI, Preferred);
    return true;
  }
  return false;
}
bool CombinerHelper::matchCombineExtendingLoads(MachineInstr &MI,
                                                PreferredTuple &Preferred) {
  // We match the loads and follow the uses to the extend instead of matching
  // the extends and following the def to the load. This is because the load
  // must remain in the same position for correctness (unless we also add code
  // to find a safe place to sink it) whereas the extend is freely movable.
  // It also prevents us from duplicating the load for the volatile case or just
  // for performance.
  GAnyLoad *LoadMI = dyn_cast<GAnyLoad>(&MI);
  if (!LoadMI)
    return false;
  Register LoadReg = LoadMI->getDstReg();
  LLT LoadValueTy = MRI.getType(LoadReg);
  if (!LoadValueTy.isScalar())
    return false;
  // Most architectures are going to legalize <s8 loads into at least a 1 byte
  // load, and the MMOs can only describe memory accesses in multiples of bytes.
  // If we try to perform extload combining on those, we can end up with
  // %a(s8) = extload %ptr (load 1 byte from %ptr)
  // ... which is an illegal extload instruction.
  if (LoadValueTy.getSizeInBits() < 8)
    return false;
  // For non power-of-2 types, they will very likely be legalized into multiple
  // loads. Don't bother trying to match them into extending loads.
  if (!isPowerOf2_32(LoadValueTy.getSizeInBits()))
    return false;
  // Find the preferred type aside from the any-extends (unless it's the only
  // one) and non-extending ops. We'll emit an extending load to that type and
  // and emit a variant of (extend (trunc X)) for the others according to the
  // relative type sizes. At the same time, pick an extend to use based on the
  // extend involved in the chosen type.
  unsigned PreferredOpcode =
      isa<GLoad>(&MI)
          ? TargetOpcode::G_ANYEXT
          : isa<GSExtLoad>(&MI) ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT;
  Preferred = {LLT(), PreferredOpcode, nullptr};
  for (auto &UseMI : MRI.use_nodbg_instructions(LoadReg)) {
    if (UseMI.getOpcode() == TargetOpcode::G_SEXT ||
        UseMI.getOpcode() == TargetOpcode::G_ZEXT ||
        (UseMI.getOpcode() == TargetOpcode::G_ANYEXT)) {
      const auto &MMO = LoadMI->getMMO();
      // For atomics, only form anyextending loads.
      if (MMO.isAtomic() && UseMI.getOpcode() != TargetOpcode::G_ANYEXT)
        continue;
      // Check for legality.
      if (LI) {
        LegalityQuery::MemDesc MMDesc;
        MMDesc.MemoryTy = MMO.getMemoryType();
        MMDesc.AlignInBits = MMO.getAlign().value() * 8;
        MMDesc.Ordering = MMO.getSuccessOrdering();
        LLT UseTy = MRI.getType(UseMI.getOperand(0).getReg());
        LLT SrcTy = MRI.getType(LoadMI->getPointerReg());
        if (LI->getAction({LoadMI->getOpcode(), {UseTy, SrcTy}, {MMDesc}})
                .Action != LegalizeActions::Legal)
          continue;
      }
      Preferred = ChoosePreferredUse(Preferred,
                                     MRI.getType(UseMI.getOperand(0).getReg()),
                                     UseMI.getOpcode(), &UseMI);
    }
  }
  // There were no extends
  if (!Preferred.MI)
    return false;
  // It should be impossible to chose an extend without selecting a different
  // type since by definition the result of an extend is larger.
  assert(Preferred.Ty != LoadValueTy && "Extending to same type?");
  LLVM_DEBUG(dbgs() << "Preferred use is: " << *Preferred.MI);
  return true;
}
void CombinerHelper::applyCombineExtendingLoads(MachineInstr &MI,
                                                PreferredTuple &Preferred) {
  // Rewrite the load to the chosen extending load.
  Register ChosenDstReg = Preferred.MI->getOperand(0).getReg();
  // Inserter to insert a truncate back to the original type at a given point
  // with some basic CSE to limit truncate duplication to one per BB.
  DenseMap<MachineBasicBlock *, MachineInstr *> EmittedInsns;
  auto InsertTruncAt = [&](MachineBasicBlock *InsertIntoBB,
                           MachineBasicBlock::iterator InsertBefore,
                           MachineOperand &UseMO) {
    MachineInstr *PreviouslyEmitted = EmittedInsns.lookup(InsertIntoBB);
    if (PreviouslyEmitted) {
      Observer.changingInstr(*UseMO.getParent());
      UseMO.setReg(PreviouslyEmitted->getOperand(0).getReg());
      Observer.changedInstr(*UseMO.getParent());
      return;
    }
    Builder.setInsertPt(*InsertIntoBB, InsertBefore);
    Register NewDstReg = MRI.cloneVirtualRegister(MI.getOperand(0).getReg());
    MachineInstr *NewMI = Builder.buildTrunc(NewDstReg, ChosenDstReg);
    EmittedInsns[InsertIntoBB] = NewMI;
    replaceRegOpWith(MRI, UseMO, NewDstReg);
  };
  Observer.changingInstr(MI);
  MI.setDesc(
      Builder.getTII().get(Preferred.ExtendOpcode == TargetOpcode::G_SEXT
                               ? TargetOpcode::G_SEXTLOAD
                               : Preferred.ExtendOpcode == TargetOpcode::G_ZEXT
                                     ? TargetOpcode::G_ZEXTLOAD
                                     : TargetOpcode::G_LOAD));
  // Rewrite all the uses to fix up the types.
  auto &LoadValue = MI.getOperand(0);
  SmallVector<MachineOperand *, 4> Uses;
  for (auto &UseMO : MRI.use_operands(LoadValue.getReg()))
    Uses.push_back(&UseMO);
  for (auto *UseMO : Uses) {
    MachineInstr *UseMI = UseMO->getParent();
    // If the extend is compatible with the preferred extend then we should fix
    // up the type and extend so that it uses the preferred use.
    if (UseMI->getOpcode() == Preferred.ExtendOpcode ||
        UseMI->getOpcode() == TargetOpcode::G_ANYEXT) {
      Register UseDstReg = UseMI->getOperand(0).getReg();
      MachineOperand &UseSrcMO = UseMI->getOperand(1);
      const LLT UseDstTy = MRI.getType(UseDstReg);
      if (UseDstReg != ChosenDstReg) {
        if (Preferred.Ty == UseDstTy) {
          // If the use has the same type as the preferred use, then merge
          // the vregs and erase the extend. For example:
          //    %1:_(s8) = G_LOAD ...
          //    %2:_(s32) = G_SEXT %1(s8)
          //    %3:_(s32) = G_ANYEXT %1(s8)
          //    ... = ... %3(s32)
          // rewrites to:
          //    %2:_(s32) = G_SEXTLOAD ...
          //    ... = ... %2(s32)
          replaceRegWith(MRI, UseDstReg, ChosenDstReg);
          Observer.erasingInstr(*UseMO->getParent());
          UseMO->getParent()->eraseFromParent();
        } else if (Preferred.Ty.getSizeInBits() < UseDstTy.getSizeInBits()) {
          // If the preferred size is smaller, then keep the extend but extend
          // from the result of the extending load. For example:
          //    %1:_(s8) = G_LOAD ...
          //    %2:_(s32) = G_SEXT %1(s8)
          //    %3:_(s64) = G_ANYEXT %1(s8)
          //    ... = ... %3(s64)
          /// rewrites to:
          //    %2:_(s32) = G_SEXTLOAD ...
          //    %3:_(s64) = G_ANYEXT %2:_(s32)
          //    ... = ... %3(s64)
          replaceRegOpWith(MRI, UseSrcMO, ChosenDstReg);
        } else {
          // If the preferred size is large, then insert a truncate. For
          // example:
          //    %1:_(s8) = G_LOAD ...
          //    %2:_(s64) = G_SEXT %1(s8)
          //    %3:_(s32) = G_ZEXT %1(s8)
          //    ... = ... %3(s32)
          /// rewrites to:
          //    %2:_(s64) = G_SEXTLOAD ...
          //    %4:_(s8) = G_TRUNC %2:_(s32)
          //    %3:_(s64) = G_ZEXT %2:_(s8)
          //    ... = ... %3(s64)
          InsertInsnsWithoutSideEffectsBeforeUse(Builder, MI, *UseMO,
                                                 InsertTruncAt);
        }
        continue;
      }
      // The use is (one of) the uses of the preferred use we chose earlier.
      // We're going to update the load to def this value later so just erase
      // the old extend.
      Observer.erasingInstr(*UseMO->getParent());
      UseMO->getParent()->eraseFromParent();
      continue;
    }
    // The use isn't an extend. Truncate back to the type we originally loaded.
    // This is free on many targets.
    InsertInsnsWithoutSideEffectsBeforeUse(Builder, MI, *UseMO, InsertTruncAt);
  }
  MI.getOperand(0).setReg(ChosenDstReg);
  Observer.changedInstr(MI);
}
bool CombinerHelper::isPredecessor(const MachineInstr &DefMI,
                                   const MachineInstr &UseMI) {
  assert(!DefMI.isDebugInstr() && !UseMI.isDebugInstr() &&
         "shouldn't consider debug uses");
  assert(DefMI.getParent() == UseMI.getParent());
  if (&DefMI == &UseMI)
    return false;
  const MachineBasicBlock &MBB = *DefMI.getParent();
  auto DefOrUse = find_if(MBB, [&DefMI, &UseMI](const MachineInstr &MI) {
    return &MI == &DefMI || &MI == &UseMI;
  });
  if (DefOrUse == MBB.end())
    llvm_unreachable("Block must contain both DefMI and UseMI!");
  return &*DefOrUse == &DefMI;
}
bool CombinerHelper::dominates(const MachineInstr &DefMI,
                               const MachineInstr &UseMI) {
  assert(!DefMI.isDebugInstr() && !UseMI.isDebugInstr() &&
         "shouldn't consider debug uses");
  if (MDT)
    return MDT->dominates(&DefMI, &UseMI);
  else if (DefMI.getParent() != UseMI.getParent())
    return false;
  return isPredecessor(DefMI, UseMI);
}
bool CombinerHelper::matchSextTruncSextLoad(MachineInstr &MI) {
  assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG);
  Register SrcReg = MI.getOperand(1).getReg();
  Register LoadUser = SrcReg;
  if (MRI.getType(SrcReg).isVector())
    return false;
  Register TruncSrc;
  if (mi_match(SrcReg, MRI, m_GTrunc(m_Reg(TruncSrc))))
    LoadUser = TruncSrc;
  uint64_t SizeInBits = MI.getOperand(2).getImm();
  // If the source is a G_SEXTLOAD from the same bit width, then we don't
  // need any extend at all, just a truncate.
  if (auto *LoadMI = getOpcodeDef<GSExtLoad>(LoadUser, MRI)) {
    // If truncating more than the original extended value, abort.
    auto LoadSizeBits = LoadMI->getMemSizeInBits();
    if (TruncSrc && MRI.getType(TruncSrc).getSizeInBits() < LoadSizeBits)
      return false;
    if (LoadSizeBits == SizeInBits)
      return true;
  }
  return false;
}
void CombinerHelper::applySextTruncSextLoad(MachineInstr &MI) {
  assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG);
  Builder.setInstrAndDebugLoc(MI);
  Builder.buildCopy(MI.getOperand(0).getReg(), MI.getOperand(1).getReg());
  MI.eraseFromParent();
}
bool CombinerHelper::matchSextInRegOfLoad(
    MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) {
  assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG);
  // Only supports scalars for now.
  if (MRI.getType(MI.getOperand(0).getReg()).isVector())
    return false;
  Register SrcReg = MI.getOperand(1).getReg();
  auto *LoadDef = getOpcodeDef<GLoad>(SrcReg, MRI);
  if (!LoadDef || !MRI.hasOneNonDBGUse(LoadDef->getOperand(0).getReg()) ||
      !LoadDef->isSimple())
    return false;
  // If the sign extend extends from a narrower width than the load's width,
  // then we can narrow the load width when we combine to a G_SEXTLOAD.
  // Avoid widening the load at all.
  unsigned NewSizeBits = std::min((uint64_t)MI.getOperand(2).getImm(),
                                  LoadDef->getMemSizeInBits());
  // Don't generate G_SEXTLOADs with a < 1 byte width.
  if (NewSizeBits < 8)
    return false;
  // Don't bother creating a non-power-2 sextload, it will likely be broken up
  // anyway for most targets.
  if (!isPowerOf2_32(NewSizeBits))
    return false;
  MatchInfo = std::make_tuple(LoadDef->getDstReg(), NewSizeBits);
  return true;
}
void CombinerHelper::applySextInRegOfLoad(
    MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) {
  assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG);
  Register LoadReg;
  unsigned ScalarSizeBits;
  std::tie(LoadReg, ScalarSizeBits) = MatchInfo;
  GLoad *LoadDef = cast<GLoad>(MRI.getVRegDef(LoadReg));
  // If we have the following:
  // %ld = G_LOAD %ptr, (load 2)
  // %ext = G_SEXT_INREG %ld, 8
  //    ==>
  // %ld = G_SEXTLOAD %ptr (load 1)
  auto &MMO = LoadDef->getMMO();
  Builder.setInstrAndDebugLoc(*LoadDef);
  auto &MF = Builder.getMF();
  auto PtrInfo = MMO.getPointerInfo();
  auto *NewMMO = MF.getMachineMemOperand(&MMO, PtrInfo, ScalarSizeBits / 8);
  Builder.buildLoadInstr(TargetOpcode::G_SEXTLOAD, MI.getOperand(0).getReg(),
                         LoadDef->getPointerReg(), *NewMMO);
  MI.eraseFromParent();
}
bool CombinerHelper::findPostIndexCandidate(MachineInstr &MI, Register &Addr,
                                            Register &Base, Register &Offset) {
  auto &MF = *MI.getParent()->getParent();
  const auto &TLI = *MF.getSubtarget().getTargetLowering();
#ifndef NDEBUG
  unsigned Opcode = MI.getOpcode();
  assert(Opcode == TargetOpcode::G_LOAD || Opcode == TargetOpcode::G_SEXTLOAD ||
         Opcode == TargetOpcode::G_ZEXTLOAD || Opcode == TargetOpcode::G_STORE);
#endif
  Base = MI.getOperand(1).getReg();
  MachineInstr *BaseDef = MRI.getUniqueVRegDef(Base);
  if (BaseDef && BaseDef->getOpcode() == TargetOpcode::G_FRAME_INDEX)
    return false;
  LLVM_DEBUG(dbgs() << "Searching for post-indexing opportunity for: " << MI);
  // FIXME: The following use traversal needs a bail out for patholigical cases.
  for (auto &Use : MRI.use_nodbg_instructions(Base)) {
    if (Use.getOpcode() != TargetOpcode::G_PTR_ADD)
      continue;
    Offset = Use.getOperand(2).getReg();
    if (!ForceLegalIndexing &&
        !TLI.isIndexingLegal(MI, Base, Offset, /*IsPre*/ false, MRI)) {
      LLVM_DEBUG(dbgs() << "    Ignoring candidate with illegal addrmode: "
                        << Use);
      continue;
    }
    // Make sure the offset calculation is before the potentially indexed op.
    // FIXME: we really care about dependency here. The offset calculation might
    // be movable.
    MachineInstr *OffsetDef = MRI.getUniqueVRegDef(Offset);
    if (!OffsetDef || !dominates(*OffsetDef, MI)) {
      LLVM_DEBUG(dbgs() << "    Ignoring candidate with offset after mem-op: "
                        << Use);
      continue;
    }
    // FIXME: check whether all uses of Base are load/store with foldable
    // addressing modes. If so, using the normal addr-modes is better than
    // forming an indexed one.
    bool MemOpDominatesAddrUses = true;
    for (auto &PtrAddUse :
         MRI.use_nodbg_instructions(Use.getOperand(0).getReg())) {
      if (!dominates(MI, PtrAddUse)) {
        MemOpDominatesAddrUses = false;
        break;
      }
    }
    if (!MemOpDominatesAddrUses) {
      LLVM_DEBUG(
          dbgs() << "    Ignoring candidate as memop does not dominate uses: "
                 << Use);
      continue;
    }
    LLVM_DEBUG(dbgs() << "    Found match: " << Use);
    Addr = Use.getOperand(0).getReg();
    return true;
  }
  return false;
}
bool CombinerHelper::findPreIndexCandidate(MachineInstr &MI, Register &Addr,
                                           Register &Base, Register &Offset) {
  auto &MF = *MI.getParent()->getParent();
  const auto &TLI = *MF.getSubtarget().getTargetLowering();
#ifndef NDEBUG
  unsigned Opcode = MI.getOpcode();
  assert(Opcode == TargetOpcode::G_LOAD || Opcode == TargetOpcode::G_SEXTLOAD ||
         Opcode == TargetOpcode::G_ZEXTLOAD || Opcode == TargetOpcode::G_STORE);
#endif
  Addr = MI.getOperand(1).getReg();
  MachineInstr *AddrDef = getOpcodeDef(TargetOpcode::G_PTR_ADD, Addr, MRI);
  if (!AddrDef || MRI.hasOneNonDBGUse(Addr))
    return false;
  Base = AddrDef->getOperand(1).getReg();
  Offset = AddrDef->getOperand(2).getReg();
  LLVM_DEBUG(dbgs() << "Found potential pre-indexed load_store: " << MI);
  if (!ForceLegalIndexing &&
      !TLI.isIndexingLegal(MI, Base, Offset, /*IsPre*/ true, MRI)) {
    LLVM_DEBUG(dbgs() << "    Skipping, not legal for target");
    return false;
  }
  MachineInstr *BaseDef = getDefIgnoringCopies(Base, MRI);
  if (BaseDef->getOpcode() == TargetOpcode::G_FRAME_INDEX) {
    LLVM_DEBUG(dbgs() << "    Skipping, frame index would need copy anyway.");
    return false;
  }
  if (MI.getOpcode() == TargetOpcode::G_STORE) {
    // Would require a copy.
    if (Base == MI.getOperand(0).getReg()) {
      LLVM_DEBUG(dbgs() << "    Skipping, storing base so need copy anyway.");
      return false;
    }
    // We're expecting one use of Addr in MI, but it could also be the
    // value stored, which isn't actually dominated by the instruction.
    if (MI.getOperand(0).getReg() == Addr) {
      LLVM_DEBUG(dbgs() << "    Skipping, does not dominate all addr uses");
      return false;
    }
  }
  // FIXME: check whether all uses of the base pointer are constant PtrAdds.
