1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689
|
//===- Target/X86/X86LowerAMXType.cpp - -------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// \file Pass to transform <256 x i32> load/store
/// <256 x i32> is bitcasted to x86_amx on X86, and AMX instruction set only
/// provides simple operation on x86_amx. The basic elementwise operation
/// is not supported by AMX. Since x86_amx is bitcasted from vector <256 x i32>
/// and only AMX intrinsics can operate on the type, we need transform
/// load/store <256 x i32> instruction to AMX load/store. If the bitcast can
/// not be combined with load/store, we transform the bitcast to amx load/store
/// and <256 x i32> store/load.
///
/// If Front End not use O0 but the Mid/Back end use O0, (e.g. "Clang -O2 -S
/// -emit-llvm t.c" + "llc t.ll") we should make sure the amx data is volatile,
/// because that is necessary for AMX fast register allocation. (In Fast
/// registera allocation, register will be allocated before spill/reload, so
/// there is no additional register for amx to identify the step in spill.)
/// The volatileTileData() will handle this case.
/// e.g.
/// ----------------------------------------------------------
/// | def %td = ... |
/// | ... |
/// | "use %td" |
/// ----------------------------------------------------------
/// will transfer to -->
/// ----------------------------------------------------------
/// | def %td = ... |
/// | call void @llvm.x86.tilestored64.internal(mem, %td) |
/// | ... |
/// | %td2 = call x86_amx @llvm.x86.tileloadd64.internal(mem)|
/// | "use %td2" |
/// ----------------------------------------------------------
//
//===----------------------------------------------------------------------===//
//
#include "X86.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/TargetPassConfig.h"
#include "llvm/CodeGen/ValueTypes.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/IntrinsicsX86.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Target/TargetMachine.h"
using namespace llvm;
using namespace PatternMatch;
#define DEBUG_TYPE "lower-amx-type"
static AllocaInst *createAllocaInstAtEntry(IRBuilder<> &Builder,
BasicBlock *BB) {
Function &F = *BB->getParent();
Module *M = BB->getModule();
const DataLayout &DL = M->getDataLayout();
Type *V256I32Ty = VectorType::get(Builder.getInt32Ty(), 256, false);
LLVMContext &Ctx = Builder.getContext();
auto AllocaAlignment = DL.getPrefTypeAlign(Type::getX86_AMXTy(Ctx));
unsigned AllocaAS = DL.getAllocaAddrSpace();
AllocaInst *AllocaRes =
new AllocaInst(V256I32Ty, AllocaAS, "", &F.getEntryBlock().front());
AllocaRes->setAlignment(AllocaAlignment);
return AllocaRes;
}
namespace {
class X86LowerAMXType {
Function &Func;
TargetMachine *TM = nullptr;
// In AMX intrinsics we let Shape = {Row, Col}, but the
// RealCol = Col / ElementSize. We may use the RealCol
// as a new Row for other new created AMX intrinsics.
std::map<Value *, Value *> Col2Row;
public:
X86LowerAMXType(Function &F, TargetMachine *TargetM) : Func(F), TM(TargetM) {}
bool visit();
void combineLoadBitcast(LoadInst *LD, BitCastInst *Bitcast);
void combineBitcastStore(BitCastInst *Bitcast, StoreInst *ST);
bool transformBitcast(BitCastInst *Bitcast);
std::pair<Value *, Value *> getShape(IntrinsicInst *II, unsigned OpNo);
Value *getRowFromCol(Instruction *II, Value *V, unsigned Granularity);
};
Value *X86LowerAMXType::getRowFromCol(Instruction *II, Value *V,
unsigned Granularity) {
if (Col2Row.count(V))
return Col2Row[V];
IRBuilder<> Builder(&*II->getParent()->getFirstInsertionPt());
if (auto *I = dyn_cast<Instruction>(V)) {
BasicBlock::iterator Iter = I->getIterator();
++Iter;
Builder.SetInsertPoint(&*Iter);
}
ConstantInt *Gran = Builder.getInt16(Granularity);
Value *RealRow = Builder.CreateUDiv(V, Gran);
Col2Row[V] = RealRow;
return RealRow;
}
std::pair<Value *, Value *> X86LowerAMXType::getShape(IntrinsicInst *II,
unsigned OpNo) {
Value *Row = nullptr, *Col = nullptr;
switch (II->getIntrinsicID()) {
default:
llvm_unreachable("Expect amx intrinsics");
case Intrinsic::x86_tileloadd64_internal:
case Intrinsic::x86_tileloaddt164_internal:
case Intrinsic::x86_tilestored64_internal: {
Row = II->getArgOperand(0);
Col = II->getArgOperand(1);
break;
}
// a * b + c
// The shape depends on which operand.
