| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 
 | //==- llvm/CodeGen/GlobalISel/RegBankSelect.cpp - RegBankSelect --*- C++ -*-==//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
/// \file
/// This file implements the RegBankSelect class.
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/GlobalISel/RegBankSelect.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/CodeGen/GlobalISel/LegalizerInfo.h"
#include "llvm/CodeGen/GlobalISel/RegisterBank.h"
#include "llvm/CodeGen/GlobalISel/RegisterBankInfo.h"
#include "llvm/CodeGen/GlobalISel/Utils.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
#include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/TargetOpcodes.h"
#include "llvm/CodeGen/TargetPassConfig.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/Config/llvm-config.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/Function.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Support/BlockFrequency.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <limits>
#include <memory>
#include <utility>
#define DEBUG_TYPE "regbankselect"
using namespace llvm;
static cl::opt<RegBankSelect::Mode> RegBankSelectMode(
    cl::desc("Mode of the RegBankSelect pass"), cl::Hidden, cl::Optional,
    cl::values(clEnumValN(RegBankSelect::Mode::Fast, "regbankselect-fast",
                          "Run the Fast mode (default mapping)"),
               clEnumValN(RegBankSelect::Mode::Greedy, "regbankselect-greedy",
                          "Use the Greedy mode (best local mapping)")));
char RegBankSelect::ID = 0;
INITIALIZE_PASS_BEGIN(RegBankSelect, DEBUG_TYPE,
                      "Assign register bank of generic virtual registers",
                      false, false);
INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
INITIALIZE_PASS_END(RegBankSelect, DEBUG_TYPE,
                    "Assign register bank of generic virtual registers", false,
                    false)
RegBankSelect::RegBankSelect(Mode RunningMode)
    : MachineFunctionPass(ID), OptMode(RunningMode) {
  if (RegBankSelectMode.getNumOccurrences() != 0) {
    OptMode = RegBankSelectMode;
    if (RegBankSelectMode != RunningMode)
      LLVM_DEBUG(dbgs() << "RegBankSelect mode overrided by command line\n");
  }
}
void RegBankSelect::init(MachineFunction &MF) {
  RBI = MF.getSubtarget().getRegBankInfo();
  assert(RBI && "Cannot work without RegisterBankInfo");
  MRI = &MF.getRegInfo();
  TRI = MF.getSubtarget().getRegisterInfo();
  TPC = &getAnalysis<TargetPassConfig>();
  if (OptMode != Mode::Fast) {
    MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
    MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
  } else {
    MBFI = nullptr;
    MBPI = nullptr;
  }
  MIRBuilder.setMF(MF);
  MORE = std::make_unique<MachineOptimizationRemarkEmitter>(MF, MBFI);
}
void RegBankSelect::getAnalysisUsage(AnalysisUsage &AU) const {
  if (OptMode != Mode::Fast) {
    // We could preserve the information from these two analysis but
    // the APIs do not allow to do so yet.
    AU.addRequired<MachineBlockFrequencyInfo>();
    AU.addRequired<MachineBranchProbabilityInfo>();
  }
  AU.addRequired<TargetPassConfig>();
  getSelectionDAGFallbackAnalysisUsage(AU);
  MachineFunctionPass::getAnalysisUsage(AU);
}
bool RegBankSelect::assignmentMatch(
    Register Reg, const RegisterBankInfo::ValueMapping &ValMapping,
    bool &OnlyAssign) const {
  // By default we assume we will have to repair something.
  OnlyAssign = false;
  // Each part of a break down needs to end up in a different register.
  // In other word, Reg assignment does not match.
  if (ValMapping.NumBreakDowns != 1)
    return false;
  const RegisterBank *CurRegBank = RBI->getRegBank(Reg, *MRI, *TRI);
  const RegisterBank *DesiredRegBank = ValMapping.BreakDown[0].RegBank;
  // Reg is free of assignment, a simple assignment will make the
  // register bank to match.
  OnlyAssign = CurRegBank == nullptr;
  LLVM_DEBUG(dbgs() << "Does assignment already match: ";
             if (CurRegBank) dbgs() << *CurRegBank; else dbgs() << "none";
             dbgs() << " against ";
             assert(DesiredRegBank && "The mapping must be valid");
             dbgs() << *DesiredRegBank << '\n';);
  return CurRegBank == DesiredRegBank;
}
bool RegBankSelect::repairReg(
    MachineOperand &MO, const RegisterBankInfo::ValueMapping &ValMapping,
    RegBankSelect::RepairingPlacement &RepairPt,
    const iterator_range<SmallVectorImpl<Register>::const_iterator> &NewVRegs) {
  assert(ValMapping.NumBreakDowns == (unsigned)size(NewVRegs) &&
         "need new vreg for each breakdown");
  // An empty range of new register means no repairing.
  assert(!NewVRegs.empty() && "We should not have to repair");
  MachineInstr *MI;
  if (ValMapping.NumBreakDowns == 1) {
    // Assume we are repairing a use and thus, the original reg will be
    // the source of the repairing.
    Register Src = MO.getReg();
    Register Dst = *NewVRegs.begin();
    // If we repair a definition, swap the source and destination for
    // the repairing.
    if (MO.isDef())
      std::swap(Src, Dst);
    assert((RepairPt.getNumInsertPoints() == 1 ||
            Register::isPhysicalRegister(Dst)) &&
           "We are about to create several defs for Dst");
    // Build the instruction used to repair, then clone it at the right
    // places. Avoiding buildCopy bypasses the check that Src and Dst have the
    // same types because the type is a placeholder when this function is called.