  // That might allow us to end base's liveness here by adjusting the constant.
  for (auto &UseMI : MRI.use_nodbg_instructions(Addr)) {
    if (!dominates(MI, UseMI)) {
      LLVM_DEBUG(dbgs() << "    Skipping, does not dominate all addr uses.");
      return false;
    }
  }
  return true;
}
bool CombinerHelper::tryCombineIndexedLoadStore(MachineInstr &MI) {
  IndexedLoadStoreMatchInfo MatchInfo;
  if (matchCombineIndexedLoadStore(MI, MatchInfo)) {
    applyCombineIndexedLoadStore(MI, MatchInfo);
    return true;
  }
  return false;
}
bool CombinerHelper::matchCombineIndexedLoadStore(MachineInstr &MI, IndexedLoadStoreMatchInfo &MatchInfo) {
  unsigned Opcode = MI.getOpcode();
  if (Opcode != TargetOpcode::G_LOAD && Opcode != TargetOpcode::G_SEXTLOAD &&
      Opcode != TargetOpcode::G_ZEXTLOAD && Opcode != TargetOpcode::G_STORE)
    return false;
  // For now, no targets actually support these opcodes so don't waste time
  // running these unless we're forced to for testing.
  if (!ForceLegalIndexing)
    return false;
  MatchInfo.IsPre = findPreIndexCandidate(MI, MatchInfo.Addr, MatchInfo.Base,
                                          MatchInfo.Offset);
  if (!MatchInfo.IsPre &&
      !findPostIndexCandidate(MI, MatchInfo.Addr, MatchInfo.Base,
                              MatchInfo.Offset))
    return false;
  return true;
}
void CombinerHelper::applyCombineIndexedLoadStore(
    MachineInstr &MI, IndexedLoadStoreMatchInfo &MatchInfo) {
  MachineInstr &AddrDef = *MRI.getUniqueVRegDef(MatchInfo.Addr);
  MachineIRBuilder MIRBuilder(MI);
  unsigned Opcode = MI.getOpcode();
  bool IsStore = Opcode == TargetOpcode::G_STORE;
  unsigned NewOpcode;
  switch (Opcode) {
  case TargetOpcode::G_LOAD:
    NewOpcode = TargetOpcode::G_INDEXED_LOAD;
    break;
  case TargetOpcode::G_SEXTLOAD:
    NewOpcode = TargetOpcode::G_INDEXED_SEXTLOAD;
    break;
  case TargetOpcode::G_ZEXTLOAD:
    NewOpcode = TargetOpcode::G_INDEXED_ZEXTLOAD;
    break;
  case TargetOpcode::G_STORE:
    NewOpcode = TargetOpcode::G_INDEXED_STORE;
    break;
  default:
    llvm_unreachable("Unknown load/store opcode");
  }
  auto MIB = MIRBuilder.buildInstr(NewOpcode);
  if (IsStore) {
    MIB.addDef(MatchInfo.Addr);
    MIB.addUse(MI.getOperand(0).getReg());
  } else {
    MIB.addDef(MI.getOperand(0).getReg());
    MIB.addDef(MatchInfo.Addr);
  }
  MIB.addUse(MatchInfo.Base);
  MIB.addUse(MatchInfo.Offset);
  MIB.addImm(MatchInfo.IsPre);
  MI.eraseFromParent();
  AddrDef.eraseFromParent();
  LLVM_DEBUG(dbgs() << "    Combinined to indexed operation");
}
bool CombinerHelper::matchCombineDivRem(MachineInstr &MI,
                                        MachineInstr *&OtherMI) {
  unsigned Opcode = MI.getOpcode();
  bool IsDiv, IsSigned;
  switch (Opcode) {
  default:
    llvm_unreachable("Unexpected opcode!");
  case TargetOpcode::G_SDIV:
  case TargetOpcode::G_UDIV: {
    IsDiv = true;
    IsSigned = Opcode == TargetOpcode::G_SDIV;
    break;
  }
  case TargetOpcode::G_SREM:
  case TargetOpcode::G_UREM: {
    IsDiv = false;
    IsSigned = Opcode == TargetOpcode::G_SREM;
    break;
  }
  }
  Register Src1 = MI.getOperand(1).getReg();
  unsigned DivOpcode, RemOpcode, DivremOpcode;
  if (IsSigned) {
    DivOpcode = TargetOpcode::G_SDIV;
    RemOpcode = TargetOpcode::G_SREM;
    DivremOpcode = TargetOpcode::G_SDIVREM;
  } else {
    DivOpcode = TargetOpcode::G_UDIV;
    RemOpcode = TargetOpcode::G_UREM;
    DivremOpcode = TargetOpcode::G_UDIVREM;
  }
  if (!isLegalOrBeforeLegalizer({DivremOpcode, {MRI.getType(Src1)}}))
    return false;
  // Combine:
  //   %div:_ = G_[SU]DIV %src1:_, %src2:_
  //   %rem:_ = G_[SU]REM %src1:_, %src2:_
  // into:
  //  %div:_, %rem:_ = G_[SU]DIVREM %src1:_, %src2:_
  // Combine:
  //   %rem:_ = G_[SU]REM %src1:_, %src2:_
  //   %div:_ = G_[SU]DIV %src1:_, %src2:_
  // into:
  //  %div:_, %rem:_ = G_[SU]DIVREM %src1:_, %src2:_
  for (auto &UseMI : MRI.use_nodbg_instructions(Src1)) {
    if (MI.getParent() == UseMI.getParent() &&
        ((IsDiv && UseMI.getOpcode() == RemOpcode) ||
         (!IsDiv && UseMI.getOpcode() == DivOpcode)) &&
        matchEqualDefs(MI.getOperand(2), UseMI.getOperand(2))) {
      OtherMI = &UseMI;
      return true;
    }
  }
  return false;
}
void CombinerHelper::applyCombineDivRem(MachineInstr &MI,
                                        MachineInstr *&OtherMI) {
  unsigned Opcode = MI.getOpcode();
  assert(OtherMI && "OtherMI shouldn't be empty.");
  Register DestDivReg, DestRemReg;
  if (Opcode == TargetOpcode::G_SDIV || Opcode == TargetOpcode::G_UDIV) {
    DestDivReg = MI.getOperand(0).getReg();
    DestRemReg = OtherMI->getOperand(0).getReg();
  } else {
    DestDivReg = OtherMI->getOperand(0).getReg();
    DestRemReg = MI.getOperand(0).getReg();
  }
  bool IsSigned =
      Opcode == TargetOpcode::G_SDIV || Opcode == TargetOpcode::G_SREM;
  // Check which instruction is first in the block so we don't break def-use
  // deps by "moving" the instruction incorrectly.
  if (dominates(MI, *OtherMI))
    Builder.setInstrAndDebugLoc(MI);
  else
    Builder.setInstrAndDebugLoc(*OtherMI);
  Builder.buildInstr(IsSigned ? TargetOpcode::G_SDIVREM
                              : TargetOpcode::G_UDIVREM,
                     {DestDivReg, DestRemReg},
                     {MI.getOperand(1).getReg(), MI.getOperand(2).getReg()});
  MI.eraseFromParent();
  OtherMI->eraseFromParent();
}
bool CombinerHelper::matchOptBrCondByInvertingCond(MachineInstr &MI,
                                                   MachineInstr *&BrCond) {
  assert(MI.getOpcode() == TargetOpcode::G_BR);
  // Try to match the following:
  // bb1:
  //   G_BRCOND %c1, %bb2
  //   G_BR %bb3
  // bb2:
  // ...
  // bb3:
  // The above pattern does not have a fall through to the successor bb2, always
  // resulting in a branch no matter which path is taken. Here we try to find
  // and replace that pattern with conditional branch to bb3 and otherwise
  // fallthrough to bb2. This is generally better for branch predictors.
  MachineBasicBlock *MBB = MI.getParent();
  MachineBasicBlock::iterator BrIt(MI);
  if (BrIt == MBB->begin())
    return false;
  assert(std::next(BrIt) == MBB->end() && "expected G_BR to be a terminator");
  BrCond = &*std::prev(BrIt);
  if (BrCond->getOpcode() != TargetOpcode::G_BRCOND)
    return false;
  // Check that the next block is the conditional branch target. Also make sure
  // that it isn't the same as the G_BR's target (otherwise, this will loop.)
  MachineBasicBlock *BrCondTarget = BrCond->getOperand(1).getMBB();
  return BrCondTarget != MI.getOperand(0).getMBB() &&
         MBB->isLayoutSuccessor(BrCondTarget);
}
void CombinerHelper::applyOptBrCondByInvertingCond(MachineInstr &MI,
                                                   MachineInstr *&BrCond) {
  MachineBasicBlock *BrTarget = MI.getOperand(0).getMBB();
  Builder.setInstrAndDebugLoc(*BrCond);
  LLT Ty = MRI.getType(BrCond->getOperand(0).getReg());
  // FIXME: Does int/fp matter for this? If so, we might need to restrict
  // this to i1 only since we might not know for sure what kind of
  // compare generated the condition value.
  auto True = Builder.buildConstant(
      Ty, getICmpTrueVal(getTargetLowering(), false, false));
  auto Xor = Builder.buildXor(Ty, BrCond->getOperand(0), True);
  auto *FallthroughBB = BrCond->getOperand(1).getMBB();
  Observer.changingInstr(MI);
  MI.getOperand(0).setMBB(FallthroughBB);
  Observer.changedInstr(MI);
  // Change the conditional branch to use the inverted condition and
  // new target block.
  Observer.changingInstr(*BrCond);
  BrCond->getOperand(0).setReg(Xor.getReg(0));
  BrCond->getOperand(1).setMBB(BrTarget);
  Observer.changedInstr(*BrCond);
}
static bool shouldLowerMemFuncForSize(const MachineFunction &MF) {
  // On Darwin, -Os means optimize for size without hurting performance, so
  // only really optimize for size when -Oz (MinSize) is used.
  if (MF.getTarget().getTargetTriple().isOSDarwin())
    return MF.getFunction().hasMinSize();
  return MF.getFunction().hasOptSize();
}
// Returns a list of types to use for memory op lowering in MemOps. A partial
// port of findOptimalMemOpLowering in TargetLowering.
static bool findGISelOptimalMemOpLowering(std::vector<LLT> &MemOps,
                                          unsigned Limit, const MemOp &Op,
                                          unsigned DstAS, unsigned SrcAS,
                                          const AttributeList &FuncAttributes,
                                          const TargetLowering &TLI) {
  if (Op.isMemcpyWithFixedDstAlign() && Op.getSrcAlign() < Op.getDstAlign())
    return false;
  LLT Ty = TLI.getOptimalMemOpLLT(Op, FuncAttributes);
  if (Ty == LLT()) {
    // Use the largest scalar type whose alignment constraints are satisfied.
    // We only need to check DstAlign here as SrcAlign is always greater or
    // equal to DstAlign (or zero).
    Ty = LLT::scalar(64);
    if (Op.isFixedDstAlign())
      while (Op.getDstAlign() < Ty.getSizeInBytes() &&
             !TLI.allowsMisalignedMemoryAccesses(Ty, DstAS, Op.getDstAlign()))
        Ty = LLT::scalar(Ty.getSizeInBytes());
    assert(Ty.getSizeInBits() > 0 && "Could not find valid type");
    // FIXME: check for the largest legal type we can load/store to.
  }
  unsigned NumMemOps = 0;
  uint64_t Size = Op.size();
  while (Size) {
    unsigned TySize = Ty.getSizeInBytes();
    while (TySize > Size) {
      // For now, only use non-vector load / store's for the left-over pieces.
      LLT NewTy = Ty;
      // FIXME: check for mem op safety and legality of the types. Not all of
      // SDAGisms map cleanly to GISel concepts.
      if (NewTy.isVector())
        NewTy = NewTy.getSizeInBits() > 64 ? LLT::scalar(64) : LLT::scalar(32);
      NewTy = LLT::scalar(PowerOf2Floor(NewTy.getSizeInBits() - 1));
      unsigned NewTySize = NewTy.getSizeInBytes();
      assert(NewTySize > 0 && "Could not find appropriate type");
      // If the new LLT cannot cover all of the remaining bits, then consider
      // issuing a (or a pair of) unaligned and overlapping load / store.
      bool Fast;
      // Need to get a VT equivalent for allowMisalignedMemoryAccesses().
      MVT VT = getMVTForLLT(Ty);
      if (NumMemOps && Op.allowOverlap() && NewTySize < Size &&
          TLI.allowsMisalignedMemoryAccesses(
              VT, DstAS, Op.isFixedDstAlign() ? Op.getDstAlign() : Align(1),
              MachineMemOperand::MONone, &Fast) &&
          Fast)
        TySize = Size;
      else {
        Ty = NewTy;
        TySize = NewTySize;
      }
    }
    if (++NumMemOps > Limit)
      return false;
    MemOps.push_back(Ty);
    Size -= TySize;
  }
  return true;
}
static Type *getTypeForLLT(LLT Ty, LLVMContext &C) {
  if (Ty.isVector())
    return FixedVectorType::get(IntegerType::get(C, Ty.getScalarSizeInBits()),
                                Ty.getNumElements());
  return IntegerType::get(C, Ty.getSizeInBits());
}
// Get a vectorized representation of the memset value operand, GISel edition.
static Register getMemsetValue(Register Val, LLT Ty, MachineIRBuilder &MIB) {
  MachineRegisterInfo &MRI = *MIB.getMRI();
  unsigned NumBits = Ty.getScalarSizeInBits();
  auto ValVRegAndVal = getConstantVRegValWithLookThrough(Val, MRI);
  if (!Ty.isVector() && ValVRegAndVal) {
    APInt Scalar = ValVRegAndVal->Value.truncOrSelf(8);
    APInt SplatVal = APInt::getSplat(NumBits, Scalar);
    return MIB.buildConstant(Ty, SplatVal).getReg(0);
  }
  // Extend the byte value to the larger type, and then multiply by a magic
  // value 0x010101... in order to replicate it across every byte.
  // Unless it's zero, in which case just emit a larger G_CONSTANT 0.
  if (ValVRegAndVal && ValVRegAndVal->Value == 0) {
    return MIB.buildConstant(Ty, 0).getReg(0);
  }
  LLT ExtType = Ty.getScalarType();
  auto ZExt = MIB.buildZExtOrTrunc(ExtType, Val);
  if (NumBits > 8) {
    APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01));
    auto MagicMI = MIB.buildConstant(ExtType, Magic);
    Val = MIB.buildMul(ExtType, ZExt, MagicMI).getReg(0);
  }
  // For vector types create a G_BUILD_VECTOR.
  if (Ty.isVector())
    Val = MIB.buildSplatVector(Ty, Val).getReg(0);
  return Val;
}
bool CombinerHelper::optimizeMemset(MachineInstr &MI, Register Dst,
                                    Register Val, uint64_t KnownLen,
                                    Align Alignment, bool IsVolatile) {
  auto &MF = *MI.getParent()->getParent();
  const auto &TLI = *MF.getSubtarget().getTargetLowering();
  auto &DL = MF.getDataLayout();
  LLVMContext &C = MF.getFunction().getContext();
  assert(KnownLen != 0 && "Have a zero length memset length!");
  bool DstAlignCanChange = false;
  MachineFrameInfo &MFI = MF.getFrameInfo();
  bool OptSize = shouldLowerMemFuncForSize(MF);
  MachineInstr *FIDef = getOpcodeDef(TargetOpcode::G_FRAME_INDEX, Dst, MRI);
  if (FIDef && !MFI.isFixedObjectIndex(FIDef->getOperand(1).getIndex()))
    DstAlignCanChange = true;
  unsigned Limit = TLI.getMaxStoresPerMemset(OptSize);
  std::vector<LLT> MemOps;
  const auto &DstMMO = **MI.memoperands_begin();
  MachinePointerInfo DstPtrInfo = DstMMO.getPointerInfo();
  auto ValVRegAndVal = getConstantVRegValWithLookThrough(Val, MRI);
  bool IsZeroVal = ValVRegAndVal && ValVRegAndVal->Value == 0;
  if (!findGISelOptimalMemOpLowering(MemOps, Limit,
                                     MemOp::Set(KnownLen, DstAlignCanChange,
                                                Alignment,
                                                /*IsZeroMemset=*/IsZeroVal,
                                                /*IsVolatile=*/IsVolatile),
                                     DstPtrInfo.getAddrSpace(), ~0u,
                                     MF.getFunction().getAttributes(), TLI))
    return false;
  if (DstAlignCanChange) {
    // Get an estimate of the type from the LLT.
    Type *IRTy = getTypeForLLT(MemOps[0], C);
    Align NewAlign = DL.getABITypeAlign(IRTy);
    if (NewAlign > Alignment) {
      Alignment = NewAlign;
      unsigned FI = FIDef->getOperand(1).getIndex();
      // Give the stack frame object a larger alignment if needed.
      if (MFI.getObjectAlign(FI) < Alignment)
        MFI.setObjectAlignment(FI, Alignment);
    }
  }
  MachineIRBuilder MIB(MI);
  // Find the largest store and generate the bit pattern for it.
  LLT LargestTy = MemOps[0];
  for (unsigned i = 1; i < MemOps.size(); i++)
    if (MemOps[i].getSizeInBits() > LargestTy.getSizeInBits())
      LargestTy = MemOps[i];
  // The memset stored value is always defined as an s8, so in order to make it
  // work with larger store types we need to repeat the bit pattern across the
  // wider type.
  Register MemSetValue = getMemsetValue(Val, LargestTy, MIB);
  if (!MemSetValue)
    return false;
  // Generate the stores. For each store type in the list, we generate the
  // matching store of that type to the destination address.
  LLT PtrTy = MRI.getType(Dst);
  unsigned DstOff = 0;
  unsigned Size = KnownLen;
  for (unsigned I = 0; I < MemOps.size(); I++) {
    LLT Ty = MemOps[I];
    unsigned TySize = Ty.getSizeInBytes();
    if (TySize > Size) {
      // Issuing an unaligned load / store pair that overlaps with the previous
      // pair. Adjust the offset accordingly.
      assert(I == MemOps.size() - 1 && I != 0);
      DstOff -= TySize - Size;
    }
    // If this store is smaller than the largest store see whether we can get
    // the smaller value for free with a truncate.
    Register Value = MemSetValue;
    if (Ty.getSizeInBits() < LargestTy.getSizeInBits()) {
      MVT VT = getMVTForLLT(Ty);
      MVT LargestVT = getMVTForLLT(LargestTy);
      if (!LargestTy.isVector() && !Ty.isVector() &&
          TLI.isTruncateFree(LargestVT, VT))
        Value = MIB.buildTrunc(Ty, MemSetValue).getReg(0);
      else
        Value = getMemsetValue(Val, Ty, MIB);
      if (!Value)
        return false;
    }
    auto *StoreMMO =
        MF.getMachineMemOperand(&DstMMO, DstOff, Ty);
    Register Ptr = Dst;
    if (DstOff != 0) {
      auto Offset =
          MIB.buildConstant(LLT::scalar(PtrTy.getSizeInBits()), DstOff);
      Ptr = MIB.buildPtrAdd(PtrTy, Dst, Offset).getReg(0);
    }
    MIB.buildStore(Value, Ptr, *StoreMMO);
    DstOff += Ty.getSizeInBytes();
    Size -= TySize;
  }
  MI.eraseFromParent();
  return true;
}
bool CombinerHelper::tryEmitMemcpyInline(MachineInstr &MI) {
  assert(MI.getOpcode() == TargetOpcode::G_MEMCPY_INLINE);
  Register Dst = MI.getOperand(0).getReg();
  Register Src = MI.getOperand(1).getReg();
  Register Len = MI.getOperand(2).getReg();
  const auto *MMOIt = MI.memoperands_begin();
  const MachineMemOperand *MemOp = *MMOIt;
  bool IsVolatile = MemOp->isVolatile();
  // See if this is a constant length copy
  auto LenVRegAndVal = getConstantVRegValWithLookThrough(Len, MRI);
  // FIXME: support dynamically sized G_MEMCPY_INLINE
  assert(LenVRegAndVal.hasValue() &&
         "inline memcpy with dynamic size is not yet supported");
  uint64_t KnownLen = LenVRegAndVal->Value.getZExtValue();
  if (KnownLen == 0) {
    MI.eraseFromParent();
    return true;
  }
  const auto &DstMMO = **MI.memoperands_begin();
  const auto &SrcMMO = **std::next(MI.memoperands_begin());
  Align DstAlign = DstMMO.getBaseAlign();
  Align SrcAlign = SrcMMO.getBaseAlign();
  return tryEmitMemcpyInline(MI, Dst, Src, KnownLen, DstAlign, SrcAlign,
                             IsVolatile);
}
bool CombinerHelper::tryEmitMemcpyInline(MachineInstr &MI, Register Dst,
                                         Register Src, uint64_t KnownLen,
                                         Align DstAlign, Align SrcAlign,
                                         bool IsVolatile) {
  assert(MI.getOpcode() == TargetOpcode::G_MEMCPY_INLINE);
  return optimizeMemcpy(MI, Dst, Src, KnownLen,
                        std::numeric_limits<uint64_t>::max(), DstAlign,
                        SrcAlign, IsVolatile);
}
bool CombinerHelper::optimizeMemcpy(MachineInstr &MI, Register Dst,
                                    Register Src, uint64_t KnownLen,
                                    uint64_t Limit, Align DstAlign,
                                    Align SrcAlign, bool IsVolatile) {
  auto &MF = *MI.getParent()->getParent();
  const auto &TLI = *MF.getSubtarget().getTargetLowering();
  auto &DL = MF.getDataLayout();
  LLVMContext &C = MF.getFunction().getContext();
  assert(KnownLen != 0 && "Have a zero length memcpy length!");
  bool DstAlignCanChange = false;
  MachineFrameInfo &MFI = MF.getFrameInfo();
  Align Alignment = commonAlignment(DstAlign, SrcAlign);
  MachineInstr *FIDef = getOpcodeDef(TargetOpcode::G_FRAME_INDEX, Dst, MRI);
  if (FIDef && !MFI.isFixedObjectIndex(FIDef->getOperand(1).getIndex()))
    DstAlignCanChange = true;
  // FIXME: infer better src pointer alignment like SelectionDAG does here.
  // FIXME: also use the equivalent of isMemSrcFromConstant and alwaysinlining
  // if the memcpy is in a tail call position.
  std::vector<LLT> MemOps;
  const auto &DstMMO = **MI.memoperands_begin();
  const auto &SrcMMO = **std::next(MI.memoperands_begin());
  MachinePointerInfo DstPtrInfo = DstMMO.getPointerInfo();
  MachinePointerInfo SrcPtrInfo = SrcMMO.getPointerInfo();
  if (!findGISelOptimalMemOpLowering(
          MemOps, Limit,
          MemOp::Copy(KnownLen, DstAlignCanChange, Alignment, SrcAlign,
                      IsVolatile),
          DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(),
          MF.getFunction().getAttributes(), TLI))
    return false;
  if (DstAlignCanChange) {
    // Get an estimate of the type from the LLT.