    MI = MIRBuilder.buildInstrNoInsert(TargetOpcode::COPY)
      .addDef(Dst)
      .addUse(Src);
    LLVM_DEBUG(dbgs() << "Copy: " << printReg(Src) << " to: " << printReg(Dst)
               << '\n');
  } else {
    // TODO: Support with G_IMPLICIT_DEF + G_INSERT sequence or G_EXTRACT
    // sequence.
    assert(ValMapping.partsAllUniform() && "irregular breakdowns not supported");
    LLT RegTy = MRI->getType(MO.getReg());
    if (MO.isDef()) {
      unsigned MergeOp;
      if (RegTy.isVector()) {
        if (ValMapping.NumBreakDowns == RegTy.getNumElements())
          MergeOp = TargetOpcode::G_BUILD_VECTOR;
        else {
          assert(
              (ValMapping.BreakDown[0].Length * ValMapping.NumBreakDowns ==
               RegTy.getSizeInBits()) &&
              (ValMapping.BreakDown[0].Length % RegTy.getScalarSizeInBits() ==
               0) &&
              "don't understand this value breakdown");
          MergeOp = TargetOpcode::G_CONCAT_VECTORS;
        }
      } else
        MergeOp = TargetOpcode::G_MERGE_VALUES;
      auto MergeBuilder =
        MIRBuilder.buildInstrNoInsert(MergeOp)
        .addDef(MO.getReg());
      for (Register SrcReg : NewVRegs)
        MergeBuilder.addUse(SrcReg);
      MI = MergeBuilder;
    } else {
      MachineInstrBuilder UnMergeBuilder =
        MIRBuilder.buildInstrNoInsert(TargetOpcode::G_UNMERGE_VALUES);
      for (Register DefReg : NewVRegs)
        UnMergeBuilder.addDef(DefReg);
      UnMergeBuilder.addUse(MO.getReg());
      MI = UnMergeBuilder;
    }
  }
  if (RepairPt.getNumInsertPoints() != 1)
    report_fatal_error("need testcase to support multiple insertion points");
  // TODO:
  // Check if MI is legal. if not, we need to legalize all the
  // instructions we are going to insert.
  std::unique_ptr<MachineInstr *[]> NewInstrs(
      new MachineInstr *[RepairPt.getNumInsertPoints()]);
  bool IsFirst = true;
  unsigned Idx = 0;
  for (const std::unique_ptr<InsertPoint> &InsertPt : RepairPt) {
    MachineInstr *CurMI;
    if (IsFirst)
      CurMI = MI;
    else
      CurMI = MIRBuilder.getMF().CloneMachineInstr(MI);
    InsertPt->insert(*CurMI);
    NewInstrs[Idx++] = CurMI;
    IsFirst = false;
  }
  // TODO:
  // Legalize NewInstrs if need be.
  return true;
}
uint64_t RegBankSelect::getRepairCost(
    const MachineOperand &MO,
    const RegisterBankInfo::ValueMapping &ValMapping) const {
  assert(MO.isReg() && "We should only repair register operand");
  assert(ValMapping.NumBreakDowns && "Nothing to map??");
  bool IsSameNumOfValues = ValMapping.NumBreakDowns == 1;
  const RegisterBank *CurRegBank = RBI->getRegBank(MO.getReg(), *MRI, *TRI);
  // If MO does not have a register bank, we should have just been
  // able to set one unless we have to break the value down.
  assert(CurRegBank || MO.isDef());
  // Def: Val <- NewDefs
  //     Same number of values: copy
  //     Different number: Val = build_sequence Defs1, Defs2, ...
  // Use: NewSources <- Val.
  //     Same number of values: copy.
  //     Different number: Src1, Src2, ... =
  //           extract_value Val, Src1Begin, Src1Len, Src2Begin, Src2Len, ...
  // We should remember that this value is available somewhere else to
  // coalesce the value.
  if (ValMapping.NumBreakDowns != 1)
    return RBI->getBreakDownCost(ValMapping, CurRegBank);
  if (IsSameNumOfValues) {
    const RegisterBank *DesiredRegBank = ValMapping.BreakDown[0].RegBank;
    // If we repair a definition, swap the source and destination for
    // the repairing.
    if (MO.isDef())
      std::swap(CurRegBank, DesiredRegBank);
    // TODO: It may be possible to actually avoid the copy.
    // If we repair something where the source is defined by a copy
    // and the source of that copy is on the right bank, we can reuse
    // it for free.
    // E.g.,
    // RegToRepair<BankA> = copy AlternativeSrc<BankB>
    // = op RegToRepair<BankA>
    // We can simply propagate AlternativeSrc instead of copying RegToRepair
    // into a new virtual register.
    // We would also need to propagate this information in the
    // repairing placement.
    unsigned Cost = RBI->copyCost(*DesiredRegBank, *CurRegBank,
                                  RBI->getSizeInBits(MO.getReg(), *MRI, *TRI));
    // TODO: use a dedicated constant for ImpossibleCost.
    if (Cost != std::numeric_limits<unsigned>::max())
      return Cost;
    // Return the legalization cost of that repairing.
  }
  return std::numeric_limits<unsigned>::max();
}
const RegisterBankInfo::InstructionMapping &RegBankSelect::findBestMapping(
    MachineInstr &MI, RegisterBankInfo::InstructionMappings &PossibleMappings,
    SmallVectorImpl<RepairingPlacement> &RepairPts) {
  assert(!PossibleMappings.empty() &&
         "Do not know how to map this instruction");
  const RegisterBankInfo::InstructionMapping *BestMapping = nullptr;
  MappingCost Cost = MappingCost::ImpossibleCost();
  SmallVector<RepairingPlacement, 4> LocalRepairPts;
  for (const RegisterBankInfo::InstructionMapping *CurMapping :
       PossibleMappings) {
    MappingCost CurCost =
        computeMapping(MI, *CurMapping, LocalRepairPts, &Cost);
    if (CurCost < Cost) {
      LLVM_DEBUG(dbgs() << "New best: " << CurCost << '\n');
      Cost = CurCost;
      BestMapping = CurMapping;
      RepairPts.clear();
      for (RepairingPlacement &RepairPt : LocalRepairPts)
        RepairPts.emplace_back(std::move(RepairPt));
    }
  }
  if (!BestMapping && !TPC->isGlobalISelAbortEnabled()) {
    // If none of the mapping worked that means they are all impossible.
    // Thus, pick the first one and set an impossible repairing point.
    // It will trigger the failed isel mode.
    BestMapping = *PossibleMappings.begin();
    RepairPts.emplace_back(
        RepairingPlacement(MI, 0, *TRI, *this, RepairingPlacement::Impossible));
  } else
    assert(BestMapping && "No suitable mapping for instruction");
  return *BestMapping;
}
void RegBankSelect::tryAvoidingSplit(
    RegBankSelect::RepairingPlacement &RepairPt, const MachineOperand &MO,
    const RegisterBankInfo::ValueMapping &ValMapping) const {
  const MachineInstr &MI = *MO.getParent();
  assert(RepairPt.hasSplit() && "We should not have to adjust for split");
  // Splitting should only occur for PHIs or between terminators,
  // because we only do local repairing.
  assert((MI.isPHI() || MI.isTerminator()) && "Why do we split?");
  assert(&MI.getOperand(RepairPt.getOpIdx()) == &MO &&
         "Repairing placement does not match operand");
  // If we need splitting for phis, that means it is because we
  // could not find an insertion point before the terminators of
  // the predecessor block for this argument. In other words,
  // the input value is defined by one of the terminators.
  assert((!MI.isPHI() || !MO.isDef()) && "Need split for phi def?");
  // We split to repair the use of a phi or a terminator.
  if (!MO.isDef()) {
    if (MI.isTerminator()) {
      assert(&MI != &(*MI.getParent()->getFirstTerminator()) &&
             "Need to split for the first terminator?!");
    } else {
      // For the PHI case, the split may not be actually required.
      // In the copy case, a phi is already a copy on the incoming edge,
      // therefore there is no need to split.
      if (ValMapping.NumBreakDowns == 1)
        // This is a already a copy, there is nothing to do.
        RepairPt.switchTo(RepairingPlacement::RepairingKind::Reassign);
    }
    return;
  }
  // At this point, we need to repair a defintion of a terminator.
  // Technically we need to fix the def of MI on all outgoing
  // edges of MI to keep the repairing local. In other words, we
  // will create several definitions of the same register. This
  // does not work for SSA unless that definition is a physical
  // register.
  // However, there are other cases where we can get away with
  // that while still keeping the repairing local.
  assert(MI.isTerminator() && MO.isDef() &&
         "This code is for the def of a terminator");
  // Since we use RPO traversal, if we need to repair a definition
  // this means this definition could be:
  // 1. Used by PHIs (i.e., this VReg has been visited as part of the
  //    uses of a phi.), or
  // 2. Part of a target specific instruction (i.e., the target applied
  //    some register class constraints when creating the instruction.)
  // If the constraints come for #2, the target said that another mapping
  // is supported so we may just drop them. Indeed, if we do not change
  // the number of registers holding that value, the uses will get fixed
  // when we get to them.
  // Uses in PHIs may have already been proceeded though.
  // If the constraints come for #1, then, those are weak constraints and
  // no actual uses may rely on them. However, the problem remains mainly
  // the same as for #2. If the value stays in one register, we could
  // just switch the register bank of the definition, but we would need to
  // account for a repairing cost for each phi we silently change.
  //
  // In any case, if the value needs to be broken down into several
  // registers, the repairing is not local anymore as we need to patch
  // every uses to rebuild the value in just one register.
  //
  // To summarize:
  // - If the value is in a physical register, we can do the split and
  //   fix locally.
  // Otherwise if the value is in a virtual register:
  // - If the value remains in one register, we do not have to split
  //   just switching the register bank would do, but we need to account
  //   in the repairing cost all the phi we changed.
  // - If the value spans several registers, then we cannot do a local
  //   repairing.
  // Check if this is a physical or virtual register.
  Register Reg = MO.getReg();
  if (Register::isPhysicalRegister(Reg)) {
    // We are going to split every outgoing edges.
    // Check that this is possible.
    // FIXME: The machine representation is currently broken
    // since it also several terminators in one basic block.
    // Because of that we would technically need a way to get
    // the targets of just one terminator to know which edges
    // we have to split.
    // Assert that we do not hit the ill-formed representation.
    // If there are other terminators before that one, some of
    // the outgoing edges may not be dominated by this definition.
    assert(&MI == &(*MI.getParent()->getFirstTerminator()) &&
           "Do not know which outgoing edges are relevant");
    const MachineInstr *Next = MI.getNextNode();
    assert((!Next || Next->isUnconditionalBranch()) &&
           "Do not know where each terminator ends up");
    if (Next)
      // If the next terminator uses Reg, this means we have
      // to split right after MI and thus we need a way to ask
      // which outgoing edges are affected.
      assert(!Next->readsRegister(Reg) && "Need to split between terminators");
    // We will split all the edges and repair there.