    Type *IRTy = getTypeForLLT(MemOps[0], C);
    Align NewAlign = DL.getABITypeAlign(IRTy);
    // Don't promote to an alignment that would require dynamic stack
    // realignment.
    const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
    if (!TRI->hasStackRealignment(MF))
      while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign))
        NewAlign = NewAlign / 2;
    if (NewAlign > Alignment) {
      Alignment = NewAlign;
      unsigned FI = FIDef->getOperand(1).getIndex();
      // Give the stack frame object a larger alignment if needed.
      if (MFI.getObjectAlign(FI) < Alignment)
        MFI.setObjectAlignment(FI, Alignment);
    }
  }
  LLVM_DEBUG(dbgs() << "Inlining memcpy: " << MI << " into loads & stores\n");
  MachineIRBuilder MIB(MI);
  // Now we need to emit a pair of load and stores for each of the types we've
  // collected. I.e. for each type, generate a load from the source pointer of
  // that type width, and then generate a corresponding store to the dest buffer
  // of that value loaded. This can result in a sequence of loads and stores
  // mixed types, depending on what the target specifies as good types to use.
  unsigned CurrOffset = 0;
  LLT PtrTy = MRI.getType(Src);
  unsigned Size = KnownLen;
  for (auto CopyTy : MemOps) {
    // Issuing an unaligned load / store pair  that overlaps with the previous
    // pair. Adjust the offset accordingly.
    if (CopyTy.getSizeInBytes() > Size)
      CurrOffset -= CopyTy.getSizeInBytes() - Size;
    // Construct MMOs for the accesses.
    auto *LoadMMO =
        MF.getMachineMemOperand(&SrcMMO, CurrOffset, CopyTy.getSizeInBytes());
    auto *StoreMMO =
        MF.getMachineMemOperand(&DstMMO, CurrOffset, CopyTy.getSizeInBytes());
    // Create the load.
    Register LoadPtr = Src;
    Register Offset;
    if (CurrOffset != 0) {
      Offset = MIB.buildConstant(LLT::scalar(PtrTy.getSizeInBits()), CurrOffset)
                   .getReg(0);
      LoadPtr = MIB.buildPtrAdd(PtrTy, Src, Offset).getReg(0);
    }
    auto LdVal = MIB.buildLoad(CopyTy, LoadPtr, *LoadMMO);
    // Create the store.
    Register StorePtr =
        CurrOffset == 0 ? Dst : MIB.buildPtrAdd(PtrTy, Dst, Offset).getReg(0);
    MIB.buildStore(LdVal, StorePtr, *StoreMMO);
    CurrOffset += CopyTy.getSizeInBytes();
    Size -= CopyTy.getSizeInBytes();
  }
  MI.eraseFromParent();
  return true;
}
bool CombinerHelper::optimizeMemmove(MachineInstr &MI, Register Dst,
                                     Register Src, uint64_t KnownLen,
                                     Align DstAlign, Align SrcAlign,
                                     bool IsVolatile) {
  auto &MF = *MI.getParent()->getParent();
  const auto &TLI = *MF.getSubtarget().getTargetLowering();
  auto &DL = MF.getDataLayout();
  LLVMContext &C = MF.getFunction().getContext();
  assert(KnownLen != 0 && "Have a zero length memmove length!");
  bool DstAlignCanChange = false;
  MachineFrameInfo &MFI = MF.getFrameInfo();
  bool OptSize = shouldLowerMemFuncForSize(MF);
  Align Alignment = commonAlignment(DstAlign, SrcAlign);
  MachineInstr *FIDef = getOpcodeDef(TargetOpcode::G_FRAME_INDEX, Dst, MRI);
  if (FIDef && !MFI.isFixedObjectIndex(FIDef->getOperand(1).getIndex()))
    DstAlignCanChange = true;
  unsigned Limit = TLI.getMaxStoresPerMemmove(OptSize);
  std::vector<LLT> MemOps;
  const auto &DstMMO = **MI.memoperands_begin();
  const auto &SrcMMO = **std::next(MI.memoperands_begin());
  MachinePointerInfo DstPtrInfo = DstMMO.getPointerInfo();
  MachinePointerInfo SrcPtrInfo = SrcMMO.getPointerInfo();
  // FIXME: SelectionDAG always passes false for 'AllowOverlap', apparently due
  // to a bug in it's findOptimalMemOpLowering implementation. For now do the
  // same thing here.
  if (!findGISelOptimalMemOpLowering(
          MemOps, Limit,
          MemOp::Copy(KnownLen, DstAlignCanChange, Alignment, SrcAlign,
                      /*IsVolatile*/ true),
          DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(),
          MF.getFunction().getAttributes(), TLI))
    return false;
  if (DstAlignCanChange) {
    // Get an estimate of the type from the LLT.
    Type *IRTy = getTypeForLLT(MemOps[0], C);
    Align NewAlign = DL.getABITypeAlign(IRTy);
    // Don't promote to an alignment that would require dynamic stack
    // realignment.
    const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
    if (!TRI->hasStackRealignment(MF))
      while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign))
        NewAlign = NewAlign / 2;
    if (NewAlign > Alignment) {
      Alignment = NewAlign;
      unsigned FI = FIDef->getOperand(1).getIndex();
      // Give the stack frame object a larger alignment if needed.
      if (MFI.getObjectAlign(FI) < Alignment)
        MFI.setObjectAlignment(FI, Alignment);
    }
  }
  LLVM_DEBUG(dbgs() << "Inlining memmove: " << MI << " into loads & stores\n");
  MachineIRBuilder MIB(MI);
  // Memmove requires that we perform the loads first before issuing the stores.
  // Apart from that, this loop is pretty much doing the same thing as the
  // memcpy codegen function.
  unsigned CurrOffset = 0;
  LLT PtrTy = MRI.getType(Src);
  SmallVector<Register, 16> LoadVals;
  for (auto CopyTy : MemOps) {
    // Construct MMO for the load.
    auto *LoadMMO =
        MF.getMachineMemOperand(&SrcMMO, CurrOffset, CopyTy.getSizeInBytes());
    // Create the load.
    Register LoadPtr = Src;
    if (CurrOffset != 0) {
      auto Offset =
          MIB.buildConstant(LLT::scalar(PtrTy.getSizeInBits()), CurrOffset);
      LoadPtr = MIB.buildPtrAdd(PtrTy, Src, Offset).getReg(0);
    }
    LoadVals.push_back(MIB.buildLoad(CopyTy, LoadPtr, *LoadMMO).getReg(0));
    CurrOffset += CopyTy.getSizeInBytes();
  }
  CurrOffset = 0;
  for (unsigned I = 0; I < MemOps.size(); ++I) {
    LLT CopyTy = MemOps[I];
    // Now store the values loaded.
    auto *StoreMMO =
        MF.getMachineMemOperand(&DstMMO, CurrOffset, CopyTy.getSizeInBytes());
    Register StorePtr = Dst;
    if (CurrOffset != 0) {
      auto Offset =
          MIB.buildConstant(LLT::scalar(PtrTy.getSizeInBits()), CurrOffset);
      StorePtr = MIB.buildPtrAdd(PtrTy, Dst, Offset).getReg(0);
    }
    MIB.buildStore(LoadVals[I], StorePtr, *StoreMMO);
    CurrOffset += CopyTy.getSizeInBytes();
  }
  MI.eraseFromParent();
  return true;
}
bool CombinerHelper::tryCombineMemCpyFamily(MachineInstr &MI, unsigned MaxLen) {
  const unsigned Opc = MI.getOpcode();
  // This combine is fairly complex so it's not written with a separate
  // matcher function.
  assert((Opc == TargetOpcode::G_MEMCPY || Opc == TargetOpcode::G_MEMMOVE ||
          Opc == TargetOpcode::G_MEMSET) && "Expected memcpy like instruction");
  auto MMOIt = MI.memoperands_begin();
  const MachineMemOperand *MemOp = *MMOIt;
  Align DstAlign = MemOp->getBaseAlign();
  Align SrcAlign;
  Register Dst = MI.getOperand(0).getReg();
  Register Src = MI.getOperand(1).getReg();
  Register Len = MI.getOperand(2).getReg();
  if (Opc != TargetOpcode::G_MEMSET) {
    assert(MMOIt != MI.memoperands_end() && "Expected a second MMO on MI");
    MemOp = *(++MMOIt);
    SrcAlign = MemOp->getBaseAlign();
  }
  // See if this is a constant length copy
  auto LenVRegAndVal = getConstantVRegValWithLookThrough(Len, MRI);
  if (!LenVRegAndVal)
    return false; // Leave it to the legalizer to lower it to a libcall.
  uint64_t KnownLen = LenVRegAndVal->Value.getZExtValue();
  if (KnownLen == 0) {
    MI.eraseFromParent();
    return true;
  }
  bool IsVolatile = MemOp->isVolatile();
  if (Opc == TargetOpcode::G_MEMCPY_INLINE)
    return tryEmitMemcpyInline(MI, Dst, Src, KnownLen, DstAlign, SrcAlign,
                               IsVolatile);
  // Don't try to optimize volatile.
  if (IsVolatile)
    return false;
  if (MaxLen && KnownLen > MaxLen)
    return false;
  if (Opc == TargetOpcode::G_MEMCPY) {
    auto &MF = *MI.getParent()->getParent();
    const auto &TLI = *MF.getSubtarget().getTargetLowering();
    bool OptSize = shouldLowerMemFuncForSize(MF);
    uint64_t Limit = TLI.getMaxStoresPerMemcpy(OptSize);
    return optimizeMemcpy(MI, Dst, Src, KnownLen, Limit, DstAlign, SrcAlign,
                          IsVolatile);
  }
  if (Opc == TargetOpcode::G_MEMMOVE)
    return optimizeMemmove(MI, Dst, Src, KnownLen, DstAlign, SrcAlign, IsVolatile);
  if (Opc == TargetOpcode::G_MEMSET)
    return optimizeMemset(MI, Dst, Src, KnownLen, DstAlign, IsVolatile);
  return false;
}
static Optional<APFloat> constantFoldFpUnary(unsigned Opcode, LLT DstTy,
                                             const Register Op,
                                             const MachineRegisterInfo &MRI) {
  const ConstantFP *MaybeCst = getConstantFPVRegVal(Op, MRI);
  if (!MaybeCst)
    return None;
  APFloat V = MaybeCst->getValueAPF();
  switch (Opcode) {
  default:
    llvm_unreachable("Unexpected opcode!");
  case TargetOpcode::G_FNEG: {
    V.changeSign();
    return V;
  }
  case TargetOpcode::G_FABS: {
    V.clearSign();
    return V;
  }
  case TargetOpcode::G_FPTRUNC:
    break;
  case TargetOpcode::G_FSQRT: {
    bool Unused;
    V.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &Unused);
    V = APFloat(sqrt(V.convertToDouble()));
    break;
  }
  case TargetOpcode::G_FLOG2: {
    bool Unused;
    V.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &Unused);
    V = APFloat(log2(V.convertToDouble()));
    break;
  }
  }
  // Convert `APFloat` to appropriate IEEE type depending on `DstTy`. Otherwise,
  // `buildFConstant` will assert on size mismatch. Only `G_FPTRUNC`, `G_FSQRT`,
  // and `G_FLOG2` reach here.
  bool Unused;
  V.convert(getFltSemanticForLLT(DstTy), APFloat::rmNearestTiesToEven, &Unused);
  return V;
}
bool CombinerHelper::matchCombineConstantFoldFpUnary(MachineInstr &MI,
                                                     Optional<APFloat> &Cst) {
  Register DstReg = MI.getOperand(0).getReg();
  Register SrcReg = MI.getOperand(1).getReg();
  LLT DstTy = MRI.getType(DstReg);
  Cst = constantFoldFpUnary(MI.getOpcode(), DstTy, SrcReg, MRI);
  return Cst.hasValue();
}
void CombinerHelper::applyCombineConstantFoldFpUnary(MachineInstr &MI,
                                                     Optional<APFloat> &Cst) {
  assert(Cst.hasValue() && "Optional is unexpectedly empty!");
  Builder.setInstrAndDebugLoc(MI);
  MachineFunction &MF = Builder.getMF();
  auto *FPVal = ConstantFP::get(MF.getFunction().getContext(), *Cst);
  Register DstReg = MI.getOperand(0).getReg();
  Builder.buildFConstant(DstReg, *FPVal);
  MI.eraseFromParent();
}
bool CombinerHelper::matchPtrAddImmedChain(MachineInstr &MI,
                                           PtrAddChain &MatchInfo) {
  // We're trying to match the following pattern:
  //   %t1 = G_PTR_ADD %base, G_CONSTANT imm1
  //   %root = G_PTR_ADD %t1, G_CONSTANT imm2
  // -->
  //   %root = G_PTR_ADD %base, G_CONSTANT (imm1 + imm2)
  if (MI.getOpcode() != TargetOpcode::G_PTR_ADD)
    return false;
  Register Add2 = MI.getOperand(1).getReg();
  Register Imm1 = MI.getOperand(2).getReg();
  auto MaybeImmVal = getConstantVRegValWithLookThrough(Imm1, MRI);
  if (!MaybeImmVal)
    return false;
  // Don't do this combine if there multiple uses of the first PTR_ADD,
  // since we may be able to compute the second PTR_ADD as an immediate
  // offset anyway. Folding the first offset into the second may cause us
  // to go beyond the bounds of our legal addressing modes.
  if (!MRI.hasOneNonDBGUse(Add2))
    return false;
  MachineInstr *Add2Def = MRI.getUniqueVRegDef(Add2);
  if (!Add2Def || Add2Def->getOpcode() != TargetOpcode::G_PTR_ADD)
    return false;
  Register Base = Add2Def->getOperand(1).getReg();
  Register Imm2 = Add2Def->getOperand(2).getReg();
  auto MaybeImm2Val = getConstantVRegValWithLookThrough(Imm2, MRI);
  if (!MaybeImm2Val)
    return false;
  // Pass the combined immediate to the apply function.
  MatchInfo.Imm = (MaybeImmVal->Value + MaybeImm2Val->Value).getSExtValue();
  MatchInfo.Base = Base;
  return true;
}
void CombinerHelper::applyPtrAddImmedChain(MachineInstr &MI,
                                           PtrAddChain &MatchInfo) {
  assert(MI.getOpcode() == TargetOpcode::G_PTR_ADD && "Expected G_PTR_ADD");
  MachineIRBuilder MIB(MI);
  LLT OffsetTy = MRI.getType(MI.getOperand(2).getReg());
  auto NewOffset = MIB.buildConstant(OffsetTy, MatchInfo.Imm);
  Observer.changingInstr(MI);
  MI.getOperand(1).setReg(MatchInfo.Base);
  MI.getOperand(2).setReg(NewOffset.getReg(0));
  Observer.changedInstr(MI);
}
bool CombinerHelper::matchShiftImmedChain(MachineInstr &MI,
                                          RegisterImmPair &MatchInfo) {
  // We're trying to match the following pattern with any of
  // G_SHL/G_ASHR/G_LSHR/G_SSHLSAT/G_USHLSAT shift instructions:
  //   %t1 = SHIFT %base, G_CONSTANT imm1
  //   %root = SHIFT %t1, G_CONSTANT imm2
  // -->
  //   %root = SHIFT %base, G_CONSTANT (imm1 + imm2)
  unsigned Opcode = MI.getOpcode();
  assert((Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_ASHR ||
          Opcode == TargetOpcode::G_LSHR || Opcode == TargetOpcode::G_SSHLSAT ||
          Opcode == TargetOpcode::G_USHLSAT) &&
         "Expected G_SHL, G_ASHR, G_LSHR, G_SSHLSAT or G_USHLSAT");
  Register Shl2 = MI.getOperand(1).getReg();
  Register Imm1 = MI.getOperand(2).getReg();
  auto MaybeImmVal = getConstantVRegValWithLookThrough(Imm1, MRI);
  if (!MaybeImmVal)
    return false;
  MachineInstr *Shl2Def = MRI.getUniqueVRegDef(Shl2);
  if (Shl2Def->getOpcode() != Opcode)
    return false;
  Register Base = Shl2Def->getOperand(1).getReg();
  Register Imm2 = Shl2Def->getOperand(2).getReg();
  auto MaybeImm2Val = getConstantVRegValWithLookThrough(Imm2, MRI);
  if (!MaybeImm2Val)
    return false;
  // Pass the combined immediate to the apply function.
  MatchInfo.Imm =
      (MaybeImmVal->Value.getSExtValue() + MaybeImm2Val->Value).getSExtValue();
  MatchInfo.Reg = Base;
  // There is no simple replacement for a saturating unsigned left shift that
  // exceeds the scalar size.
  if (Opcode == TargetOpcode::G_USHLSAT &&
      MatchInfo.Imm >= MRI.getType(Shl2).getScalarSizeInBits())
    return false;
  return true;
}
void CombinerHelper::applyShiftImmedChain(MachineInstr &MI,
                                          RegisterImmPair &MatchInfo) {
  unsigned Opcode = MI.getOpcode();
  assert((Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_ASHR ||
          Opcode == TargetOpcode::G_LSHR || Opcode == TargetOpcode::G_SSHLSAT ||
          Opcode == TargetOpcode::G_USHLSAT) &&
         "Expected G_SHL, G_ASHR, G_LSHR, G_SSHLSAT or G_USHLSAT");
  Builder.setInstrAndDebugLoc(MI);
  LLT Ty = MRI.getType(MI.getOperand(1).getReg());
  unsigned const ScalarSizeInBits = Ty.getScalarSizeInBits();
  auto Imm = MatchInfo.Imm;
  if (Imm >= ScalarSizeInBits) {
    // Any logical shift that exceeds scalar size will produce zero.
    if (Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_LSHR) {
      Builder.buildConstant(MI.getOperand(0), 0);
      MI.eraseFromParent();
      return;
    }
    // Arithmetic shift and saturating signed left shift have no effect beyond
    // scalar size.
    Imm = ScalarSizeInBits - 1;
  }
  LLT ImmTy = MRI.getType(MI.getOperand(2).getReg());
  Register NewImm = Builder.buildConstant(ImmTy, Imm).getReg(0);
  Observer.changingInstr(MI);
  MI.getOperand(1).setReg(MatchInfo.Reg);
  MI.getOperand(2).setReg(NewImm);
  Observer.changedInstr(MI);
}
bool CombinerHelper::matchShiftOfShiftedLogic(MachineInstr &MI,
                                              ShiftOfShiftedLogic &MatchInfo) {
  // We're trying to match the following pattern with any of
  // G_SHL/G_ASHR/G_LSHR/G_USHLSAT/G_SSHLSAT shift instructions in combination
  // with any of G_AND/G_OR/G_XOR logic instructions.
  //   %t1 = SHIFT %X, G_CONSTANT C0
  //   %t2 = LOGIC %t1, %Y
  //   %root = SHIFT %t2, G_CONSTANT C1
  // -->
  //   %t3 = SHIFT %X, G_CONSTANT (C0+C1)
  //   %t4 = SHIFT %Y, G_CONSTANT C1
  //   %root = LOGIC %t3, %t4
  unsigned ShiftOpcode = MI.getOpcode();
  assert((ShiftOpcode == TargetOpcode::G_SHL ||
          ShiftOpcode == TargetOpcode::G_ASHR ||
          ShiftOpcode == TargetOpcode::G_LSHR ||
          ShiftOpcode == TargetOpcode::G_USHLSAT ||
          ShiftOpcode == TargetOpcode::G_SSHLSAT) &&
         "Expected G_SHL, G_ASHR, G_LSHR, G_USHLSAT and G_SSHLSAT");
  // Match a one-use bitwise logic op.
  Register LogicDest = MI.getOperand(1).getReg();
  if (!MRI.hasOneNonDBGUse(LogicDest))
    return false;
  MachineInstr *LogicMI = MRI.getUniqueVRegDef(LogicDest);
  unsigned LogicOpcode = LogicMI->getOpcode();
  if (LogicOpcode != TargetOpcode::G_AND && LogicOpcode != TargetOpcode::G_OR &&
      LogicOpcode != TargetOpcode::G_XOR)
    return false;
  // Find a matching one-use shift by constant.
  const Register C1 = MI.getOperand(2).getReg();
  auto MaybeImmVal = getConstantVRegValWithLookThrough(C1, MRI);
  if (!MaybeImmVal)
    return false;
  const uint64_t C1Val = MaybeImmVal->Value.getZExtValue();
  auto matchFirstShift = [&](const MachineInstr *MI, uint64_t &ShiftVal) {
    // Shift should match previous one and should be a one-use.
    if (MI->getOpcode() != ShiftOpcode ||
        !MRI.hasOneNonDBGUse(MI->getOperand(0).getReg()))
      return false;
    // Must be a constant.
    auto MaybeImmVal =
        getConstantVRegValWithLookThrough(MI->getOperand(2).getReg(), MRI);
    if (!MaybeImmVal)
      return false;
    ShiftVal = MaybeImmVal->Value.getSExtValue();
    return true;
  };
  // Logic ops are commutative, so check each operand for a match.