  } else {
    // This is a virtual register defined by a terminator.
    if (ValMapping.NumBreakDowns == 1) {
      // There is nothing to repair, but we may actually lie on
      // the repairing cost because of the PHIs already proceeded
      // as already stated.
      // Though the code will be correct.
      assert(false && "Repairing cost may not be accurate");
    } else {
      // We need to do non-local repairing. Basically, patch all
      // the uses (i.e., phis) that we already proceeded.
      // For now, just say this mapping is not possible.
      RepairPt.switchTo(RepairingPlacement::RepairingKind::Impossible);
    }
  }
}
RegBankSelect::MappingCost RegBankSelect::computeMapping(
    MachineInstr &MI, const RegisterBankInfo::InstructionMapping &InstrMapping,
    SmallVectorImpl<RepairingPlacement> &RepairPts,
    const RegBankSelect::MappingCost *BestCost) {
  assert((MBFI || !BestCost) && "Costs comparison require MBFI");
  if (!InstrMapping.isValid())
    return MappingCost::ImpossibleCost();
  // If mapped with InstrMapping, MI will have the recorded cost.
  MappingCost Cost(MBFI ? MBFI->getBlockFreq(MI.getParent()) : 1);
  bool Saturated = Cost.addLocalCost(InstrMapping.getCost());
  assert(!Saturated && "Possible mapping saturated the cost");
  LLVM_DEBUG(dbgs() << "Evaluating mapping cost for: " << MI);
  LLVM_DEBUG(dbgs() << "With: " << InstrMapping << '\n');
  RepairPts.clear();
  if (BestCost && Cost > *BestCost) {
    LLVM_DEBUG(dbgs() << "Mapping is too expensive from the start\n");
    return Cost;
  }
  // Moreover, to realize this mapping, the register bank of each operand must
  // match this mapping. In other words, we may need to locally reassign the
  // register banks. Account for that repairing cost as well.
  // In this context, local means in the surrounding of MI.
  for (unsigned OpIdx = 0, EndOpIdx = InstrMapping.getNumOperands();
       OpIdx != EndOpIdx; ++OpIdx) {
    const MachineOperand &MO = MI.getOperand(OpIdx);
    if (!MO.isReg())
      continue;
    Register Reg = MO.getReg();
    if (!Reg)
      continue;
    LLVM_DEBUG(dbgs() << "Opd" << OpIdx << '\n');
    const RegisterBankInfo::ValueMapping &ValMapping =
        InstrMapping.getOperandMapping(OpIdx);
    // If Reg is already properly mapped, this is free.
    bool Assign;
    if (assignmentMatch(Reg, ValMapping, Assign)) {
      LLVM_DEBUG(dbgs() << "=> is free (match).\n");
      continue;
    }
    if (Assign) {
      LLVM_DEBUG(dbgs() << "=> is free (simple assignment).\n");
      RepairPts.emplace_back(RepairingPlacement(MI, OpIdx, *TRI, *this,
                                                RepairingPlacement::Reassign));
      continue;
    }
    // Find the insertion point for the repairing code.
    RepairPts.emplace_back(
        RepairingPlacement(MI, OpIdx, *TRI, *this, RepairingPlacement::Insert));
    RepairingPlacement &RepairPt = RepairPts.back();
    // If we need to split a basic block to materialize this insertion point,
    // we may give a higher cost to this mapping.
    // Nevertheless, we may get away with the split, so try that first.
    if (RepairPt.hasSplit())
      tryAvoidingSplit(RepairPt, MO, ValMapping);
    // Check that the materialization of the repairing is possible.
    if (!RepairPt.canMaterialize()) {
      LLVM_DEBUG(dbgs() << "Mapping involves impossible repairing\n");
      return MappingCost::ImpossibleCost();
    }
    // Account for the split cost and repair cost.
    // Unless the cost is already saturated or we do not care about the cost.
    if (!BestCost || Saturated)
      continue;
    // To get accurate information we need MBFI and MBPI.
    // Thus, if we end up here this information should be here.
    assert(MBFI && MBPI && "Cost computation requires MBFI and MBPI");
    // FIXME: We will have to rework the repairing cost model.
    // The repairing cost depends on the register bank that MO has.
    // However, when we break down the value into different values,
    // MO may not have a register bank while still needing repairing.
    // For the fast mode, we don't compute the cost so that is fine,
    // but still for the repairing code, we will have to make a choice.
    // For the greedy mode, we should choose greedily what is the best
    // choice based on the next use of MO.
    // Sums up the repairing cost of MO at each insertion point.
    uint64_t RepairCost = getRepairCost(MO, ValMapping);
    // This is an impossible to repair cost.
    if (RepairCost == std::numeric_limits<unsigned>::max())
      return MappingCost::ImpossibleCost();
    // Bias used for splitting: 5%.
    const uint64_t PercentageForBias = 5;
    uint64_t Bias = (RepairCost * PercentageForBias + 99) / 100;
    // We should not need more than a couple of instructions to repair
    // an assignment. In other words, the computation should not
    // overflow because the repairing cost is free of basic block
    // frequency.
    assert(((RepairCost < RepairCost * PercentageForBias) &&
            (RepairCost * PercentageForBias <
             RepairCost * PercentageForBias + 99)) &&
           "Repairing involves more than a billion of instructions?!");
    for (const std::unique_ptr<InsertPoint> &InsertPt : RepairPt) {
      assert(InsertPt->canMaterialize() && "We should not have made it here");
      // We will applied some basic block frequency and those uses uint64_t.
      if (!InsertPt->isSplit())
        Saturated = Cost.addLocalCost(RepairCost);
      else {
        uint64_t CostForInsertPt = RepairCost;
        // Again we shouldn't overflow here givent that
        // CostForInsertPt is frequency free at this point.
        assert(CostForInsertPt + Bias > CostForInsertPt &&
               "Repairing + split bias overflows");
        CostForInsertPt += Bias;
        uint64_t PtCost = InsertPt->frequency(*this) * CostForInsertPt;
        // Check if we just overflowed.
        if ((Saturated = PtCost < CostForInsertPt))
          Cost.saturate();
        else
          Saturated = Cost.addNonLocalCost(PtCost);
      }
      // Stop looking into what it takes to repair, this is already
      // too expensive.
      if (BestCost && Cost > *BestCost) {
        LLVM_DEBUG(dbgs() << "Mapping is too expensive, stop processing\n");
        return Cost;
      }
      // No need to accumulate more cost information.
      // We need to still gather the repairing information though.
      if (Saturated)
        break;
    }
  }
  LLVM_DEBUG(dbgs() << "Total cost is: " << Cost << "\n");
  return Cost;
}
bool RegBankSelect::applyMapping(
    MachineInstr &MI, const RegisterBankInfo::InstructionMapping &InstrMapping,
    SmallVectorImpl<RegBankSelect::RepairingPlacement> &RepairPts) {
  // OpdMapper will hold all the information needed for the rewriting.
  RegisterBankInfo::OperandsMapper OpdMapper(MI, InstrMapping, *MRI);
  // First, place the repairing code.
  for (RepairingPlacement &RepairPt : RepairPts) {
    if (!RepairPt.canMaterialize() ||
        RepairPt.getKind() == RepairingPlacement::Impossible)
      return false;
    assert(RepairPt.getKind() != RepairingPlacement::None &&
           "This should not make its way in the list");
    unsigned OpIdx = RepairPt.getOpIdx();
    MachineOperand &MO = MI.getOperand(OpIdx);
    const RegisterBankInfo::ValueMapping &ValMapping =
        InstrMapping.getOperandMapping(OpIdx);
    Register Reg = MO.getReg();
    switch (RepairPt.getKind()) {
    case RepairingPlacement::Reassign:
      assert(ValMapping.NumBreakDowns == 1 &&
             "Reassignment should only be for simple mapping");
      MRI->setRegBank(Reg, *ValMapping.BreakDown[0].RegBank);
      break;
    case RepairingPlacement::Insert:
      OpdMapper.createVRegs(OpIdx);
      if (!repairReg(MO, ValMapping, RepairPt, OpdMapper.getVRegs(OpIdx)))
        return false;
      break;
    default:
      llvm_unreachable("Other kind should not happen");
    }
  }
  // Second, rewrite the instruction.
  LLVM_DEBUG(dbgs() << "Actual mapping of the operands: " << OpdMapper << '\n');
  RBI->applyMapping(OpdMapper);
  return true;
}
bool RegBankSelect::assignInstr(MachineInstr &MI) {
  LLVM_DEBUG(dbgs() << "Assign: " << MI);
  unsigned Opc = MI.getOpcode();
  if (isPreISelGenericOptimizationHint(Opc)) {
    assert((Opc == TargetOpcode::G_ASSERT_ZEXT ||
            Opc == TargetOpcode::G_ASSERT_SEXT) &&
           "Unexpected hint opcode!");
    // The only correct mapping for these is to always use the source register
    // bank.
    const RegisterBank *RB = MRI->getRegBankOrNull(MI.getOperand(1).getReg());
    // We can assume every instruction above this one has a selected register
    // bank.
    assert(RB && "Expected source register to have a register bank?");
    LLVM_DEBUG(dbgs() << "... Hint always uses source's register bank.\n");
    MRI->setRegBank(MI.getOperand(0).getReg(), *RB);
    return true;
  }
  // Remember the repairing placement for all the operands.
  SmallVector<RepairingPlacement, 4> RepairPts;
  const RegisterBankInfo::InstructionMapping *BestMapping;
  if (OptMode == RegBankSelect::Mode::Fast) {
    BestMapping = &RBI->getInstrMapping(MI);
    MappingCost DefaultCost = computeMapping(MI, *BestMapping, RepairPts);
    (void)DefaultCost;
    if (DefaultCost == MappingCost::ImpossibleCost())
      return false;
  } else {
    RegisterBankInfo::InstructionMappings PossibleMappings =
        RBI->getInstrPossibleMappings(MI);
    if (PossibleMappings.empty())
      return false;
    BestMapping = &findBestMapping(MI, PossibleMappings, RepairPts);
  }
  // Make sure the mapping is valid for MI.
  assert(BestMapping->verify(MI) && "Invalid instruction mapping");
  LLVM_DEBUG(dbgs() << "Best Mapping: " << *BestMapping << '\n');
  // After this call, MI may not be valid anymore.
  // Do not use it.
  return applyMapping(MI, *BestMapping, RepairPts);
}
bool RegBankSelect::runOnMachineFunction(MachineFunction &MF) {
  // If the ISel pipeline failed, do not bother running that pass.
  if (MF.getProperties().hasProperty(
          MachineFunctionProperties::Property::FailedISel))
    return false;
  LLVM_DEBUG(dbgs() << "Assign register banks for: " << MF.getName() << '\n');
  const Function &F = MF.getFunction();
  Mode SaveOptMode = OptMode;
  if (F.hasOptNone())
    OptMode = Mode::Fast;
  init(MF);
#ifndef NDEBUG
  // Check that our input is fully legal: we require the function to have the
  // Legalized property, so it should be.