  Register LogicMIReg1 = LogicMI->getOperand(1).getReg();
  MachineInstr *LogicMIOp1 = MRI.getUniqueVRegDef(LogicMIReg1);
  Register LogicMIReg2 = LogicMI->getOperand(2).getReg();
  MachineInstr *LogicMIOp2 = MRI.getUniqueVRegDef(LogicMIReg2);
  uint64_t C0Val;
  if (matchFirstShift(LogicMIOp1, C0Val)) {
    MatchInfo.LogicNonShiftReg = LogicMIReg2;
    MatchInfo.Shift2 = LogicMIOp1;
  } else if (matchFirstShift(LogicMIOp2, C0Val)) {
    MatchInfo.LogicNonShiftReg = LogicMIReg1;
    MatchInfo.Shift2 = LogicMIOp2;
  } else
    return false;
  MatchInfo.ValSum = C0Val + C1Val;
  // The fold is not valid if the sum of the shift values exceeds bitwidth.
  if (MatchInfo.ValSum >= MRI.getType(LogicDest).getScalarSizeInBits())
    return false;
  MatchInfo.Logic = LogicMI;
  return true;
}
void CombinerHelper::applyShiftOfShiftedLogic(MachineInstr &MI,
                                              ShiftOfShiftedLogic &MatchInfo) {
  unsigned Opcode = MI.getOpcode();
  assert((Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_ASHR ||
          Opcode == TargetOpcode::G_LSHR || Opcode == TargetOpcode::G_USHLSAT ||
          Opcode == TargetOpcode::G_SSHLSAT) &&
         "Expected G_SHL, G_ASHR, G_LSHR, G_USHLSAT and G_SSHLSAT");
  LLT ShlType = MRI.getType(MI.getOperand(2).getReg());
  LLT DestType = MRI.getType(MI.getOperand(0).getReg());
  Builder.setInstrAndDebugLoc(MI);
  Register Const = Builder.buildConstant(ShlType, MatchInfo.ValSum).getReg(0);
  Register Shift1Base = MatchInfo.Shift2->getOperand(1).getReg();
  Register Shift1 =
      Builder.buildInstr(Opcode, {DestType}, {Shift1Base, Const}).getReg(0);
  Register Shift2Const = MI.getOperand(2).getReg();
  Register Shift2 = Builder
                        .buildInstr(Opcode, {DestType},
                                    {MatchInfo.LogicNonShiftReg, Shift2Const})
                        .getReg(0);
  Register Dest = MI.getOperand(0).getReg();
  Builder.buildInstr(MatchInfo.Logic->getOpcode(), {Dest}, {Shift1, Shift2});
  // These were one use so it's safe to remove them.
  MatchInfo.Shift2->eraseFromParent();
  MatchInfo.Logic->eraseFromParent();
  MI.eraseFromParent();
}
bool CombinerHelper::matchCombineMulToShl(MachineInstr &MI,
                                          unsigned &ShiftVal) {
  assert(MI.getOpcode() == TargetOpcode::G_MUL && "Expected a G_MUL");
  auto MaybeImmVal =
      getConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI);
  if (!MaybeImmVal)
    return false;
  ShiftVal = MaybeImmVal->Value.exactLogBase2();
  return (static_cast<int32_t>(ShiftVal) != -1);
}
void CombinerHelper::applyCombineMulToShl(MachineInstr &MI,
                                          unsigned &ShiftVal) {
  assert(MI.getOpcode() == TargetOpcode::G_MUL && "Expected a G_MUL");
  MachineIRBuilder MIB(MI);
  LLT ShiftTy = MRI.getType(MI.getOperand(0).getReg());
  auto ShiftCst = MIB.buildConstant(ShiftTy, ShiftVal);
  Observer.changingInstr(MI);
  MI.setDesc(MIB.getTII().get(TargetOpcode::G_SHL));
  MI.getOperand(2).setReg(ShiftCst.getReg(0));
  Observer.changedInstr(MI);
}
// shl ([sza]ext x), y => zext (shl x, y), if shift does not overflow source
bool CombinerHelper::matchCombineShlOfExtend(MachineInstr &MI,
                                             RegisterImmPair &MatchData) {
  assert(MI.getOpcode() == TargetOpcode::G_SHL && KB);
  Register LHS = MI.getOperand(1).getReg();
  Register ExtSrc;
  if (!mi_match(LHS, MRI, m_GAnyExt(m_Reg(ExtSrc))) &&
      !mi_match(LHS, MRI, m_GZExt(m_Reg(ExtSrc))) &&
      !mi_match(LHS, MRI, m_GSExt(m_Reg(ExtSrc))))
    return false;
  // TODO: Should handle vector splat.
  Register RHS = MI.getOperand(2).getReg();
  auto MaybeShiftAmtVal = getConstantVRegValWithLookThrough(RHS, MRI);
  if (!MaybeShiftAmtVal)
    return false;
  if (LI) {
    LLT SrcTy = MRI.getType(ExtSrc);
    // We only really care about the legality with the shifted value. We can
    // pick any type the constant shift amount, so ask the target what to
    // use. Otherwise we would have to guess and hope it is reported as legal.
    LLT ShiftAmtTy = getTargetLowering().getPreferredShiftAmountTy(SrcTy);
    if (!isLegalOrBeforeLegalizer({TargetOpcode::G_SHL, {SrcTy, ShiftAmtTy}}))
      return false;
  }
  int64_t ShiftAmt = MaybeShiftAmtVal->Value.getSExtValue();
  MatchData.Reg = ExtSrc;
  MatchData.Imm = ShiftAmt;
  unsigned MinLeadingZeros = KB->getKnownZeroes(ExtSrc).countLeadingOnes();
  return MinLeadingZeros >= ShiftAmt;
}
void CombinerHelper::applyCombineShlOfExtend(MachineInstr &MI,
                                             const RegisterImmPair &MatchData) {
  Register ExtSrcReg = MatchData.Reg;
  int64_t ShiftAmtVal = MatchData.Imm;
  LLT ExtSrcTy = MRI.getType(ExtSrcReg);
  Builder.setInstrAndDebugLoc(MI);
  auto ShiftAmt = Builder.buildConstant(ExtSrcTy, ShiftAmtVal);
  auto NarrowShift =
      Builder.buildShl(ExtSrcTy, ExtSrcReg, ShiftAmt, MI.getFlags());
  Builder.buildZExt(MI.getOperand(0), NarrowShift);
  MI.eraseFromParent();
}
bool CombinerHelper::matchCombineMergeUnmerge(MachineInstr &MI,
                                              Register &MatchInfo) {
  GMerge &Merge = cast<GMerge>(MI);
  SmallVector<Register, 16> MergedValues;
  for (unsigned I = 0; I < Merge.getNumSources(); ++I)
    MergedValues.emplace_back(Merge.getSourceReg(I));
  auto *Unmerge = getOpcodeDef<GUnmerge>(MergedValues[0], MRI);
  if (!Unmerge || Unmerge->getNumDefs() != Merge.getNumSources())
    return false;
  for (unsigned I = 0; I < MergedValues.size(); ++I)
    if (MergedValues[I] != Unmerge->getReg(I))
      return false;
  MatchInfo = Unmerge->getSourceReg();
  return true;
}
static Register peekThroughBitcast(Register Reg,
                                   const MachineRegisterInfo &MRI) {
  while (mi_match(Reg, MRI, m_GBitcast(m_Reg(Reg))))
    ;
  return Reg;
}
bool CombinerHelper::matchCombineUnmergeMergeToPlainValues(
    MachineInstr &MI, SmallVectorImpl<Register> &Operands) {
  assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES &&
         "Expected an unmerge");
  Register SrcReg =
      peekThroughBitcast(MI.getOperand(MI.getNumOperands() - 1).getReg(), MRI);
  MachineInstr *SrcInstr = MRI.getVRegDef(SrcReg);
  if (SrcInstr->getOpcode() != TargetOpcode::G_MERGE_VALUES &&
      SrcInstr->getOpcode() != TargetOpcode::G_BUILD_VECTOR &&
      SrcInstr->getOpcode() != TargetOpcode::G_CONCAT_VECTORS)
    return false;
  // Check the source type of the merge.
  LLT SrcMergeTy = MRI.getType(SrcInstr->getOperand(1).getReg());
  LLT Dst0Ty = MRI.getType(MI.getOperand(0).getReg());
  bool SameSize = Dst0Ty.getSizeInBits() == SrcMergeTy.getSizeInBits();
  if (SrcMergeTy != Dst0Ty && !SameSize)
    return false;
  // They are the same now (modulo a bitcast).
  // We can collect all the src registers.
  for (unsigned Idx = 1, EndIdx = SrcInstr->getNumOperands(); Idx != EndIdx;
       ++Idx)
    Operands.push_back(SrcInstr->getOperand(Idx).getReg());
  return true;
}
void CombinerHelper::applyCombineUnmergeMergeToPlainValues(
    MachineInstr &MI, SmallVectorImpl<Register> &Operands) {
  assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES &&
         "Expected an unmerge");
  assert((MI.getNumOperands() - 1 == Operands.size()) &&
         "Not enough operands to replace all defs");
  unsigned NumElems = MI.getNumOperands() - 1;
  LLT SrcTy = MRI.getType(Operands[0]);
  LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
  bool CanReuseInputDirectly = DstTy == SrcTy;
  Builder.setInstrAndDebugLoc(MI);
  for (unsigned Idx = 0; Idx < NumElems; ++Idx) {
    Register DstReg = MI.getOperand(Idx).getReg();
    Register SrcReg = Operands[Idx];
    if (CanReuseInputDirectly)
      replaceRegWith(MRI, DstReg, SrcReg);
    else
      Builder.buildCast(DstReg, SrcReg);
  }
  MI.eraseFromParent();
}
bool CombinerHelper::matchCombineUnmergeConstant(MachineInstr &MI,
                                                 SmallVectorImpl<APInt> &Csts) {
  unsigned SrcIdx = MI.getNumOperands() - 1;
  Register SrcReg = MI.getOperand(SrcIdx).getReg();
  MachineInstr *SrcInstr = MRI.getVRegDef(SrcReg);
  if (SrcInstr->getOpcode() != TargetOpcode::G_CONSTANT &&
      SrcInstr->getOpcode() != TargetOpcode::G_FCONSTANT)
    return false;
  // Break down the big constant in smaller ones.
  const MachineOperand &CstVal = SrcInstr->getOperand(1);
  APInt Val = SrcInstr->getOpcode() == TargetOpcode::G_CONSTANT
                  ? CstVal.getCImm()->getValue()
                  : CstVal.getFPImm()->getValueAPF().bitcastToAPInt();
  LLT Dst0Ty = MRI.getType(MI.getOperand(0).getReg());
  unsigned ShiftAmt = Dst0Ty.getSizeInBits();
  // Unmerge a constant.
  for (unsigned Idx = 0; Idx != SrcIdx; ++Idx) {
    Csts.emplace_back(Val.trunc(ShiftAmt));
    Val = Val.lshr(ShiftAmt);
  }
  return true;
}
void CombinerHelper::applyCombineUnmergeConstant(MachineInstr &MI,
                                                 SmallVectorImpl<APInt> &Csts) {
  assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES &&
         "Expected an unmerge");
  assert((MI.getNumOperands() - 1 == Csts.size()) &&
         "Not enough operands to replace all defs");
  unsigned NumElems = MI.getNumOperands() - 1;
  Builder.setInstrAndDebugLoc(MI);
  for (unsigned Idx = 0; Idx < NumElems; ++Idx) {
    Register DstReg = MI.getOperand(Idx).getReg();
    Builder.buildConstant(DstReg, Csts[Idx]);
  }
  MI.eraseFromParent();
}
bool CombinerHelper::matchCombineUnmergeWithDeadLanesToTrunc(MachineInstr &MI) {
  assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES &&
         "Expected an unmerge");
  // Check that all the lanes are dead except the first one.
  for (unsigned Idx = 1, EndIdx = MI.getNumDefs(); Idx != EndIdx; ++Idx) {
    if (!MRI.use_nodbg_empty(MI.getOperand(Idx).getReg()))
      return false;
  }
  return true;
}
void CombinerHelper::applyCombineUnmergeWithDeadLanesToTrunc(MachineInstr &MI) {
  Builder.setInstrAndDebugLoc(MI);
  Register SrcReg = MI.getOperand(MI.getNumDefs()).getReg();
  // Truncating a vector is going to truncate every single lane,
  // whereas we want the full lowbits.
  // Do the operation on a scalar instead.
  LLT SrcTy = MRI.getType(SrcReg);
  if (SrcTy.isVector())
    SrcReg =
        Builder.buildCast(LLT::scalar(SrcTy.getSizeInBits()), SrcReg).getReg(0);
  Register Dst0Reg = MI.getOperand(0).getReg();
  LLT Dst0Ty = MRI.getType(Dst0Reg);
  if (Dst0Ty.isVector()) {
    auto MIB = Builder.buildTrunc(LLT::scalar(Dst0Ty.getSizeInBits()), SrcReg);
    Builder.buildCast(Dst0Reg, MIB);
  } else
    Builder.buildTrunc(Dst0Reg, SrcReg);
  MI.eraseFromParent();
}
bool CombinerHelper::matchCombineUnmergeZExtToZExt(MachineInstr &MI) {
  assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES &&
         "Expected an unmerge");
  Register Dst0Reg = MI.getOperand(0).getReg();
  LLT Dst0Ty = MRI.getType(Dst0Reg);
  // G_ZEXT on vector applies to each lane, so it will
  // affect all destinations. Therefore we won't be able
  // to simplify the unmerge to just the first definition.
  if (Dst0Ty.isVector())
    return false;
  Register SrcReg = MI.getOperand(MI.getNumDefs()).getReg();
  LLT SrcTy = MRI.getType(SrcReg);
  if (SrcTy.isVector())
    return false;
  Register ZExtSrcReg;
  if (!mi_match(SrcReg, MRI, m_GZExt(m_Reg(ZExtSrcReg))))
    return false;
  // Finally we can replace the first definition with
  // a zext of the source if the definition is big enough to hold
  // all of ZExtSrc bits.
  LLT ZExtSrcTy = MRI.getType(ZExtSrcReg);
  return ZExtSrcTy.getSizeInBits() <= Dst0Ty.getSizeInBits();
}
void CombinerHelper::applyCombineUnmergeZExtToZExt(MachineInstr &MI) {
  assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES &&
         "Expected an unmerge");
  Register Dst0Reg = MI.getOperand(0).getReg();
  MachineInstr *ZExtInstr =
      MRI.getVRegDef(MI.getOperand(MI.getNumDefs()).getReg());
  assert(ZExtInstr && ZExtInstr->getOpcode() == TargetOpcode::G_ZEXT &&
         "Expecting a G_ZEXT");
  Register ZExtSrcReg = ZExtInstr->getOperand(1).getReg();
  LLT Dst0Ty = MRI.getType(Dst0Reg);
  LLT ZExtSrcTy = MRI.getType(ZExtSrcReg);
  Builder.setInstrAndDebugLoc(MI);
  if (Dst0Ty.getSizeInBits() > ZExtSrcTy.getSizeInBits()) {
    Builder.buildZExt(Dst0Reg, ZExtSrcReg);
  } else {
    assert(Dst0Ty.getSizeInBits() == ZExtSrcTy.getSizeInBits() &&
           "ZExt src doesn't fit in destination");
    replaceRegWith(MRI, Dst0Reg, ZExtSrcReg);
  }
  Register ZeroReg;
  for (unsigned Idx = 1, EndIdx = MI.getNumDefs(); Idx != EndIdx; ++Idx) {
    if (!ZeroReg)
      ZeroReg = Builder.buildConstant(Dst0Ty, 0).getReg(0);
    replaceRegWith(MRI, MI.getOperand(Idx).getReg(), ZeroReg);
  }
  MI.eraseFromParent();
}
bool CombinerHelper::matchCombineShiftToUnmerge(MachineInstr &MI,
                                                unsigned TargetShiftSize,
                                                unsigned &ShiftVal) {
  assert((MI.getOpcode() == TargetOpcode::G_SHL ||
          MI.getOpcode() == TargetOpcode::G_LSHR ||
          MI.getOpcode() == TargetOpcode::G_ASHR) && "Expected a shift");
  LLT Ty = MRI.getType(MI.getOperand(0).getReg());
  if (Ty.isVector()) // TODO:
    return false;
  // Don't narrow further than the requested size.
  unsigned Size = Ty.getSizeInBits();
  if (Size <= TargetShiftSize)
    return false;
  auto MaybeImmVal =
    getConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI);
  if (!MaybeImmVal)
    return false;
  ShiftVal = MaybeImmVal->Value.getSExtValue();
  return ShiftVal >= Size / 2 && ShiftVal < Size;
}
void CombinerHelper::applyCombineShiftToUnmerge(MachineInstr &MI,
                                                const unsigned &ShiftVal) {
  Register DstReg = MI.getOperand(0).getReg();
  Register SrcReg = MI.getOperand(1).getReg();
  LLT Ty = MRI.getType(SrcReg);
  unsigned Size = Ty.getSizeInBits();
  unsigned HalfSize = Size / 2;
  assert(ShiftVal >= HalfSize);
  LLT HalfTy = LLT::scalar(HalfSize);
  Builder.setInstr(MI);
  auto Unmerge = Builder.buildUnmerge(HalfTy, SrcReg);
  unsigned NarrowShiftAmt = ShiftVal - HalfSize;
  if (MI.getOpcode() == TargetOpcode::G_LSHR) {
    Register Narrowed = Unmerge.getReg(1);
    //  dst = G_LSHR s64:x, C for C >= 32
    // =>
    //   lo, hi = G_UNMERGE_VALUES x
    //   dst = G_MERGE_VALUES (G_LSHR hi, C - 32), 0
    if (NarrowShiftAmt != 0) {
      Narrowed = Builder.buildLShr(HalfTy, Narrowed,
        Builder.buildConstant(HalfTy, NarrowShiftAmt)).getReg(0);
    }
    auto Zero = Builder.buildConstant(HalfTy, 0);
    Builder.buildMerge(DstReg, { Narrowed, Zero });
  } else if (MI.getOpcode() == TargetOpcode::G_SHL) {
    Register Narrowed = Unmerge.getReg(0);
    //  dst = G_SHL s64:x, C for C >= 32
    // =>
    //   lo, hi = G_UNMERGE_VALUES x
    //   dst = G_MERGE_VALUES 0, (G_SHL hi, C - 32)
    if (NarrowShiftAmt != 0) {
      Narrowed = Builder.buildShl(HalfTy, Narrowed,
        Builder.buildConstant(HalfTy, NarrowShiftAmt)).getReg(0);
    }
    auto Zero = Builder.buildConstant(HalfTy, 0);
    Builder.buildMerge(DstReg, { Zero, Narrowed });
  } else {
    assert(MI.getOpcode() == TargetOpcode::G_ASHR);
    auto Hi = Builder.buildAShr(
      HalfTy, Unmerge.getReg(1),
      Builder.buildConstant(HalfTy, HalfSize - 1));
    if (ShiftVal == HalfSize) {
      // (G_ASHR i64:x, 32) ->
      //   G_MERGE_VALUES hi_32(x), (G_ASHR hi_32(x), 31)
      Builder.buildMerge(DstReg, { Unmerge.getReg(1), Hi });
    } else if (ShiftVal == Size - 1) {
      // Don't need a second shift.
      // (G_ASHR i64:x, 63) ->
      //   %narrowed = (G_ASHR hi_32(x), 31)
      //   G_MERGE_VALUES %narrowed, %narrowed
      Builder.buildMerge(DstReg, { Hi, Hi });
    } else {
      auto Lo = Builder.buildAShr(
        HalfTy, Unmerge.getReg(1),
        Builder.buildConstant(HalfTy, ShiftVal - HalfSize));
      // (G_ASHR i64:x, C) ->, for C >= 32
      //   G_MERGE_VALUES (G_ASHR hi_32(x), C - 32), (G_ASHR hi_32(x), 31)
      Builder.buildMerge(DstReg, { Lo, Hi });
    }
  }
  MI.eraseFromParent();
}
bool CombinerHelper::tryCombineShiftToUnmerge(MachineInstr &MI,
                                              unsigned TargetShiftAmount) {
  unsigned ShiftAmt;
  if (matchCombineShiftToUnmerge(MI, TargetShiftAmount, ShiftAmt)) {
    applyCombineShiftToUnmerge(MI, ShiftAmt);
    return true;
  }
  return false;
}
bool CombinerHelper::matchCombineI2PToP2I(MachineInstr &MI, Register &Reg) {
  assert(MI.getOpcode() == TargetOpcode::G_INTTOPTR && "Expected a G_INTTOPTR");
  Register DstReg = MI.getOperand(0).getReg();
  LLT DstTy = MRI.getType(DstReg);
  Register SrcReg = MI.getOperand(1).getReg();
  return mi_match(SrcReg, MRI,
                  m_GPtrToInt(m_all_of(m_SpecificType(DstTy), m_Reg(Reg))));
}
void CombinerHelper::applyCombineI2PToP2I(MachineInstr &MI, Register &Reg) {
  assert(MI.getOpcode() == TargetOpcode::G_INTTOPTR && "Expected a G_INTTOPTR");
  Register DstReg = MI.getOperand(0).getReg();
  Builder.setInstr(MI);
  Builder.buildCopy(DstReg, Reg);
  MI.eraseFromParent();
}
bool CombinerHelper::matchCombineP2IToI2P(MachineInstr &MI, Register &Reg) {
  assert(MI.getOpcode() == TargetOpcode::G_PTRTOINT && "Expected a G_PTRTOINT");
  Register SrcReg = MI.getOperand(1).getReg();
  return mi_match(SrcReg, MRI, m_GIntToPtr(m_Reg(Reg)));
}
void CombinerHelper::applyCombineP2IToI2P(MachineInstr &MI, Register &Reg) {
  assert(MI.getOpcode() == TargetOpcode::G_PTRTOINT && "Expected a G_PTRTOINT");
  Register DstReg = MI.getOperand(0).getReg();
  Builder.setInstr(MI);
  Builder.buildZExtOrTrunc(DstReg, Reg);
  MI.eraseFromParent();
}
bool CombinerHelper::matchCombineAddP2IToPtrAdd(
    MachineInstr &MI, std::pair<Register, bool> &PtrReg) {
  assert(MI.getOpcode() == TargetOpcode::G_ADD);
  Register LHS = MI.getOperand(1).getReg();
  Register RHS = MI.getOperand(2).getReg();
  LLT IntTy = MRI.getType(LHS);
  // G_PTR_ADD always has the pointer in the LHS, so we may need to commute the
  // instruction.
  PtrReg.second = false;
  for (Register SrcReg : {LHS, RHS}) {
    if (mi_match(SrcReg, MRI, m_GPtrToInt(m_Reg(PtrReg.first)))) {
      // Don't handle cases where the integer is implicitly converted to the
      // pointer width.
      LLT PtrTy = MRI.getType(PtrReg.first);
      if (PtrTy.getScalarSizeInBits() == IntTy.getScalarSizeInBits())
        return true;
    }
    PtrReg.second = true;
  }
  return false;
}
void CombinerHelper::applyCombineAddP2IToPtrAdd(
    MachineInstr &MI, std::pair<Register, bool> &PtrReg) {
  Register Dst = MI.getOperand(0).getReg();
  Register LHS = MI.getOperand(1).getReg();
  Register RHS = MI.getOperand(2).getReg();
  const bool DoCommute = PtrReg.second;
  if (DoCommute)
    std::swap(LHS, RHS);
  LHS = PtrReg.first;
  LLT PtrTy = MRI.getType(LHS);
  Builder.setInstrAndDebugLoc(MI);
  auto PtrAdd = Builder.buildPtrAdd(PtrTy, LHS, RHS);
  Builder.buildPtrToInt(Dst, PtrAdd);
  MI.eraseFromParent();
}
bool CombinerHelper::matchCombineConstPtrAddToI2P(MachineInstr &MI,
                                                  int64_t &NewCst) {
  assert(MI.getOpcode() == TargetOpcode::G_PTR_ADD && "Expected a G_PTR_ADD");
  Register LHS = MI.getOperand(1).getReg();
  Register RHS = MI.getOperand(2).getReg();
  MachineRegisterInfo &MRI = Builder.getMF().getRegInfo();
  if (auto RHSCst = getConstantVRegSExtVal(RHS, MRI)) {
    int64_t Cst;
    if (mi_match(LHS, MRI, m_GIntToPtr(m_ICst(Cst)))) {
      NewCst = Cst + *RHSCst;
      return true;
    }
  }
  return false;
}
void CombinerHelper::applyCombineConstPtrAddToI2P(MachineInstr &MI,
                                                  int64_t &NewCst) {
  assert(MI.getOpcode() == TargetOpcode::G_PTR_ADD && "Expected a G_PTR_ADD");
  Register Dst = MI.getOperand(0).getReg();
  Builder.setInstrAndDebugLoc(MI);
  Builder.buildConstant(Dst, NewCst);
  MI.eraseFromParent();
}
bool CombinerHelper::matchCombineAnyExtTrunc(MachineInstr &MI, Register &Reg) {
  assert(MI.getOpcode() == TargetOpcode::G_ANYEXT && "Expected a G_ANYEXT");
  Register DstReg = MI.getOperand(0).getReg();
  Register SrcReg = MI.getOperand(1).getReg();
  LLT DstTy = MRI.getType(DstReg);
  return mi_match(SrcReg, MRI,
                  m_GTrunc(m_all_of(m_Reg(Reg), m_SpecificType(DstTy))));
}
bool CombinerHelper::matchCombineZextTrunc(MachineInstr &MI, Register &Reg) {
  assert(MI.getOpcode() == TargetOpcode::G_ZEXT && "Expected a G_ZEXT");
  Register DstReg = MI.getOperand(0).getReg();
  Register SrcReg = MI.getOperand(1).getReg();
  LLT DstTy = MRI.getType(DstReg);
  if (mi_match(SrcReg, MRI,
               m_GTrunc(m_all_of(m_Reg(Reg), m_SpecificType(DstTy))))) {
    unsigned DstSize = DstTy.getScalarSizeInBits();
    unsigned SrcSize = MRI.getType(SrcReg).getScalarSizeInBits();
    return KB->getKnownBits(Reg).countMinLeadingZeros() >= DstSize - SrcSize;
  }
  return false;
}
bool CombinerHelper::matchCombineExtOfExt(
    MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) {
  assert((MI.getOpcode() == TargetOpcode::G_ANYEXT ||
          MI.getOpcode() == TargetOpcode::G_SEXT ||
          MI.getOpcode() == TargetOpcode::G_ZEXT) &&
         "Expected a G_[ASZ]EXT");
  Register SrcReg = MI.getOperand(1).getReg();
  MachineInstr *SrcMI = MRI.getVRegDef(SrcReg);
  // Match exts with the same opcode, anyext([sz]ext) and sext(zext).
  unsigned Opc = MI.getOpcode();
  unsigned SrcOpc = SrcMI->getOpcode();
  if (Opc == SrcOpc ||
      (Opc == TargetOpcode::G_ANYEXT &&
       (SrcOpc == TargetOpcode::G_SEXT || SrcOpc == TargetOpcode::G_ZEXT)) ||
      (Opc == TargetOpcode::G_SEXT && SrcOpc == TargetOpcode::G_ZEXT)) {
    MatchInfo = std::make_tuple(SrcMI->getOperand(1).getReg(), SrcOpc);
    return true;
  }
  return false;
}
void CombinerHelper::applyCombineExtOfExt(
    MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) {
  assert((MI.getOpcode() == TargetOpcode::G_ANYEXT ||
          MI.getOpcode() == TargetOpcode::G_SEXT ||
          MI.getOpcode() == TargetOpcode::G_ZEXT) &&
         "Expected a G_[ASZ]EXT");
  Register Reg = std::get<0>(MatchInfo);
  unsigned SrcExtOp = std::get<1>(MatchInfo);
  // Combine exts with the same opcode.
  if (MI.getOpcode() == SrcExtOp) {
    Observer.changingInstr(MI);
    MI.getOperand(1).setReg(Reg);
    Observer.changedInstr(MI);
    return;
  }
  // Combine:
  // - anyext([sz]ext x) to [sz]ext x
  // - sext(zext x) to zext x
  if (MI.getOpcode() == TargetOpcode::G_ANYEXT ||
      (MI.getOpcode() == TargetOpcode::G_SEXT &&
       SrcExtOp == TargetOpcode::G_ZEXT)) {
    Register DstReg = MI.getOperand(0).getReg();
    Builder.setInstrAndDebugLoc(MI);
    Builder.buildInstr(SrcExtOp, {DstReg}, {Reg});
    MI.eraseFromParent();
  }
}
void CombinerHelper::applyCombineMulByNegativeOne(MachineInstr &MI) {
  assert(MI.getOpcode() == TargetOpcode::G_MUL && "Expected a G_MUL");
  Register DstReg = MI.getOperand(0).getReg();
  Register SrcReg = MI.getOperand(1).getReg();
  LLT DstTy = MRI.getType(DstReg);
  Builder.setInstrAndDebugLoc(MI);
  Builder.buildSub(DstReg, Builder.buildConstant(DstTy, 0), SrcReg,
                   MI.getFlags());
  MI.eraseFromParent();
}
bool CombinerHelper::matchCombineFNegOfFNeg(MachineInstr &MI, Register &Reg) {
  assert(MI.getOpcode() == TargetOpcode::G_FNEG && "Expected a G_FNEG");
  Register SrcReg = MI.getOperand(1).getReg();
  return mi_match(SrcReg, MRI, m_GFNeg(m_Reg(Reg)));
}
bool CombinerHelper::matchCombineFAbsOfFAbs(MachineInstr &MI, Register &Src) {
  assert(MI.getOpcode() == TargetOpcode::G_FABS && "Expected a G_FABS");
  Src = MI.getOperand(1).getReg();
  Register AbsSrc;
  return mi_match(Src, MRI, m_GFabs(m_Reg(AbsSrc)));
}
bool CombinerHelper::matchCombineTruncOfExt(
    MachineInstr &MI, std::pair<Register, unsigned> &MatchInfo) {
  assert(MI.getOpcode() == TargetOpcode::G_TRUNC && "Expected a G_TRUNC");
  Register SrcReg = MI.getOperand(1).getReg();
  MachineInstr *SrcMI = MRI.getVRegDef(SrcReg);
  unsigned SrcOpc = SrcMI->getOpcode();
  if (SrcOpc == TargetOpcode::G_ANYEXT || SrcOpc == TargetOpcode::G_SEXT ||
      SrcOpc == TargetOpcode::G_ZEXT) {
    MatchInfo = std::make_pair(SrcMI->getOperand(1).getReg(), SrcOpc);
    return true;
  }
  return false;
}
void CombinerHelper::applyCombineTruncOfExt(
    MachineInstr &MI, std::pair<Register, unsigned> &MatchInfo) {
  assert(MI.getOpcode() == TargetOpcode::G_TRUNC && "Expected a G_TRUNC");
  Register SrcReg = MatchInfo.first;
  unsigned SrcExtOp = MatchInfo.second;
  Register DstReg = MI.getOperand(0).getReg();
  LLT SrcTy = MRI.getType(SrcReg);
  LLT DstTy = MRI.getType(DstReg);
  if (SrcTy == DstTy) {
    MI.eraseFromParent();
    replaceRegWith(MRI, DstReg, SrcReg);
    return;
  }
  Builder.setInstrAndDebugLoc(MI);
  if (SrcTy.getSizeInBits() < DstTy.getSizeInBits())
    Builder.buildInstr(SrcExtOp, {DstReg}, {SrcReg});
  else
    Builder.buildTrunc(DstReg, SrcReg);
  MI.eraseFromParent();
}
bool CombinerHelper::matchCombineTruncOfShl(
    MachineInstr &MI, std::pair<Register, Register> &MatchInfo) {
  assert(MI.getOpcode() == TargetOpcode::G_TRUNC && "Expected a G_TRUNC");
  Register DstReg = MI.getOperand(0).getReg();
  Register SrcReg = MI.getOperand(1).getReg();
  LLT DstTy = MRI.getType(DstReg);
  Register ShiftSrc;
  Register ShiftAmt;
  if (MRI.hasOneNonDBGUse(SrcReg) &&
      mi_match(SrcReg, MRI, m_GShl(m_Reg(ShiftSrc), m_Reg(ShiftAmt))) &&
      isLegalOrBeforeLegalizer(
          {TargetOpcode::G_SHL,
           {DstTy, getTargetLowering().getPreferredShiftAmountTy(DstTy)}})) {
    KnownBits Known = KB->getKnownBits(ShiftAmt);
    unsigned Size = DstTy.getSizeInBits();
    if (Known.getBitWidth() - Known.countMinLeadingZeros() <= Log2_32(Size)) {
      MatchInfo = std::make_pair(ShiftSrc, ShiftAmt);
      return true;
    }
  }
  return false;
}
void CombinerHelper::applyCombineTruncOfShl(
    MachineInstr &MI, std::pair<Register, Register> &MatchInfo) {
  assert(MI.getOpcode() == TargetOpcode::G_TRUNC && "Expected a G_TRUNC");
  Register DstReg = MI.getOperand(0).getReg();
  Register SrcReg = MI.getOperand(1).getReg();
  LLT DstTy = MRI.getType(DstReg);
  MachineInstr *SrcMI = MRI.getVRegDef(SrcReg);
  Register ShiftSrc = MatchInfo.first;
  Register ShiftAmt = MatchInfo.second;
  Builder.setInstrAndDebugLoc(MI);
  auto TruncShiftSrc = Builder.buildTrunc(DstTy, ShiftSrc);
  Builder.buildShl(DstReg, TruncShiftSrc, ShiftAmt, SrcMI->getFlags());
  MI.eraseFromParent();
}
bool CombinerHelper::matchAnyExplicitUseIsUndef(MachineInstr &MI) {
  return any_of(MI.explicit_uses(), [this](const MachineOperand &MO) {
    return MO.isReg() &&
           getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MO.getReg(), MRI);
  });
}
bool CombinerHelper::matchAllExplicitUsesAreUndef(MachineInstr &MI) {
  return all_of(MI.explicit_uses(), [this](const MachineOperand &MO) {
    return !MO.isReg() ||
           getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MO.getReg(), MRI);
  });
}
bool CombinerHelper::matchUndefShuffleVectorMask(MachineInstr &MI) {
  assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR);
  ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask();
  return all_of(Mask, [](int Elt) { return Elt < 0; });
}
bool CombinerHelper::matchUndefStore(MachineInstr &MI) {
  assert(MI.getOpcode() == TargetOpcode::G_STORE);
  return getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MI.getOperand(0).getReg(),
                      MRI);
}
bool CombinerHelper::matchUndefSelectCmp(MachineInstr &MI) {
  assert(MI.getOpcode() == TargetOpcode::G_SELECT);
  return getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MI.getOperand(1).getReg(),
                      MRI);
}
bool CombinerHelper::matchConstantSelectCmp(MachineInstr &MI, unsigned &OpIdx) {
  assert(MI.getOpcode() == TargetOpcode::G_SELECT);
  if (auto MaybeCstCmp =
          getConstantVRegValWithLookThrough(MI.getOperand(1).getReg(), MRI)) {
    OpIdx = MaybeCstCmp->Value.isNullValue() ? 3 : 2;
    return true;
  }
  return false;
}
bool CombinerHelper::eraseInst(MachineInstr &MI) {
  MI.eraseFromParent();
  return true;
}
bool CombinerHelper::matchEqualDefs(const MachineOperand &MOP1,
                                    const MachineOperand &MOP2) {
  if (!MOP1.isReg() || !MOP2.isReg())
    return false;
  MachineInstr *I1 = getDefIgnoringCopies(MOP1.getReg(), MRI);
  if (!I1)
    return false;
  MachineInstr *I2 = getDefIgnoringCopies(MOP2.getReg(), MRI);
  if (!I2)
    return false;
  // Handle a case like this:
  //
  // %0:_(s64), %1:_(s64) = G_UNMERGE_VALUES %2:_(<2 x s64>)
  //
  // Even though %0 and %1 are produced by the same instruction they are not
  // the same values.
  if (I1 == I2)
    return MOP1.getReg() == MOP2.getReg();
  // If we have an instruction which loads or stores, we can't guarantee that
  // it is identical.
  //
  // For example, we may have
  //
  // %x1 = G_LOAD %addr (load N from @somewhere)
  // ...
  // call @foo
  // ...
  // %x2 = G_LOAD %addr (load N from @somewhere)
  // ...
  // %or = G_OR %x1, %x2
  //
  // It's possible that @foo will modify whatever lives at the address we're
  // loading from. To be safe, let's just assume that all loads and stores
  // are different (unless we have something which is guaranteed to not
  // change.)
  if (I1->mayLoadOrStore() && !I1->isDereferenceableInvariantLoad(nullptr))
    return false;
  // Check for physical registers on the instructions first to avoid cases
  // like this:
  //
  // %a = COPY $physreg
  // ...
  // SOMETHING implicit-def $physreg
  // ...
  // %b = COPY $physreg
  //
  // These copies are not equivalent.
  if (any_of(I1->uses(), [](const MachineOperand &MO) {
        return MO.isReg() && MO.getReg().isPhysical();
      })) {
    // Check if we have a case like this:
    //
    // %a = COPY $physreg
    // %b = COPY %a
    //
    // In this case, I1 and I2 will both be equal to %a = COPY $physreg.
    // From that, we know that they must have the same value, since they must
    // have come from the same COPY.
    return I1->isIdenticalTo(*I2);
  }
  // We don't have any physical registers, so we don't necessarily need the
  // same vreg defs.
  //
  // On the off-chance that there's some target instruction feeding into the
  // instruction, let's use produceSameValue instead of isIdenticalTo.
  return Builder.getTII().produceSameValue(*I1, *I2, &MRI);
}
bool CombinerHelper::matchConstantOp(const MachineOperand &MOP, int64_t C) {
  if (!MOP.isReg())
    return false;
  // MIPatternMatch doesn't let us look through G_ZEXT etc.
  auto ValAndVReg = getConstantVRegValWithLookThrough(MOP.getReg(), MRI);
  return ValAndVReg && ValAndVReg->Value == C;
}
bool CombinerHelper::replaceSingleDefInstWithOperand(MachineInstr &MI,
                                                     unsigned OpIdx) {
  assert(MI.getNumExplicitDefs() == 1 && "Expected one explicit def?");
  Register OldReg = MI.getOperand(0).getReg();
  Register Replacement = MI.getOperand(OpIdx).getReg();
  assert(canReplaceReg(OldReg, Replacement, MRI) && "Cannot replace register?");
  MI.eraseFromParent();
  replaceRegWith(MRI, OldReg, Replacement);
  return true;
}
bool CombinerHelper::replaceSingleDefInstWithReg(MachineInstr &MI,
                                                 Register Replacement) {
  assert(MI.getNumExplicitDefs() == 1 && "Expected one explicit def?");
  Register OldReg = MI.getOperand(0).getReg();
  assert(canReplaceReg(OldReg, Replacement, MRI) && "Cannot replace register?");
  MI.eraseFromParent();
  replaceRegWith(MRI, OldReg, Replacement);
  return true;
}
bool CombinerHelper::matchSelectSameVal(MachineInstr &MI) {
  assert(MI.getOpcode() == TargetOpcode::G_SELECT);
  // Match (cond ? x : x)
  return matchEqualDefs(MI.getOperand(2), MI.getOperand(3)) &&
         canReplaceReg(MI.getOperand(0).getReg(), MI.getOperand(2).getReg(),
                       MRI);
}
bool CombinerHelper::matchBinOpSameVal(MachineInstr &MI) {
  return matchEqualDefs(MI.getOperand(1), MI.getOperand(2)) &&
         canReplaceReg(MI.getOperand(0).getReg(), MI.getOperand(1).getReg(),
                       MRI);
}
bool CombinerHelper::matchOperandIsZero(MachineInstr &MI, unsigned OpIdx) {
  return matchConstantOp(MI.getOperand(OpIdx), 0) &&
         canReplaceReg(MI.getOperand(0).getReg(), MI.getOperand(OpIdx).getReg(),
                       MRI);
}
bool CombinerHelper::matchOperandIsUndef(MachineInstr &MI, unsigned OpIdx) {
  MachineOperand &MO = MI.getOperand(OpIdx);
  return MO.isReg() &&
         getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MO.getReg(), MRI);
}
bool CombinerHelper::matchOperandIsKnownToBeAPowerOfTwo(MachineInstr &MI,
                                                        unsigned OpIdx) {
  MachineOperand &MO = MI.getOperand(OpIdx);
  return isKnownToBeAPowerOfTwo(MO.getReg(), MRI, KB);
}
bool CombinerHelper::replaceInstWithFConstant(MachineInstr &MI, double C) {
  assert(MI.getNumDefs() == 1 && "Expected only one def?");
  Builder.setInstr(MI);
  Builder.buildFConstant(MI.getOperand(0), C);
  MI.eraseFromParent();
  return true;
}
bool CombinerHelper::replaceInstWithConstant(MachineInstr &MI, int64_t C) {
  assert(MI.getNumDefs() == 1 && "Expected only one def?");
  Builder.setInstr(MI);
  Builder.buildConstant(MI.getOperand(0), C);
  MI.eraseFromParent();
  return true;
}
bool CombinerHelper::replaceInstWithConstant(MachineInstr &MI, APInt C) {
  assert(MI.getNumDefs() == 1 && "Expected only one def?");
  Builder.setInstr(MI);
  Builder.buildConstant(MI.getOperand(0), C);
  MI.eraseFromParent();
  return true;
}
bool CombinerHelper::replaceInstWithUndef(MachineInstr &MI) {
  assert(MI.getNumDefs() == 1 && "Expected only one def?");
  Builder.setInstr(MI);
  Builder.buildUndef(MI.getOperand(0));
  MI.eraseFromParent();
  return true;
}
bool CombinerHelper::matchSimplifyAddToSub(
    MachineInstr &MI, std::tuple<Register, Register> &MatchInfo) {
  Register LHS = MI.getOperand(1).getReg();
  Register RHS = MI.getOperand(2).getReg();
  Register &NewLHS = std::get<0>(MatchInfo);
  Register &NewRHS = std::get<1>(MatchInfo);
  // Helper lambda to check for opportunities for
  // ((0-A) + B) -> B - A
  // (A + (0-B)) -> A - B
  auto CheckFold = [&](Register &MaybeSub, Register &MaybeNewLHS) {
    if (!mi_match(MaybeSub, MRI, m_Neg(m_Reg(NewRHS))))
      return false;
    NewLHS = MaybeNewLHS;
    return true;
  };
  return CheckFold(LHS, RHS) || CheckFold(RHS, LHS);
}
bool CombinerHelper::matchCombineInsertVecElts(
    MachineInstr &MI, SmallVectorImpl<Register> &MatchInfo) {
  assert(MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT &&
         "Invalid opcode");
  Register DstReg = MI.getOperand(0).getReg();
  LLT DstTy = MRI.getType(DstReg);
  assert(DstTy.isVector() && "Invalid G_INSERT_VECTOR_ELT?");
  unsigned NumElts = DstTy.getNumElements();
  // If this MI is part of a sequence of insert_vec_elts, then
  // don't do the combine in the middle of the sequence.