  // FIXME: This should be in the MachineVerifier.
  if (!DisableGISelLegalityCheck)
    if (const MachineInstr *MI = machineFunctionIsIllegal(MF)) {
      reportGISelFailure(MF, *TPC, *MORE, "gisel-regbankselect",
                         "instruction is not legal", *MI);
      return false;
    }
#endif
  // Walk the function and assign register banks to all operands.
  // Use a RPOT to make sure all registers are assigned before we choose
  // the best mapping of the current instruction.
  ReversePostOrderTraversal<MachineFunction*> RPOT(&MF);
  for (MachineBasicBlock *MBB : RPOT) {
    // Set a sensible insertion point so that subsequent calls to
    // MIRBuilder.
    MIRBuilder.setMBB(*MBB);
    for (MachineBasicBlock::iterator MII = MBB->begin(), End = MBB->end();
         MII != End;) {
      // MI might be invalidated by the assignment, so move the
      // iterator before hand.
      MachineInstr &MI = *MII++;
      // Ignore target-specific post-isel instructions: they should use proper
      // regclasses.
      if (isTargetSpecificOpcode(MI.getOpcode()) && !MI.isPreISelOpcode())
        continue;
      // Ignore inline asm instructions: they should use physical
      // registers/regclasses
      if (MI.isInlineAsm())
        continue;
      // Ignore debug info.
      if (MI.isDebugInstr())
        continue;
      // Ignore IMPLICIT_DEF which must have a regclass.
      if (MI.isImplicitDef())
        continue;
      if (!assignInstr(MI)) {
        reportGISelFailure(MF, *TPC, *MORE, "gisel-regbankselect",
                           "unable to map instruction", MI);
        return false;
      }
      // It's possible the mapping changed control flow, and moved the following
      // instruction to a new block, so figure out the new parent.
      if (MII != End) {
        MachineBasicBlock *NextInstBB = MII->getParent();
        if (NextInstBB != MBB) {
          LLVM_DEBUG(dbgs() << "Instruction mapping changed control flow\n");
          MBB = NextInstBB;
          MIRBuilder.setMBB(*MBB);
          End = MBB->end();
        }
      }
    }
  }
  OptMode = SaveOptMode;
  return false;
}
//------------------------------------------------------------------------------
//                  Helper Classes Implementation
//------------------------------------------------------------------------------
RegBankSelect::RepairingPlacement::RepairingPlacement(
    MachineInstr &MI, unsigned OpIdx, const TargetRegisterInfo &TRI, Pass &P,
    RepairingPlacement::RepairingKind Kind)
    // Default is, we are going to insert code to repair OpIdx.
    : Kind(Kind), OpIdx(OpIdx),
      CanMaterialize(Kind != RepairingKind::Impossible), P(P) {
  const MachineOperand &MO = MI.getOperand(OpIdx);
  assert(MO.isReg() && "Trying to repair a non-reg operand");
  if (Kind != RepairingKind::Insert)
    return;
  // Repairings for definitions happen after MI, uses happen before.
  bool Before = !MO.isDef();
  // Check if we are done with MI.
  if (!MI.isPHI() && !MI.isTerminator()) {
    addInsertPoint(MI, Before);
    // We are done with the initialization.
    return;
  }
  // Now, look for the special cases.
  if (MI.isPHI()) {
    // - PHI must be the first instructions:
    //   * Before, we have to split the related incoming edge.
    //   * After, move the insertion point past the last phi.
    if (!Before) {
      MachineBasicBlock::iterator It = MI.getParent()->getFirstNonPHI();
      if (It != MI.getParent()->end())
        addInsertPoint(*It, /*Before*/ true);
      else
        addInsertPoint(*(--It), /*Before*/ false);
      return;
    }
    // We repair a use of a phi, we may need to split the related edge.
    MachineBasicBlock &Pred = *MI.getOperand(OpIdx + 1).getMBB();
    // Check if we can move the insertion point prior to the
    // terminators of the predecessor.
    Register Reg = MO.getReg();
    MachineBasicBlock::iterator It = Pred.getLastNonDebugInstr();
    for (auto Begin = Pred.begin(); It != Begin && It->isTerminator(); --It)
      if (It->modifiesRegister(Reg, &TRI)) {
        // We cannot hoist the repairing code in the predecessor.
        // Split the edge.
        addInsertPoint(Pred, *MI.getParent());
        return;
      }
    // At this point, we can insert in Pred.
    // - If It is invalid, Pred is empty and we can insert in Pred
    //   wherever we want.
    // - If It is valid, It is the first non-terminator, insert after It.
    if (It == Pred.end())
      addInsertPoint(Pred, /*Beginning*/ false);
    else
      addInsertPoint(*It, /*Before*/ false);
  } else {
    // - Terminators must be the last instructions:
    //   * Before, move the insert point before the first terminator.
    //   * After, we have to split the outcoming edges.
    if (Before) {
      // Check whether Reg is defined by any terminator.
      MachineBasicBlock::reverse_iterator It = MI;
      auto REnd = MI.getParent()->rend();
      for (; It != REnd && It->isTerminator(); ++It) {
        assert(!It->modifiesRegister(MO.getReg(), &TRI) &&
               "copy insertion in middle of terminators not handled");
      }
      if (It == REnd) {
        addInsertPoint(*MI.getParent()->begin(), true);
        return;
      }
      // We are sure to be right before the first terminator.
      addInsertPoint(*It, /*Before*/ false);
      return;
    }
    // Make sure Reg is not redefined by other terminators, otherwise
    // we do not know how to split.
    for (MachineBasicBlock::iterator It = MI, End = MI.getParent()->end();
         ++It != End;)
      // The machine verifier should reject this kind of code.
      assert(It->modifiesRegister(MO.getReg(), &TRI) &&
             "Do not know where to split");
    // Split each outcoming edges.