  if (MRI.hasOneUse(DstReg) && MRI.use_instr_begin(DstReg)->getOpcode() ==
                                   TargetOpcode::G_INSERT_VECTOR_ELT)
    return false;
  MachineInstr *CurrInst = &MI;
  MachineInstr *TmpInst;
  int64_t IntImm;
  Register TmpReg;
  MatchInfo.resize(NumElts);
  while (mi_match(
      CurrInst->getOperand(0).getReg(), MRI,
      m_GInsertVecElt(m_MInstr(TmpInst), m_Reg(TmpReg), m_ICst(IntImm)))) {
    if (IntImm >= NumElts)
      return false;
    if (!MatchInfo[IntImm])
      MatchInfo[IntImm] = TmpReg;
    CurrInst = TmpInst;
  }
  // Variable index.
  if (CurrInst->getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT)
    return false;
  if (TmpInst->getOpcode() == TargetOpcode::G_BUILD_VECTOR) {
    for (unsigned I = 1; I < TmpInst->getNumOperands(); ++I) {
      if (!MatchInfo[I - 1].isValid())
        MatchInfo[I - 1] = TmpInst->getOperand(I).getReg();
    }
    return true;
  }
  // If we didn't end in a G_IMPLICIT_DEF, bail out.
  return TmpInst->getOpcode() == TargetOpcode::G_IMPLICIT_DEF;
}
void CombinerHelper::applyCombineInsertVecElts(
    MachineInstr &MI, SmallVectorImpl<Register> &MatchInfo) {
  Builder.setInstr(MI);
  Register UndefReg;
  auto GetUndef = [&]() {
    if (UndefReg)
      return UndefReg;
    LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
    UndefReg = Builder.buildUndef(DstTy.getScalarType()).getReg(0);
    return UndefReg;
  };
  for (unsigned I = 0; I < MatchInfo.size(); ++I) {
    if (!MatchInfo[I])
      MatchInfo[I] = GetUndef();
  }
  Builder.buildBuildVector(MI.getOperand(0).getReg(), MatchInfo);
  MI.eraseFromParent();
}
void CombinerHelper::applySimplifyAddToSub(
    MachineInstr &MI, std::tuple<Register, Register> &MatchInfo) {
  Builder.setInstr(MI);
  Register SubLHS, SubRHS;
  std::tie(SubLHS, SubRHS) = MatchInfo;
  Builder.buildSub(MI.getOperand(0).getReg(), SubLHS, SubRHS);
  MI.eraseFromParent();
}
bool CombinerHelper::matchHoistLogicOpWithSameOpcodeHands(
    MachineInstr &MI, InstructionStepsMatchInfo &MatchInfo) {
  // Matches: logic (hand x, ...), (hand y, ...) -> hand (logic x, y), ...
  //
  // Creates the new hand + logic instruction (but does not insert them.)
  //
  // On success, MatchInfo is populated with the new instructions. These are
  // inserted in applyHoistLogicOpWithSameOpcodeHands.
  unsigned LogicOpcode = MI.getOpcode();
  assert(LogicOpcode == TargetOpcode::G_AND ||
         LogicOpcode == TargetOpcode::G_OR ||
         LogicOpcode == TargetOpcode::G_XOR);
  MachineIRBuilder MIB(MI);
  Register Dst = MI.getOperand(0).getReg();
  Register LHSReg = MI.getOperand(1).getReg();
  Register RHSReg = MI.getOperand(2).getReg();
  // Don't recompute anything.
  if (!MRI.hasOneNonDBGUse(LHSReg) || !MRI.hasOneNonDBGUse(RHSReg))
    return false;
  // Make sure we have (hand x, ...), (hand y, ...)
  MachineInstr *LeftHandInst = getDefIgnoringCopies(LHSReg, MRI);
  MachineInstr *RightHandInst = getDefIgnoringCopies(RHSReg, MRI);
  if (!LeftHandInst || !RightHandInst)
    return false;
  unsigned HandOpcode = LeftHandInst->getOpcode();
  if (HandOpcode != RightHandInst->getOpcode())
    return false;
  if (!LeftHandInst->getOperand(1).isReg() ||
      !RightHandInst->getOperand(1).isReg())
    return false;
  // Make sure the types match up, and if we're doing this post-legalization,
  // we end up with legal types.
  Register X = LeftHandInst->getOperand(1).getReg();
  Register Y = RightHandInst->getOperand(1).getReg();
  LLT XTy = MRI.getType(X);
  LLT YTy = MRI.getType(Y);
  if (XTy != YTy)
    return false;
  if (!isLegalOrBeforeLegalizer({LogicOpcode, {XTy, YTy}}))
    return false;
  // Optional extra source register.
  Register ExtraHandOpSrcReg;
  switch (HandOpcode) {
  default:
    return false;
  case TargetOpcode::G_ANYEXT:
  case TargetOpcode::G_SEXT:
  case TargetOpcode::G_ZEXT: {
    // Match: logic (ext X), (ext Y) --> ext (logic X, Y)
    break;
  }
  case TargetOpcode::G_AND:
  case TargetOpcode::G_ASHR:
  case TargetOpcode::G_LSHR:
  case TargetOpcode::G_SHL: {
    // Match: logic (binop x, z), (binop y, z) -> binop (logic x, y), z
    MachineOperand &ZOp = LeftHandInst->getOperand(2);
    if (!matchEqualDefs(ZOp, RightHandInst->getOperand(2)))
      return false;
    ExtraHandOpSrcReg = ZOp.getReg();
    break;
  }
  }
  // Record the steps to build the new instructions.
  //
  // Steps to build (logic x, y)
  auto NewLogicDst = MRI.createGenericVirtualRegister(XTy);
  OperandBuildSteps LogicBuildSteps = {
      [=](MachineInstrBuilder &MIB) { MIB.addDef(NewLogicDst); },
      [=](MachineInstrBuilder &MIB) { MIB.addReg(X); },
      [=](MachineInstrBuilder &MIB) { MIB.addReg(Y); }};
  InstructionBuildSteps LogicSteps(LogicOpcode, LogicBuildSteps);
  // Steps to build hand (logic x, y), ...z
  OperandBuildSteps HandBuildSteps = {
      [=](MachineInstrBuilder &MIB) { MIB.addDef(Dst); },
      [=](MachineInstrBuilder &MIB) { MIB.addReg(NewLogicDst); }};
  if (ExtraHandOpSrcReg.isValid())
    HandBuildSteps.push_back(
        [=](MachineInstrBuilder &MIB) { MIB.addReg(ExtraHandOpSrcReg); });
  InstructionBuildSteps HandSteps(HandOpcode, HandBuildSteps);
  MatchInfo = InstructionStepsMatchInfo({LogicSteps, HandSteps});
  return true;
}
void CombinerHelper::applyBuildInstructionSteps(
    MachineInstr &MI, InstructionStepsMatchInfo &MatchInfo) {
  assert(MatchInfo.InstrsToBuild.size() &&
         "Expected at least one instr to build?");
  Builder.setInstr(MI);
  for (auto &InstrToBuild : MatchInfo.InstrsToBuild) {
    assert(InstrToBuild.Opcode && "Expected a valid opcode?");
    assert(InstrToBuild.OperandFns.size() && "Expected at least one operand?");
    MachineInstrBuilder Instr = Builder.buildInstr(InstrToBuild.Opcode);
    for (auto &OperandFn : InstrToBuild.OperandFns)
      OperandFn(Instr);
  }
  MI.eraseFromParent();
}
bool CombinerHelper::matchAshrShlToSextInreg(
    MachineInstr &MI, std::tuple<Register, int64_t> &MatchInfo) {
  assert(MI.getOpcode() == TargetOpcode::G_ASHR);
  int64_t ShlCst, AshrCst;
  Register Src;
  // FIXME: detect splat constant vectors.
  if (!mi_match(MI.getOperand(0).getReg(), MRI,
                m_GAShr(m_GShl(m_Reg(Src), m_ICst(ShlCst)), m_ICst(AshrCst))))
    return false;
  if (ShlCst != AshrCst)
    return false;
  if (!isLegalOrBeforeLegalizer(
          {TargetOpcode::G_SEXT_INREG, {MRI.getType(Src)}}))
    return false;
  MatchInfo = std::make_tuple(Src, ShlCst);
  return true;
}
void CombinerHelper::applyAshShlToSextInreg(
    MachineInstr &MI, std::tuple<Register, int64_t> &MatchInfo) {
  assert(MI.getOpcode() == TargetOpcode::G_ASHR);
  Register Src;
  int64_t ShiftAmt;
  std::tie(Src, ShiftAmt) = MatchInfo;
  unsigned Size = MRI.getType(Src).getScalarSizeInBits();
  Builder.setInstrAndDebugLoc(MI);
  Builder.buildSExtInReg(MI.getOperand(0).getReg(), Src, Size - ShiftAmt);
  MI.eraseFromParent();
}
/// and(and(x, C1), C2) -> C1&C2 ? and(x, C1&C2) : 0
bool CombinerHelper::matchOverlappingAnd(
    MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) {
  assert(MI.getOpcode() == TargetOpcode::G_AND);
  Register Dst = MI.getOperand(0).getReg();
  LLT Ty = MRI.getType(Dst);
  Register R;
  int64_t C1;
  int64_t C2;
  if (!mi_match(
          Dst, MRI,
          m_GAnd(m_GAnd(m_Reg(R), m_ICst(C1)), m_ICst(C2))))
    return false;
  MatchInfo = [=](MachineIRBuilder &B) {
    if (C1 & C2) {
      B.buildAnd(Dst, R, B.buildConstant(Ty, C1 & C2));
      return;
    }
    auto Zero = B.buildConstant(Ty, 0);
    replaceRegWith(MRI, Dst, Zero->getOperand(0).getReg());
  };
  return true;
}
bool CombinerHelper::matchRedundantAnd(MachineInstr &MI,
                                       Register &Replacement) {
  // Given
  //
  // %y:_(sN) = G_SOMETHING
  // %x:_(sN) = G_SOMETHING
  // %res:_(sN) = G_AND %x, %y
  //
  // Eliminate the G_AND when it is known that x & y == x or x & y == y.
  //
  // Patterns like this can appear as a result of legalization. E.g.
  //
  // %cmp:_(s32) = G_ICMP intpred(pred), %x(s32), %y
  // %one:_(s32) = G_CONSTANT i32 1
  // %and:_(s32) = G_AND %cmp, %one
  //
  // In this case, G_ICMP only produces a single bit, so x & 1 == x.
  assert(MI.getOpcode() == TargetOpcode::G_AND);
  if (!KB)
    return false;
  Register AndDst = MI.getOperand(0).getReg();
  LLT DstTy = MRI.getType(AndDst);
  // FIXME: This should be removed once GISelKnownBits supports vectors.
  if (DstTy.isVector())
    return false;
  Register LHS = MI.getOperand(1).getReg();
  Register RHS = MI.getOperand(2).getReg();
  KnownBits LHSBits = KB->getKnownBits(LHS);
  KnownBits RHSBits = KB->getKnownBits(RHS);
  // Check that x & Mask == x.
  // x & 1 == x, always
  // x & 0 == x, only if x is also 0
  // Meaning Mask has no effect if every bit is either one in Mask or zero in x.
  //
  // Check if we can replace AndDst with the LHS of the G_AND
  if (canReplaceReg(AndDst, LHS, MRI) &&
      (LHSBits.Zero | RHSBits.One).isAllOnesValue()) {
    Replacement = LHS;
    return true;
  }
  // Check if we can replace AndDst with the RHS of the G_AND
  if (canReplaceReg(AndDst, RHS, MRI) &&
      (LHSBits.One | RHSBits.Zero).isAllOnesValue()) {
    Replacement = RHS;
    return true;
  }
  return false;
}
bool CombinerHelper::matchRedundantOr(MachineInstr &MI, Register &Replacement) {
  // Given
  //
  // %y:_(sN) = G_SOMETHING
  // %x:_(sN) = G_SOMETHING
  // %res:_(sN) = G_OR %x, %y
  //
  // Eliminate the G_OR when it is known that x | y == x or x | y == y.
  assert(MI.getOpcode() == TargetOpcode::G_OR);
  if (!KB)
    return false;
  Register OrDst = MI.getOperand(0).getReg();
  LLT DstTy = MRI.getType(OrDst);
  // FIXME: This should be removed once GISelKnownBits supports vectors.
  if (DstTy.isVector())
    return false;
  Register LHS = MI.getOperand(1).getReg();
  Register RHS = MI.getOperand(2).getReg();
  KnownBits LHSBits = KB->getKnownBits(LHS);
  KnownBits RHSBits = KB->getKnownBits(RHS);
  // Check that x | Mask == x.
  // x | 0 == x, always
  // x | 1 == x, only if x is also 1
  // Meaning Mask has no effect if every bit is either zero in Mask or one in x.
  //
  // Check if we can replace OrDst with the LHS of the G_OR
  if (canReplaceReg(OrDst, LHS, MRI) &&
      (LHSBits.One | RHSBits.Zero).isAllOnesValue()) {
    Replacement = LHS;
    return true;
  }
  // Check if we can replace OrDst with the RHS of the G_OR
  if (canReplaceReg(OrDst, RHS, MRI) &&
      (LHSBits.Zero | RHSBits.One).isAllOnesValue()) {
    Replacement = RHS;
    return true;
  }
  return false;
}
bool CombinerHelper::matchRedundantSExtInReg(MachineInstr &MI) {
  // If the input is already sign extended, just drop the extension.
  Register Src = MI.getOperand(1).getReg();
  unsigned ExtBits = MI.getOperand(2).getImm();
  unsigned TypeSize = MRI.getType(Src).getScalarSizeInBits();
  return KB->computeNumSignBits(Src) >= (TypeSize - ExtBits + 1);
}
static bool isConstValidTrue(const TargetLowering &TLI, unsigned ScalarSizeBits,
                             int64_t Cst, bool IsVector, bool IsFP) {
  // For i1, Cst will always be -1 regardless of boolean contents.
  return (ScalarSizeBits == 1 && Cst == -1) ||
         isConstTrueVal(TLI, Cst, IsVector, IsFP);
}
bool CombinerHelper::matchNotCmp(MachineInstr &MI,
                                 SmallVectorImpl<Register> &RegsToNegate) {
  assert(MI.getOpcode() == TargetOpcode::G_XOR);
  LLT Ty = MRI.getType(MI.getOperand(0).getReg());
  const auto &TLI = *Builder.getMF().getSubtarget().getTargetLowering();
  Register XorSrc;
  Register CstReg;
  // We match xor(src, true) here.
  if (!mi_match(MI.getOperand(0).getReg(), MRI,
                m_GXor(m_Reg(XorSrc), m_Reg(CstReg))))
    return false;
  if (!MRI.hasOneNonDBGUse(XorSrc))
    return false;
  // Check that XorSrc is the root of a tree of comparisons combined with ANDs
  // and ORs. The suffix of RegsToNegate starting from index I is used a work
  // list of tree nodes to visit.
  RegsToNegate.push_back(XorSrc);
  // Remember whether the comparisons are all integer or all floating point.
  bool IsInt = false;
  bool IsFP = false;
  for (unsigned I = 0; I < RegsToNegate.size(); ++I) {
    Register Reg = RegsToNegate[I];
    if (!MRI.hasOneNonDBGUse(Reg))
      return false;
    MachineInstr *Def = MRI.getVRegDef(Reg);
    switch (Def->getOpcode()) {
    default:
      // Don't match if the tree contains anything other than ANDs, ORs and
      // comparisons.
      return false;
    case TargetOpcode::G_ICMP:
      if (IsFP)
        return false;
      IsInt = true;
      // When we apply the combine we will invert the predicate.
      break;
    case TargetOpcode::G_FCMP:
      if (IsInt)
        return false;
      IsFP = true;
      // When we apply the combine we will invert the predicate.
      break;
    case TargetOpcode::G_AND:
    case TargetOpcode::G_OR:
      // Implement De Morgan's laws:
      // ~(x & y) -> ~x | ~y
      // ~(x | y) -> ~x & ~y
      // When we apply the combine we will change the opcode and recursively
      // negate the operands.
      RegsToNegate.push_back(Def->getOperand(1).getReg());
      RegsToNegate.push_back(Def->getOperand(2).getReg());
      break;
    }
  }
  // Now we know whether the comparisons are integer or floating point, check
  // the constant in the xor.
  int64_t Cst;
  if (Ty.isVector()) {
    MachineInstr *CstDef = MRI.getVRegDef(CstReg);
    auto MaybeCst = getBuildVectorConstantSplat(*CstDef, MRI);
    if (!MaybeCst)
      return false;
    if (!isConstValidTrue(TLI, Ty.getScalarSizeInBits(), *MaybeCst, true, IsFP))
      return false;
  } else {
    if (!mi_match(CstReg, MRI, m_ICst(Cst)))
      return false;
    if (!isConstValidTrue(TLI, Ty.getSizeInBits(), Cst, false, IsFP))
      return false;
  }
  return true;
}
void CombinerHelper::applyNotCmp(MachineInstr &MI,
                                 SmallVectorImpl<Register> &RegsToNegate) {
  for (Register Reg : RegsToNegate) {
    MachineInstr *Def = MRI.getVRegDef(Reg);
    Observer.changingInstr(*Def);
    // For each comparison, invert the opcode. For each AND and OR, change the
    // opcode.
    switch (Def->getOpcode()) {
    default:
      llvm_unreachable("Unexpected opcode");
    case TargetOpcode::G_ICMP:
    case TargetOpcode::G_FCMP: {
      MachineOperand &PredOp = Def->getOperand(1);
      CmpInst::Predicate NewP = CmpInst::getInversePredicate(
          (CmpInst::Predicate)PredOp.getPredicate());
      PredOp.setPredicate(NewP);
      break;
    }
    case TargetOpcode::G_AND:
      Def->setDesc(Builder.getTII().get(TargetOpcode::G_OR));
      break;
    case TargetOpcode::G_OR:
      Def->setDesc(Builder.getTII().get(TargetOpcode::G_AND));
      break;
    }
    Observer.changedInstr(*Def);
  }
  replaceRegWith(MRI, MI.getOperand(0).getReg(), MI.getOperand(1).getReg());
  MI.eraseFromParent();
}
bool CombinerHelper::matchXorOfAndWithSameReg(
    MachineInstr &MI, std::pair<Register, Register> &MatchInfo) {
  // Match (xor (and x, y), y) (or any of its commuted cases)
  assert(MI.getOpcode() == TargetOpcode::G_XOR);
  Register &X = MatchInfo.first;
  Register &Y = MatchInfo.second;
  Register AndReg = MI.getOperand(1).getReg();
  Register SharedReg = MI.getOperand(2).getReg();
  // Find a G_AND on either side of the G_XOR.
  // Look for one of
  //
  // (xor (and x, y), SharedReg)
  // (xor SharedReg, (and x, y))
  if (!mi_match(AndReg, MRI, m_GAnd(m_Reg(X), m_Reg(Y)))) {
    std::swap(AndReg, SharedReg);
    if (!mi_match(AndReg, MRI, m_GAnd(m_Reg(X), m_Reg(Y))))
      return false;
  }
  // Only do this if we'll eliminate the G_AND.
  if (!MRI.hasOneNonDBGUse(AndReg))
    return false;
  // We can combine if SharedReg is the same as either the LHS or RHS of the
  // G_AND.
  if (Y != SharedReg)
    std::swap(X, Y);
  return Y == SharedReg;
}
void CombinerHelper::applyXorOfAndWithSameReg(
    MachineInstr &MI, std::pair<Register, Register> &MatchInfo) {
  // Fold (xor (and x, y), y) -> (and (not x), y)
  Builder.setInstrAndDebugLoc(MI);
  Register X, Y;
  std::tie(X, Y) = MatchInfo;
  auto Not = Builder.buildNot(MRI.getType(X), X);
  Observer.changingInstr(MI);
  MI.setDesc(Builder.getTII().get(TargetOpcode::G_AND));
  MI.getOperand(1).setReg(Not->getOperand(0).getReg());
  MI.getOperand(2).setReg(Y);
  Observer.changedInstr(MI);
}
bool CombinerHelper::matchPtrAddZero(MachineInstr &MI) {
  Register DstReg = MI.getOperand(0).getReg();
  LLT Ty = MRI.getType(DstReg);
  const DataLayout &DL = Builder.getMF().getDataLayout();
  if (DL.isNonIntegralAddressSpace(Ty.getScalarType().getAddressSpace()))
    return false;
  if (Ty.isPointer()) {
    auto ConstVal = getConstantVRegVal(MI.getOperand(1).getReg(), MRI);
    return ConstVal && *ConstVal == 0;
  }
  assert(Ty.isVector() && "Expecting a vector type");
  const MachineInstr *VecMI = MRI.getVRegDef(MI.getOperand(1).getReg());
  return isBuildVectorAllZeros(*VecMI, MRI);
}
void CombinerHelper::applyPtrAddZero(MachineInstr &MI) {
  assert(MI.getOpcode() == TargetOpcode::G_PTR_ADD);
  Builder.setInstrAndDebugLoc(MI);
  Builder.buildIntToPtr(MI.getOperand(0), MI.getOperand(2));
  MI.eraseFromParent();
}
/// The second source operand is known to be a power of 2.
void CombinerHelper::applySimplifyURemByPow2(MachineInstr &MI) {
  Register DstReg = MI.getOperand(0).getReg();
  Register Src0 = MI.getOperand(1).getReg();
  Register Pow2Src1 = MI.getOperand(2).getReg();
  LLT Ty = MRI.getType(DstReg);
  Builder.setInstrAndDebugLoc(MI);
  // Fold (urem x, pow2) -> (and x, pow2-1)
  auto NegOne = Builder.buildConstant(Ty, -1);
  auto Add = Builder.buildAdd(Ty, Pow2Src1, NegOne);
  Builder.buildAnd(DstReg, Src0, Add);
  MI.eraseFromParent();
}
Optional<SmallVector<Register, 8>>
CombinerHelper::findCandidatesForLoadOrCombine(const MachineInstr *Root) const {
  assert(Root->getOpcode() == TargetOpcode::G_OR && "Expected G_OR only!");
  // We want to detect if Root is part of a tree which represents a bunch
  // of loads being merged into a larger load. We'll try to recognize patterns
  // like, for example:
  //
  //  Reg   Reg
  //   \    /
  //    OR_1   Reg
  //     \    /
  //      OR_2
  //        \     Reg
  //         .. /
  //        Root
  //
  //  Reg   Reg   Reg   Reg
  //     \ /       \   /
  //     OR_1      OR_2
  //       \       /
  //        \    /
  //         ...
  //         Root
  //
  // Each "Reg" may have been produced by a load + some arithmetic. This
  // function will save each of them.
  SmallVector<Register, 8> RegsToVisit;
  SmallVector<const MachineInstr *, 7> Ors = {Root};
  // In the "worst" case, we're dealing with a load for each byte. So, there
  // are at most #bytes - 1 ORs.
  const unsigned MaxIter =
      MRI.getType(Root->getOperand(0).getReg()).getSizeInBytes() - 1;
  for (unsigned Iter = 0; Iter < MaxIter; ++Iter) {
    if (Ors.empty())
      break;
    const MachineInstr *Curr = Ors.pop_back_val();
    Register OrLHS = Curr->getOperand(1).getReg();
    Register OrRHS = Curr->getOperand(2).getReg();
    // In the combine, we want to elimate the entire tree.
    if (!MRI.hasOneNonDBGUse(OrLHS) || !MRI.hasOneNonDBGUse(OrRHS))
      return None;
    // If it's a G_OR, save it and continue to walk. If it's not, then it's
    // something that may be a load + arithmetic.
    if (const MachineInstr *Or = getOpcodeDef(TargetOpcode::G_OR, OrLHS, MRI))
      Ors.push_back(Or);
    else
      RegsToVisit.push_back(OrLHS);
    if (const MachineInstr *Or = getOpcodeDef(TargetOpcode::G_OR, OrRHS, MRI))
      Ors.push_back(Or);
    else
      RegsToVisit.push_back(OrRHS);
  }
  // We're going to try and merge each register into a wider power-of-2 type,
  // so we ought to have an even number of registers.
  if (RegsToVisit.empty() || RegsToVisit.size() % 2 != 0)
    return None;
  return RegsToVisit;
}
/// Helper function for findLoadOffsetsForLoadOrCombine.
///
/// Check if \p Reg is the result of loading a \p MemSizeInBits wide value,
/// and then moving that value into a specific byte offset.
///
/// e.g. x[i] << 24
///
/// \returns The load instruction and the byte offset it is moved into.
static Optional<std::pair<GZExtLoad *, int64_t>>
matchLoadAndBytePosition(Register Reg, unsigned MemSizeInBits,
                         const MachineRegisterInfo &MRI) {
  assert(MRI.hasOneNonDBGUse(Reg) &&
         "Expected Reg to only have one non-debug use?");
  Register MaybeLoad;
  int64_t Shift;
  if (!mi_match(Reg, MRI,
                m_OneNonDBGUse(m_GShl(m_Reg(MaybeLoad), m_ICst(Shift))))) {
    Shift = 0;
    MaybeLoad = Reg;
  }
  if (Shift % MemSizeInBits != 0)
    return None;
  // TODO: Handle other types of loads.
  auto *Load = getOpcodeDef<GZExtLoad>(MaybeLoad, MRI);
  if (!Load)
    return None;
  if (!Load->isUnordered() || Load->getMemSizeInBits() != MemSizeInBits)
    return None;
  return std::make_pair(Load, Shift / MemSizeInBits);
}
Optional<std::tuple<GZExtLoad *, int64_t, GZExtLoad *>>
CombinerHelper::findLoadOffsetsForLoadOrCombine(
    SmallDenseMap<int64_t, int64_t, 8> &MemOffset2Idx,
    const SmallVector<Register, 8> &RegsToVisit, const unsigned MemSizeInBits) {
  // Each load found for the pattern. There should be one for each RegsToVisit.
  SmallSetVector<const MachineInstr *, 8> Loads;
  // The lowest index used in any load. (The lowest "i" for each x[i].)
  int64_t LowestIdx = INT64_MAX;
  // The load which uses the lowest index.
  GZExtLoad *LowestIdxLoad = nullptr;
  // Keeps track of the load indices we see. We shouldn't see any indices twice.
  SmallSet<int64_t, 8> SeenIdx;
  // Ensure each load is in the same MBB.
  // TODO: Support multiple MachineBasicBlocks.
  MachineBasicBlock *MBB = nullptr;
  const MachineMemOperand *MMO = nullptr;
  // Earliest instruction-order load in the pattern.
  GZExtLoad *EarliestLoad = nullptr;
  // Latest instruction-order load in the pattern.
  GZExtLoad *LatestLoad = nullptr;
  // Base pointer which every load should share.
  Register BasePtr;
  // We want to find a load for each register. Each load should have some
  // appropriate bit twiddling arithmetic. During this loop, we will also keep
  // track of the load which uses the lowest index. Later, we will check if we
  // can use its pointer in the final, combined load.
  for (auto Reg : RegsToVisit) {
    // Find the load, and find the position that it will end up in (e.g. a
    // shifted) value.
    auto LoadAndPos = matchLoadAndBytePosition(Reg, MemSizeInBits, MRI);
    if (!LoadAndPos)
      return None;
    GZExtLoad *Load;
    int64_t DstPos;
    std::tie(Load, DstPos) = *LoadAndPos;
    // TODO: Handle multiple MachineBasicBlocks. Currently not handled because
    // it is difficult to check for stores/calls/etc between loads.
    MachineBasicBlock *LoadMBB = Load->getParent();
    if (!MBB)
      MBB = LoadMBB;
    if (LoadMBB != MBB)
      return None;
    // Make sure that the MachineMemOperands of every seen load are compatible.
    auto &LoadMMO = Load->getMMO();
    if (!MMO)
      MMO = &LoadMMO;
    if (MMO->getAddrSpace() != LoadMMO.getAddrSpace())
      return None;
    // Find out what the base pointer and index for the load is.
    Register LoadPtr;
    int64_t Idx;
    if (!mi_match(Load->getOperand(1).getReg(), MRI,
                  m_GPtrAdd(m_Reg(LoadPtr), m_ICst(Idx)))) {
      LoadPtr = Load->getOperand(1).getReg();
      Idx = 0;
    }
    // Don't combine things like a[i], a[i] -> a bigger load.
    if (!SeenIdx.insert(Idx).second)
      return None;
    // Every load must share the same base pointer; don't combine things like:
    //
    // a[i], b[i + 1] -> a bigger load.
    if (!BasePtr.isValid())
      BasePtr = LoadPtr;
    if (BasePtr != LoadPtr)
      return None;
    if (Idx < LowestIdx) {
      LowestIdx = Idx;
      LowestIdxLoad = Load;
    }
    // Keep track of the byte offset that this load ends up at. If we have seen
    // the byte offset, then stop here. We do not want to combine:
    //
    // a[i] << 16, a[i + k] << 16 -> a bigger load.
    if (!MemOffset2Idx.try_emplace(DstPos, Idx).second)
      return None;
    Loads.insert(Load);
    // Keep track of the position of the earliest/latest loads in the pattern.
    // We will check that there are no load fold barriers between them later
    // on.
    //
    // FIXME: Is there a better way to check for load fold barriers?
    if (!EarliestLoad || dominates(*Load, *EarliestLoad))
      EarliestLoad = Load;
    if (!LatestLoad || dominates(*LatestLoad, *Load))
      LatestLoad = Load;
  }
  // We found a load for each register. Let's check if each load satisfies the
  // pattern.
  assert(Loads.size() == RegsToVisit.size() &&
         "Expected to find a load for each register?");
  assert(EarliestLoad != LatestLoad && EarliestLoad &&
         LatestLoad && "Expected at least two loads?");
  // Check if there are any stores, calls, etc. between any of the loads. If
  // there are, then we can't safely perform the combine.
  //
  // MaxIter is chosen based off the (worst case) number of iterations it
  // typically takes to succeed in the LLVM test suite plus some padding.
  //
  // FIXME: Is there a better way to check for load fold barriers?
  const unsigned MaxIter = 20;
  unsigned Iter = 0;
  for (const auto &MI : instructionsWithoutDebug(EarliestLoad->getIterator(),
                                                 LatestLoad->getIterator())) {
    if (Loads.count(&MI))
      continue;
    if (MI.isLoadFoldBarrier())
      return None;
    if (Iter++ == MaxIter)
      return None;
  }
  return std::make_tuple(LowestIdxLoad, LowestIdx, LatestLoad);
}
bool CombinerHelper::matchLoadOrCombine(
    MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) {
  assert(MI.getOpcode() == TargetOpcode::G_OR);
  MachineFunction &MF = *MI.getMF();
  // Assuming a little-endian target, transform:
  //  s8 *a = ...
  //  s32 val = a[0] | (a[1] << 8) | (a[2] << 16) | (a[3] << 24)
  // =>
  //  s32 val = *((i32)a)
  //
  //  s8 *a = ...
  //  s32 val = (a[0] << 24) | (a[1] << 16) | (a[2] << 8) | a[3]
  // =>
  //  s32 val = BSWAP(*((s32)a))
  Register Dst = MI.getOperand(0).getReg();
  LLT Ty = MRI.getType(Dst);
  if (Ty.isVector())
    return false;
  // We need to combine at least two loads into this type. Since the smallest
  // possible load is into a byte, we need at least a 16-bit wide type.
  const unsigned WideMemSizeInBits = Ty.getSizeInBits();
  if (WideMemSizeInBits < 16 || WideMemSizeInBits % 8 != 0)
    return false;
  // Match a collection of non-OR instructions in the pattern.
  auto RegsToVisit = findCandidatesForLoadOrCombine(&MI);
  if (!RegsToVisit)
    return false;
  // We have a collection of non-OR instructions. Figure out how wide each of
  // the small loads should be based off of the number of potential loads we
  // found.
  const unsigned NarrowMemSizeInBits = WideMemSizeInBits / RegsToVisit->size();
  if (NarrowMemSizeInBits % 8 != 0)
    return false;
  // Check if each register feeding into each OR is a load from the same
  // base pointer + some arithmetic.
  //
  // e.g. a[0], a[1] << 8, a[2] << 16, etc.
  //
  // Also verify that each of these ends up putting a[i] into the same memory
  // offset as a load into a wide type would.
  SmallDenseMap<int64_t, int64_t, 8> MemOffset2Idx;
  GZExtLoad *LowestIdxLoad, *LatestLoad;
  int64_t LowestIdx;
  auto MaybeLoadInfo = findLoadOffsetsForLoadOrCombine(
      MemOffset2Idx, *RegsToVisit, NarrowMemSizeInBits);
  if (!MaybeLoadInfo)
    return false;
  std::tie(LowestIdxLoad, LowestIdx, LatestLoad) = *MaybeLoadInfo;
  // We have a bunch of loads being OR'd together. Using the addresses + offsets
  // we found before, check if this corresponds to a big or little endian byte
  // pattern. If it does, then we can represent it using a load + possibly a
  // BSWAP.
  bool IsBigEndianTarget = MF.getDataLayout().isBigEndian();
  Optional<bool> IsBigEndian = isBigEndian(MemOffset2Idx, LowestIdx);
  if (!IsBigEndian.hasValue())
    return false;
  bool NeedsBSwap = IsBigEndianTarget != *IsBigEndian;
  if (NeedsBSwap && !isLegalOrBeforeLegalizer({TargetOpcode::G_BSWAP, {Ty}}))
    return false;
  // Make sure that the load from the lowest index produces offset 0 in the
  // final value.
  //
  // This ensures that we won't combine something like this:
  //
  // load x[i] -> byte 2
  // load x[i+1] -> byte 0 ---> wide_load x[i]
  // load x[i+2] -> byte 1
  const unsigned NumLoadsInTy = WideMemSizeInBits / NarrowMemSizeInBits;
  const unsigned ZeroByteOffset =
      *IsBigEndian
          ? bigEndianByteAt(NumLoadsInTy, 0)
          : littleEndianByteAt(NumLoadsInTy, 0);
  auto ZeroOffsetIdx = MemOffset2Idx.find(ZeroByteOffset);
  if (ZeroOffsetIdx == MemOffset2Idx.end() ||
      ZeroOffsetIdx->second != LowestIdx)
    return false;
  // We wil reuse the pointer from the load which ends up at byte offset 0. It
  // may not use index 0.
  Register Ptr = LowestIdxLoad->getPointerReg();
  const MachineMemOperand &MMO = LowestIdxLoad->getMMO();
  LegalityQuery::MemDesc MMDesc;
  MMDesc.MemoryTy = Ty;
  MMDesc.AlignInBits = MMO.getAlign().value() * 8;
  MMDesc.Ordering = MMO.getSuccessOrdering();
  if (!isLegalOrBeforeLegalizer(
          {TargetOpcode::G_LOAD, {Ty, MRI.getType(Ptr)}, {MMDesc}}))
    return false;
  auto PtrInfo = MMO.getPointerInfo();
  auto *NewMMO = MF.getMachineMemOperand(&MMO, PtrInfo, WideMemSizeInBits / 8);
  // Load must be allowed and fast on the target.
  LLVMContext &C = MF.getFunction().getContext();
  auto &DL = MF.getDataLayout();
  bool Fast = false;
  if (!getTargetLowering().allowsMemoryAccess(C, DL, Ty, *NewMMO, &Fast) ||
      !Fast)
    return false;
  MatchInfo = [=](MachineIRBuilder &MIB) {
    MIB.setInstrAndDebugLoc(*LatestLoad);
    Register LoadDst = NeedsBSwap ? MRI.cloneVirtualRegister(Dst) : Dst;
    MIB.buildLoad(LoadDst, Ptr, *NewMMO);
    if (NeedsBSwap)
      MIB.buildBSwap(Dst, LoadDst);
  };
  return true;
}
bool CombinerHelper::matchExtendThroughPhis(MachineInstr &MI,
                                            MachineInstr *&ExtMI) {
  assert(MI.getOpcode() == TargetOpcode::G_PHI);
  Register DstReg = MI.getOperand(0).getReg();
  // TODO: Extending a vector may be expensive, don't do this until heuristics
  // are better.
  if (MRI.getType(DstReg).isVector())
    return false;
  // Try to match a phi, whose only use is an extend.
  if (!MRI.hasOneNonDBGUse(DstReg))
    return false;
  ExtMI = &*MRI.use_instr_nodbg_begin(DstReg);
  switch (ExtMI->getOpcode()) {
  case TargetOpcode::G_ANYEXT:
    return true; // G_ANYEXT is usually free.
  case TargetOpcode::G_ZEXT:
  case TargetOpcode::G_SEXT:
    break;
  default:
    return false;
  }
  // If the target is likely to fold this extend away, don't propagate.
  if (Builder.getTII().isExtendLikelyToBeFolded(*ExtMI, MRI))
    return false;
  // We don't want to propagate the extends unless there's a good chance that
  // they'll be optimized in some way.
  // Collect the unique incoming values.
  SmallPtrSet<MachineInstr *, 4> InSrcs;
  for (unsigned Idx = 1; Idx < MI.getNumOperands(); Idx += 2) {
    auto *DefMI = getDefIgnoringCopies(MI.getOperand(Idx).getReg(), MRI);
    switch (DefMI->getOpcode()) {
    case TargetOpcode::G_LOAD:
    case TargetOpcode::G_TRUNC:
    case TargetOpcode::G_SEXT:
    case TargetOpcode::G_ZEXT:
    case TargetOpcode::G_ANYEXT:
    case TargetOpcode::G_CONSTANT:
      InSrcs.insert(getDefIgnoringCopies(MI.getOperand(Idx).getReg(), MRI));
      // Don't try to propagate if there are too many places to create new
      // extends, chances are it'll increase code size.
      if (InSrcs.size() > 2)
        return false;
      break;
    default:
      return false;
    }
  }
  return true;
}
void CombinerHelper::applyExtendThroughPhis(MachineInstr &MI,
                                            MachineInstr *&ExtMI) {
  assert(MI.getOpcode() == TargetOpcode::G_PHI);
  Register DstReg = ExtMI->getOperand(0).getReg();
  LLT ExtTy = MRI.getType(DstReg);
  // Propagate the extension into the block of each incoming reg's block.
  // Use a SetVector here because PHIs can have duplicate edges, and we want
  // deterministic iteration order.
  SmallSetVector<MachineInstr *, 8> SrcMIs;
  SmallDenseMap<MachineInstr *, MachineInstr *, 8> OldToNewSrcMap;
  for (unsigned SrcIdx = 1; SrcIdx < MI.getNumOperands(); SrcIdx += 2) {
    auto *SrcMI = MRI.getVRegDef(MI.getOperand(SrcIdx).getReg());
    if (!SrcMIs.insert(SrcMI))
      continue;
    // Build an extend after each src inst.
    auto *MBB = SrcMI->getParent();
    MachineBasicBlock::iterator InsertPt = ++SrcMI->getIterator();
    if (InsertPt != MBB->end() && InsertPt->isPHI())
      InsertPt = MBB->getFirstNonPHI();
    Builder.setInsertPt(*SrcMI->getParent(), InsertPt);
    Builder.setDebugLoc(MI.getDebugLoc());
    auto NewExt = Builder.buildExtOrTrunc(ExtMI->getOpcode(), ExtTy,
                                          SrcMI->getOperand(0).getReg());
    OldToNewSrcMap[SrcMI] = NewExt;
  }
  // Create a new phi with the extended inputs.