    MachineBasicBlock &Src = *MI.getParent();
    for (auto &Succ : Src.successors())
      addInsertPoint(Src, Succ);
  }
}
void RegBankSelect::RepairingPlacement::addInsertPoint(MachineInstr &MI,
                                                       bool Before) {
  addInsertPoint(*new InstrInsertPoint(MI, Before));
}
void RegBankSelect::RepairingPlacement::addInsertPoint(MachineBasicBlock &MBB,
                                                       bool Beginning) {
  addInsertPoint(*new MBBInsertPoint(MBB, Beginning));
}
void RegBankSelect::RepairingPlacement::addInsertPoint(MachineBasicBlock &Src,
                                                       MachineBasicBlock &Dst) {
  addInsertPoint(*new EdgeInsertPoint(Src, Dst, P));
}
void RegBankSelect::RepairingPlacement::addInsertPoint(
    RegBankSelect::InsertPoint &Point) {
  CanMaterialize &= Point.canMaterialize();
  HasSplit |= Point.isSplit();
  InsertPoints.emplace_back(&Point);
}
RegBankSelect::InstrInsertPoint::InstrInsertPoint(MachineInstr &Instr,
                                                  bool Before)
    : InsertPoint(), Instr(Instr), Before(Before) {
  // Since we do not support splitting, we do not need to update
  // liveness and such, so do not do anything with P.
  assert((!Before || !Instr.isPHI()) &&
         "Splitting before phis requires more points");
  assert((!Before || !Instr.getNextNode() || !Instr.getNextNode()->isPHI()) &&
         "Splitting between phis does not make sense");
}
void RegBankSelect::InstrInsertPoint::materialize() {
  if (isSplit()) {
    // Slice and return the beginning of the new block.
    // If we need to split between the terminators, we theoritically
    // need to know where the first and second set of terminators end
    // to update the successors properly.
    // Now, in pratice, we should have a maximum of 2 branch
    // instructions; one conditional and one unconditional. Therefore
    // we know how to update the successor by looking at the target of
    // the unconditional branch.
    // If we end up splitting at some point, then, we should update
    // the liveness information and such. I.e., we would need to
    // access P here.
    // The machine verifier should actually make sure such cases
    // cannot happen.
    llvm_unreachable("Not yet implemented");
  }
  // Otherwise the insertion point is just the current or next
  // instruction depending on Before. I.e., there is nothing to do
  // here.
}
bool RegBankSelect::InstrInsertPoint::isSplit() const {
  // If the insertion point is after a terminator, we need to split.
  if (!Before)
    return Instr.isTerminator();
  // If we insert before an instruction that is after a terminator,
  // we are still after a terminator.
  return Instr.getPrevNode() && Instr.getPrevNode()->isTerminator();
}
uint64_t RegBankSelect::InstrInsertPoint::frequency(const Pass &P) const {
  // Even if we need to split, because we insert between terminators,
  // this split has actually the same frequency as the instruction.
  const MachineBlockFrequencyInfo *MBFI =
      P.getAnalysisIfAvailable<MachineBlockFrequencyInfo>();
  if (!MBFI)
    return 1;
  return MBFI->getBlockFreq(Instr.getParent()).getFrequency();
}
uint64_t RegBankSelect::MBBInsertPoint::frequency(const Pass &P) const {
  const MachineBlockFrequencyInfo *MBFI =
      P.getAnalysisIfAvailable<MachineBlockFrequencyInfo>();
  if (!MBFI)
    return 1;
  return MBFI->getBlockFreq(&MBB).getFrequency();
}
void RegBankSelect::EdgeInsertPoint::materialize() {
  // If we end up repairing twice at the same place before materializing the
  // insertion point, we may think we have to split an edge twice.
  // We should have a factory for the insert point such that identical points
  // are the same instance.
  assert(Src.isSuccessor(DstOrSplit) && DstOrSplit->isPredecessor(&Src) &&
         "This point has already been split");
  MachineBasicBlock *NewBB = Src.SplitCriticalEdge(DstOrSplit, P);
  assert(NewBB && "Invalid call to materialize");
  // We reuse the destination block to hold the information of the new block.
  DstOrSplit = NewBB;
}
uint64_t RegBankSelect::EdgeInsertPoint::frequency(const Pass &P) const {
  const MachineBlockFrequencyInfo *MBFI =
      P.getAnalysisIfAvailable<MachineBlockFrequencyInfo>();
  if (!MBFI)
    return 1;
  if (WasMaterialized)
    return MBFI->getBlockFreq(DstOrSplit).getFrequency();
  const MachineBranchProbabilityInfo *MBPI =
      P.getAnalysisIfAvailable<MachineBranchProbabilityInfo>();
  if (!MBPI)
    return 1;
  // The basic block will be on the edge.
  return (MBFI->getBlockFreq(&Src) * MBPI->getEdgeProbability(&Src, DstOrSplit))
      .getFrequency();
}
bool RegBankSelect::EdgeInsertPoint::canMaterialize() const {
  // If this is not a critical edge, we should not have used this insert
  // point. Indeed, either the successor or the predecessor should
  // have do.
  assert(Src.succ_size() > 1 && DstOrSplit->pred_size() > 1 &&
         "Edge is not critical");
  return Src.canSplitCriticalEdge(DstOrSplit);
}
RegBankSelect::MappingCost::MappingCost(const BlockFrequency &LocalFreq)
    : LocalFreq(LocalFreq.getFrequency()) {}
bool RegBankSelect::MappingCost::addLocalCost(uint64_t Cost) {
  // Check if this overflows.
  if (LocalCost + Cost < LocalCost) {
    saturate();
    return true;
  }
  LocalCost += Cost;
  return isSaturated();
}
bool RegBankSelect::MappingCost::addNonLocalCost(uint64_t Cost) {
  // Check if this overflows.
  if (NonLocalCost + Cost < NonLocalCost) {
    saturate();
    return true;
  }
  NonLocalCost += Cost;
  return isSaturated();
}
bool RegBankSelect::MappingCost::isSaturated() const {
  return LocalCost == UINT64_MAX - 1 && NonLocalCost == UINT64_MAX &&
         LocalFreq == UINT64_MAX;
}
void RegBankSelect::MappingCost::saturate() {
  *this = ImpossibleCost();
  --LocalCost;
}
RegBankSelect::MappingCost RegBankSelect::MappingCost::ImpossibleCost() {
  return MappingCost(UINT64_MAX, UINT64_MAX, UINT64_MAX);
}
bool RegBankSelect::MappingCost::operator<(const MappingCost &Cost) const {
  // Sort out the easy cases.
  if (*this == Cost)
    return false;
  // If one is impossible to realize the other is cheaper unless it is
  // impossible as well.
  if ((*this == ImpossibleCost()) || (Cost == ImpossibleCost()))
    return (*this == ImpossibleCost()) < (Cost == ImpossibleCost());
  // If one is saturated the other is cheaper, unless it is saturated
  // as well.
  if (isSaturated() || Cost.isSaturated())
    return isSaturated() < Cost.isSaturated();
  // At this point we know both costs hold sensible values.
  // If both values have a different base frequency, there is no much
  // we can do but to scale everything.
  // However, if they have the same base frequency we can avoid making
  // complicated computation.
  uint64_t ThisLocalAdjust;
  uint64_t OtherLocalAdjust;
  if (LLVM_LIKELY(LocalFreq == Cost.LocalFreq)) {
    // At this point, we know the local costs are comparable.
    // Do the case that do not involve potential overflow first.
    if (NonLocalCost == Cost.NonLocalCost)
      // Since the non-local costs do not discriminate on the result,
      // just compare the local costs.
      return LocalCost < Cost.LocalCost;
    // The base costs are comparable so we may only keep the relative
    // value to increase our chances of avoiding overflows.
    ThisLocalAdjust = 0;
    OtherLocalAdjust = 0;
    if (LocalCost < Cost.LocalCost)
      OtherLocalAdjust = Cost.LocalCost - LocalCost;
    else
      ThisLocalAdjust = LocalCost - Cost.LocalCost;
  } else {
    ThisLocalAdjust = LocalCost;
    OtherLocalAdjust = Cost.LocalCost;
  }
  // The non-local costs are comparable, just keep the relative value.
  uint64_t ThisNonLocalAdjust = 0;
  uint64_t OtherNonLocalAdjust = 0;
  if (NonLocalCost < Cost.NonLocalCost)
    OtherNonLocalAdjust = Cost.NonLocalCost - NonLocalCost;
  else
    ThisNonLocalAdjust = NonLocalCost - Cost.NonLocalCost;
  // Scale everything to make them comparable.
  uint64_t ThisScaledCost = ThisLocalAdjust * LocalFreq;
  // Check for overflow on that operation.
  bool ThisOverflows = ThisLocalAdjust && (ThisScaledCost < ThisLocalAdjust ||
                                           ThisScaledCost < LocalFreq);
  uint64_t OtherScaledCost = OtherLocalAdjust * Cost.LocalFreq;
  // Check for overflow on the last operation.
  bool OtherOverflows =
      OtherLocalAdjust &&
      (OtherScaledCost < OtherLocalAdjust || OtherScaledCost < Cost.LocalFreq);
  // Add the non-local costs.
  ThisOverflows |= ThisNonLocalAdjust &&
                   ThisScaledCost + ThisNonLocalAdjust < ThisNonLocalAdjust;
  ThisScaledCost += ThisNonLocalAdjust;
  OtherOverflows |= OtherNonLocalAdjust &&
                    OtherScaledCost + OtherNonLocalAdjust < OtherNonLocalAdjust;
  OtherScaledCost += OtherNonLocalAdjust;
  // If both overflows, we cannot compare without additional
  // precision, e.g., APInt. Just give up on that case.
  if (ThisOverflows && OtherOverflows)
    return false;
  // If one overflows but not the other, we can still compare.
  if (ThisOverflows || OtherOverflows)
    return ThisOverflows < OtherOverflows;
  // Otherwise, just compare the values.
  return ThisScaledCost < OtherScaledCost;
}
bool RegBankSelect::MappingCost::operator==(const MappingCost &Cost) const {
  return LocalCost == Cost.LocalCost && NonLocalCost == Cost.NonLocalCost &&
         LocalFreq == Cost.LocalFreq;
}
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
LLVM_DUMP_METHOD void RegBankSelect::MappingCost::dump() const {
  print(dbgs());
  dbgs() << '\n';
}
#endif
void RegBankSelect::MappingCost::print(raw_ostream &OS) const {
  if (*this == ImpossibleCost()) {
    OS << "impossible";
    return;
  }
  if (isSaturated()) {
    OS << "saturated";
    return;
  }
  OS << LocalFreq << " * " << LocalCost << " + " << NonLocalCost;
}
 |