  Builder.setInstrAndDebugLoc(MI);
  auto NewPhi = Builder.buildInstrNoInsert(TargetOpcode::G_PHI);
  NewPhi.addDef(DstReg);
  for (unsigned SrcIdx = 1; SrcIdx < MI.getNumOperands(); ++SrcIdx) {
    auto &MO = MI.getOperand(SrcIdx);
    if (!MO.isReg()) {
      NewPhi.addMBB(MO.getMBB());
      continue;
    }
    auto *NewSrc = OldToNewSrcMap[MRI.getVRegDef(MO.getReg())];
    NewPhi.addUse(NewSrc->getOperand(0).getReg());
  }
  Builder.insertInstr(NewPhi);
  ExtMI->eraseFromParent();
}
bool CombinerHelper::matchExtractVecEltBuildVec(MachineInstr &MI,
                                                Register &Reg) {
  assert(MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT);
  // If we have a constant index, look for a G_BUILD_VECTOR source
  // and find the source register that the index maps to.
  Register SrcVec = MI.getOperand(1).getReg();
  LLT SrcTy = MRI.getType(SrcVec);
  if (!isLegalOrBeforeLegalizer(
          {TargetOpcode::G_BUILD_VECTOR, {SrcTy, SrcTy.getElementType()}}))
    return false;
  auto Cst = getConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI);
  if (!Cst || Cst->Value.getZExtValue() >= SrcTy.getNumElements())
    return false;
  unsigned VecIdx = Cst->Value.getZExtValue();
  MachineInstr *BuildVecMI =
      getOpcodeDef(TargetOpcode::G_BUILD_VECTOR, SrcVec, MRI);
  if (!BuildVecMI) {
    BuildVecMI = getOpcodeDef(TargetOpcode::G_BUILD_VECTOR_TRUNC, SrcVec, MRI);
    if (!BuildVecMI)
      return false;
    LLT ScalarTy = MRI.getType(BuildVecMI->getOperand(1).getReg());
    if (!isLegalOrBeforeLegalizer(
            {TargetOpcode::G_BUILD_VECTOR_TRUNC, {SrcTy, ScalarTy}}))
      return false;
  }
  EVT Ty(getMVTForLLT(SrcTy));
  if (!MRI.hasOneNonDBGUse(SrcVec) &&
      !getTargetLowering().aggressivelyPreferBuildVectorSources(Ty))
    return false;
  Reg = BuildVecMI->getOperand(VecIdx + 1).getReg();
  return true;
}
void CombinerHelper::applyExtractVecEltBuildVec(MachineInstr &MI,
                                                Register &Reg) {
  // Check the type of the register, since it may have come from a
  // G_BUILD_VECTOR_TRUNC.
  LLT ScalarTy = MRI.getType(Reg);
  Register DstReg = MI.getOperand(0).getReg();
  LLT DstTy = MRI.getType(DstReg);
  Builder.setInstrAndDebugLoc(MI);
  if (ScalarTy != DstTy) {
    assert(ScalarTy.getSizeInBits() > DstTy.getSizeInBits());
    Builder.buildTrunc(DstReg, Reg);
    MI.eraseFromParent();
    return;
  }
  replaceSingleDefInstWithReg(MI, Reg);
}
bool CombinerHelper::matchExtractAllEltsFromBuildVector(
    MachineInstr &MI,
    SmallVectorImpl<std::pair<Register, MachineInstr *>> &SrcDstPairs) {
  assert(MI.getOpcode() == TargetOpcode::G_BUILD_VECTOR);
  // This combine tries to find build_vector's which have every source element
  // extracted using G_EXTRACT_VECTOR_ELT. This can happen when transforms like
  // the masked load scalarization is run late in the pipeline. There's already
  // a combine for a similar pattern starting from the extract, but that
  // doesn't attempt to do it if there are multiple uses of the build_vector,
  // which in this case is true. Starting the combine from the build_vector
  // feels more natural than trying to find sibling nodes of extracts.
  // E.g.
  //  %vec(<4 x s32>) = G_BUILD_VECTOR %s1(s32), %s2, %s3, %s4
  //  %ext1 = G_EXTRACT_VECTOR_ELT %vec, 0
  //  %ext2 = G_EXTRACT_VECTOR_ELT %vec, 1
  //  %ext3 = G_EXTRACT_VECTOR_ELT %vec, 2
  //  %ext4 = G_EXTRACT_VECTOR_ELT %vec, 3
  // ==>
  // replace ext{1,2,3,4} with %s{1,2,3,4}
  Register DstReg = MI.getOperand(0).getReg();
  LLT DstTy = MRI.getType(DstReg);
  unsigned NumElts = DstTy.getNumElements();
  SmallBitVector ExtractedElts(NumElts);
  for (auto &II : make_range(MRI.use_instr_nodbg_begin(DstReg),
                             MRI.use_instr_nodbg_end())) {
    if (II.getOpcode() != TargetOpcode::G_EXTRACT_VECTOR_ELT)
      return false;
    auto Cst = getConstantVRegVal(II.getOperand(2).getReg(), MRI);
    if (!Cst)
      return false;
    unsigned Idx = Cst.getValue().getZExtValue();
    if (Idx >= NumElts)
      return false; // Out of range.
    ExtractedElts.set(Idx);
    SrcDstPairs.emplace_back(
        std::make_pair(MI.getOperand(Idx + 1).getReg(), &II));
  }
  // Match if every element was extracted.
  return ExtractedElts.all();
}
void CombinerHelper::applyExtractAllEltsFromBuildVector(
    MachineInstr &MI,
    SmallVectorImpl<std::pair<Register, MachineInstr *>> &SrcDstPairs) {
  assert(MI.getOpcode() == TargetOpcode::G_BUILD_VECTOR);
  for (auto &Pair : SrcDstPairs) {
    auto *ExtMI = Pair.second;
    replaceRegWith(MRI, ExtMI->getOperand(0).getReg(), Pair.first);
    ExtMI->eraseFromParent();
  }
  MI.eraseFromParent();
}
void CombinerHelper::applyBuildFn(
    MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) {
  Builder.setInstrAndDebugLoc(MI);
  MatchInfo(Builder);
  MI.eraseFromParent();
}
void CombinerHelper::applyBuildFnNoErase(
    MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) {
  Builder.setInstrAndDebugLoc(MI);
  MatchInfo(Builder);
}
/// Match an FSHL or FSHR that can be combined to a ROTR or ROTL rotate.
bool CombinerHelper::matchFunnelShiftToRotate(MachineInstr &MI) {
  unsigned Opc = MI.getOpcode();
  assert(Opc == TargetOpcode::G_FSHL || Opc == TargetOpcode::G_FSHR);
  Register X = MI.getOperand(1).getReg();
  Register Y = MI.getOperand(2).getReg();
  if (X != Y)
    return false;
  unsigned RotateOpc =
      Opc == TargetOpcode::G_FSHL ? TargetOpcode::G_ROTL : TargetOpcode::G_ROTR;
  return isLegalOrBeforeLegalizer({RotateOpc, {MRI.getType(X), MRI.getType(Y)}});
}
void CombinerHelper::applyFunnelShiftToRotate(MachineInstr &MI) {
  unsigned Opc = MI.getOpcode();
  assert(Opc == TargetOpcode::G_FSHL || Opc == TargetOpcode::G_FSHR);
  bool IsFSHL = Opc == TargetOpcode::G_FSHL;
  Observer.changingInstr(MI);
  MI.setDesc(Builder.getTII().get(IsFSHL ? TargetOpcode::G_ROTL
                                         : TargetOpcode::G_ROTR));
  MI.RemoveOperand(2);
  Observer.changedInstr(MI);
}
// Fold (rot x, c) -> (rot x, c % BitSize)
bool CombinerHelper::matchRotateOutOfRange(MachineInstr &MI) {
  assert(MI.getOpcode() == TargetOpcode::G_ROTL ||
         MI.getOpcode() == TargetOpcode::G_ROTR);
  unsigned Bitsize =
      MRI.getType(MI.getOperand(0).getReg()).getScalarSizeInBits();
  Register AmtReg = MI.getOperand(2).getReg();
  bool OutOfRange = false;
  auto MatchOutOfRange = [Bitsize, &OutOfRange](const Constant *C) {
    if (auto *CI = dyn_cast<ConstantInt>(C))
      OutOfRange |= CI->getValue().uge(Bitsize);
    return true;
  };
  return matchUnaryPredicate(MRI, AmtReg, MatchOutOfRange) && OutOfRange;
}
void CombinerHelper::applyRotateOutOfRange(MachineInstr &MI) {
  assert(MI.getOpcode() == TargetOpcode::G_ROTL ||
         MI.getOpcode() == TargetOpcode::G_ROTR);
  unsigned Bitsize =
      MRI.getType(MI.getOperand(0).getReg()).getScalarSizeInBits();
  Builder.setInstrAndDebugLoc(MI);
  Register Amt = MI.getOperand(2).getReg();
  LLT AmtTy = MRI.getType(Amt);
  auto Bits = Builder.buildConstant(AmtTy, Bitsize);
  Amt = Builder.buildURem(AmtTy, MI.getOperand(2).getReg(), Bits).getReg(0);
  Observer.changingInstr(MI);
  MI.getOperand(2).setReg(Amt);
  Observer.changedInstr(MI);
}
bool CombinerHelper::matchICmpToTrueFalseKnownBits(MachineInstr &MI,
                                                   int64_t &MatchInfo) {
  assert(MI.getOpcode() == TargetOpcode::G_ICMP);
  auto Pred = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate());
  auto KnownLHS = KB->getKnownBits(MI.getOperand(2).getReg());
  auto KnownRHS = KB->getKnownBits(MI.getOperand(3).getReg());
  Optional<bool> KnownVal;
  switch (Pred) {
  default:
    llvm_unreachable("Unexpected G_ICMP predicate?");
  case CmpInst::ICMP_EQ:
    KnownVal = KnownBits::eq(KnownLHS, KnownRHS);
    break;
  case CmpInst::ICMP_NE:
    KnownVal = KnownBits::ne(KnownLHS, KnownRHS);
    break;
  case CmpInst::ICMP_SGE:
    KnownVal = KnownBits::sge(KnownLHS, KnownRHS);
    break;
  case CmpInst::ICMP_SGT:
    KnownVal = KnownBits::sgt(KnownLHS, KnownRHS);
    break;
  case CmpInst::ICMP_SLE:
    KnownVal = KnownBits::sle(KnownLHS, KnownRHS);
    break;
  case CmpInst::ICMP_SLT:
    KnownVal = KnownBits::slt(KnownLHS, KnownRHS);
    break;
  case CmpInst::ICMP_UGE:
    KnownVal = KnownBits::uge(KnownLHS, KnownRHS);
    break;
  case CmpInst::ICMP_UGT:
    KnownVal = KnownBits::ugt(KnownLHS, KnownRHS);
    break;
  case CmpInst::ICMP_ULE:
    KnownVal = KnownBits::ule(KnownLHS, KnownRHS);
    break;
  case CmpInst::ICMP_ULT:
    KnownVal = KnownBits::ult(KnownLHS, KnownRHS);
    break;
  }
  if (!KnownVal)
    return false;
  MatchInfo =
      *KnownVal
          ? getICmpTrueVal(getTargetLowering(),
                           /*IsVector = */
                           MRI.getType(MI.getOperand(0).getReg()).isVector(),
                           /* IsFP = */ false)
          : 0;
  return true;
}
/// Form a G_SBFX from a G_SEXT_INREG fed by a right shift.
bool CombinerHelper::matchBitfieldExtractFromSExtInReg(
    MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) {
  assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG);
  Register Dst = MI.getOperand(0).getReg();
  Register Src = MI.getOperand(1).getReg();
  LLT Ty = MRI.getType(Src);
  LLT ExtractTy = getTargetLowering().getPreferredShiftAmountTy(Ty);
  if (!LI || !LI->isLegalOrCustom({TargetOpcode::G_SBFX, {Ty, ExtractTy}}))
    return false;
  int64_t Width = MI.getOperand(2).getImm();
  Register ShiftSrc;
  int64_t ShiftImm;
  if (!mi_match(
          Src, MRI,
          m_OneNonDBGUse(m_any_of(m_GAShr(m_Reg(ShiftSrc), m_ICst(ShiftImm)),
                                  m_GLShr(m_Reg(ShiftSrc), m_ICst(ShiftImm))))))
    return false;
  if (ShiftImm < 0 || ShiftImm + Width > Ty.getScalarSizeInBits())
    return false;
  MatchInfo = [=](MachineIRBuilder &B) {
    auto Cst1 = B.buildConstant(ExtractTy, ShiftImm);
    auto Cst2 = B.buildConstant(ExtractTy, Width);
    B.buildSbfx(Dst, ShiftSrc, Cst1, Cst2);
  };
  return true;
}
/// Form a G_UBFX from "(a srl b) & mask", where b and mask are constants.
bool CombinerHelper::matchBitfieldExtractFromAnd(
    MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) {
  assert(MI.getOpcode() == TargetOpcode::G_AND);
  Register Dst = MI.getOperand(0).getReg();
  LLT Ty = MRI.getType(Dst);
  if (!getTargetLowering().isConstantUnsignedBitfieldExtactLegal(
          TargetOpcode::G_UBFX, Ty, Ty))
    return false;
  int64_t AndImm, LSBImm;
  Register ShiftSrc;
  const unsigned Size = Ty.getScalarSizeInBits();
  if (!mi_match(MI.getOperand(0).getReg(), MRI,
                m_GAnd(m_OneNonDBGUse(m_GLShr(m_Reg(ShiftSrc), m_ICst(LSBImm))),
                       m_ICst(AndImm))))
    return false;
  // The mask is a mask of the low bits iff imm & (imm+1) == 0.
  auto MaybeMask = static_cast<uint64_t>(AndImm);
  if (MaybeMask & (MaybeMask + 1))
    return false;
  // LSB must fit within the register.
  if (static_cast<uint64_t>(LSBImm) >= Size)
    return false;
  LLT ExtractTy = getTargetLowering().getPreferredShiftAmountTy(Ty);
  uint64_t Width = APInt(Size, AndImm).countTrailingOnes();
  MatchInfo = [=](MachineIRBuilder &B) {
    auto WidthCst = B.buildConstant(ExtractTy, Width);
    auto LSBCst = B.buildConstant(ExtractTy, LSBImm);
    B.buildInstr(TargetOpcode::G_UBFX, {Dst}, {ShiftSrc, LSBCst, WidthCst});
  };
  return true;
}
bool CombinerHelper::reassociationCanBreakAddressingModePattern(
    MachineInstr &PtrAdd) {
  assert(PtrAdd.getOpcode() == TargetOpcode::G_PTR_ADD);
  Register Src1Reg = PtrAdd.getOperand(1).getReg();
  MachineInstr *Src1Def = getOpcodeDef(TargetOpcode::G_PTR_ADD, Src1Reg, MRI);
  if (!Src1Def)
    return false;
  Register Src2Reg = PtrAdd.getOperand(2).getReg();
  if (MRI.hasOneNonDBGUse(Src1Reg))
    return false;
  auto C1 = getConstantVRegVal(Src1Def->getOperand(2).getReg(), MRI);
  if (!C1)
    return false;
  auto C2 = getConstantVRegVal(Src2Reg, MRI);
  if (!C2)
    return false;
  const APInt &C1APIntVal = *C1;
  const APInt &C2APIntVal = *C2;
  const int64_t CombinedValue = (C1APIntVal + C2APIntVal).getSExtValue();
  for (auto &UseMI : MRI.use_nodbg_instructions(Src1Reg)) {
    // This combine may end up running before ptrtoint/inttoptr combines
    // manage to eliminate redundant conversions, so try to look through them.
    MachineInstr *ConvUseMI = &UseMI;
    unsigned ConvUseOpc = ConvUseMI->getOpcode();
    while (ConvUseOpc == TargetOpcode::G_INTTOPTR ||
           ConvUseOpc == TargetOpcode::G_PTRTOINT) {
      Register DefReg = ConvUseMI->getOperand(0).getReg();
      if (!MRI.hasOneNonDBGUse(DefReg))
        break;
      ConvUseMI = &*MRI.use_instr_nodbg_begin(DefReg);
      ConvUseOpc = ConvUseMI->getOpcode();
    }
    auto LoadStore = ConvUseOpc == TargetOpcode::G_LOAD ||
                     ConvUseOpc == TargetOpcode::G_STORE;
    if (!LoadStore)
      continue;
    // Is x[offset2] already not a legal addressing mode? If so then
    // reassociating the constants breaks nothing (we test offset2 because
    // that's the one we hope to fold into the load or store).
    TargetLoweringBase::AddrMode AM;
    AM.HasBaseReg = true;
    AM.BaseOffs = C2APIntVal.getSExtValue();
    unsigned AS =
        MRI.getType(ConvUseMI->getOperand(1).getReg()).getAddressSpace();
    Type *AccessTy =
        getTypeForLLT(MRI.getType(ConvUseMI->getOperand(0).getReg()),
                      PtrAdd.getMF()->getFunction().getContext());
    const auto &TLI = *PtrAdd.getMF()->getSubtarget().getTargetLowering();
    if (!TLI.isLegalAddressingMode(PtrAdd.getMF()->getDataLayout(), AM,
                                   AccessTy, AS))
      continue;
    // Would x[offset1+offset2] still be a legal addressing mode?
    AM.BaseOffs = CombinedValue;
    if (!TLI.isLegalAddressingMode(PtrAdd.getMF()->getDataLayout(), AM,
                                   AccessTy, AS))
      return true;
  }
  return false;
}
bool CombinerHelper::matchReassocPtrAdd(
    MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) {
  assert(MI.getOpcode() == TargetOpcode::G_PTR_ADD);
  // We're trying to match a few pointer computation patterns here for
  // re-association opportunities.
  // 1) Isolating a constant operand to be on the RHS, e.g.:
  // G_PTR_ADD(BASE, G_ADD(X, C)) -> G_PTR_ADD(G_PTR_ADD(BASE, X), C)
  //
  // 2) Folding two constants in each sub-tree as long as such folding
  // doesn't break a legal addressing mode.
  // G_PTR_ADD(G_PTR_ADD(BASE, C1), C2) -> G_PTR_ADD(BASE, C1+C2)
  Register Src1Reg = MI.getOperand(1).getReg();
  Register Src2Reg = MI.getOperand(2).getReg();
  MachineInstr *LHS = MRI.getVRegDef(Src1Reg);
  MachineInstr *RHS = MRI.getVRegDef(Src2Reg);
  if (LHS->getOpcode() != TargetOpcode::G_PTR_ADD) {
    // Try to match example 1).
    if (RHS->getOpcode() != TargetOpcode::G_ADD)
      return false;
    auto C2 = getConstantVRegVal(RHS->getOperand(2).getReg(), MRI);
    if (!C2)
      return false;
    MatchInfo = [=,&MI](MachineIRBuilder &B) {
      LLT PtrTy = MRI.getType(MI.getOperand(0).getReg());
      auto NewBase =
          Builder.buildPtrAdd(PtrTy, Src1Reg, RHS->getOperand(1).getReg());
      Observer.changingInstr(MI);
      MI.getOperand(1).setReg(NewBase.getReg(0));
      MI.getOperand(2).setReg(RHS->getOperand(2).getReg());
      Observer.changedInstr(MI);
    };
  } else {
    // Try to match example 2.
    Register LHSSrc1 = LHS->getOperand(1).getReg();
    Register LHSSrc2 = LHS->getOperand(2).getReg();
    auto C1 = getConstantVRegVal(LHSSrc2, MRI);
    if (!C1)
      return false;
    auto C2 = getConstantVRegVal(Src2Reg, MRI);
    if (!C2)
      return false;
    MatchInfo = [=, &MI](MachineIRBuilder &B) {
      auto NewCst = B.buildConstant(MRI.getType(Src2Reg), *C1 + *C2);
      Observer.changingInstr(MI);
      MI.getOperand(1).setReg(LHSSrc1);
      MI.getOperand(2).setReg(NewCst.getReg(0));
      Observer.changedInstr(MI);
    };
  }
  return !reassociationCanBreakAddressingModePattern(MI);
}
bool CombinerHelper::matchConstantFold(MachineInstr &MI, APInt &MatchInfo) {
  Register Op1 = MI.getOperand(1).getReg();
  Register Op2 = MI.getOperand(2).getReg();
  auto MaybeCst = ConstantFoldBinOp(MI.getOpcode(), Op1, Op2, MRI);
  if (!MaybeCst)
    return false;
  MatchInfo = *MaybeCst;
  return true;
}
bool CombinerHelper::tryCombine(MachineInstr &MI) {
  if (tryCombineCopy(MI))
    return true;
  if (tryCombineExtendingLoads(MI))
    return true;
  if (tryCombineIndexedLoadStore(MI))
    return true;
  return false;
}
 |