case Intrinsic::x86_tdpbssd_internal:
case Intrinsic::x86_tdpbsud_internal:
case Intrinsic::x86_tdpbusd_internal:
case Intrinsic::x86_tdpbuud_internal:
case Intrinsic::x86_tdpbf16ps_internal: {
switch (OpNo) {
case 3:
Row = II->getArgOperand(0);
Col = II->getArgOperand(1);
break;
case 4:
Row = II->getArgOperand(0);
Col = II->getArgOperand(2);
break;
case 5:
Row = II->getArgOperand(2);
// FIXME: There is a design bug for AMX shape, which the Col should be
// Col/4 if it will be used as Row, but current Greedy RA can't handle
// this case well, it may failed if we generate a new Shape definition.
// So Let's just do it in O0 first.
// Row = Row / 4
if (TM->getOptLevel() == CodeGenOpt::None)
Row = getRowFromCol(II, Row, 4);
Col = II->getArgOperand(1);
break;
}
break;
}
}
return std::make_pair(Row, Col);
}
// %src = load <256 x i32>, <256 x i32>* %addr, align 64
// %2 = bitcast <256 x i32> %src to x86_amx
// -->
// %2 = call x86_amx @llvm.x86.tileloadd64.internal(i16 %row, i16 %col,
// i8* %addr, i64 %stride64)
void X86LowerAMXType::combineLoadBitcast(LoadInst *LD, BitCastInst *Bitcast) {
Value *Row = nullptr, *Col = nullptr;
Use &U = *(Bitcast->use_begin());
unsigned OpNo = U.getOperandNo();
auto *II = cast<IntrinsicInst>(U.getUser());
std::tie(Row, Col) = getShape(II, OpNo);
IRBuilder<> Builder(Bitcast);
// Use the maximun column as stride.
Value *Stride = Builder.getInt64(64);
Value *I8Ptr =
Builder.CreateBitCast(LD->getOperand(0), Builder.getInt8PtrTy());
std::array<Value *, 4> Args = {Row, Col, I8Ptr, Stride};
Value *NewInst =
Builder.CreateIntrinsic(Intrinsic::x86_tileloadd64_internal, None, Args);
Bitcast->replaceAllUsesWith(NewInst);
}
// %src = call x86_amx @llvm.x86.tileloadd64.internal(%row, %col, %addr,
// %stride);
// %13 = bitcast x86_amx %src to <256 x i32>
// store <256 x i32> %13, <256 x i32>* %addr, align 64
// -->
// call void @llvm.x86.tilestored64.internal(%row, %col, %addr,
// %stride64, %13)
void X86LowerAMXType::combineBitcastStore(BitCastInst *Bitcast, StoreInst *ST) {
Value *Tile = Bitcast->getOperand(0);
auto *II = cast<IntrinsicInst>(Tile);
// Tile is output from AMX intrinsic. The first operand of the
// intrinsic is row, the second operand of the intrinsic is column.
Value *Row = II->getOperand(0);
Value *Col = II->getOperand(1);
IRBuilder<> Builder(ST);
// Use the maximum column as stride. It must be the same with load
// stride.
Value *Stride = Builder.getInt64(64);
Value *I8Ptr =
Builder.CreateBitCast(ST->getOperand(1), Builder.getInt8PtrTy());
std::array<Value *, 5> Args = {Row, Col, I8Ptr, Stride, Tile};
Builder.CreateIntrinsic(Intrinsic::x86_tilestored64_internal, None, Args);
if (Bitcast->hasOneUse())
return;
// %13 = bitcast x86_amx %src to <256 x i32>
// store <256 x i32> %13, <256 x i32>* %addr, align 64
// %add = <256 x i32> %13, <256 x i32> %src2
// -->
// %13 = bitcast x86_amx %src to <256 x i32>
// call void @llvm.x86.tilestored64.internal(%row, %col, %addr,
// %stride64, %13)
// %14 = load <256 x i32>, %addr
// %add = <256 x i32> %14, <256 x i32> %src2
Value *Vec = Builder.CreateLoad(Bitcast->getType(), ST->getOperand(1));
Bitcast->replaceAllUsesWith(Vec);
}
// transform bitcast to <store, load> instructions.
bool X86LowerAMXType::transformBitcast(BitCastInst *Bitcast) {
IRBuilder<> Builder(Bitcast);
AllocaInst *AllocaAddr;
Value *I8Ptr, *Stride;
auto *Src = Bitcast->getOperand(0);
auto Prepare = [&]() {
AllocaAddr = createAllocaInstAtEntry(Builder, Bitcast->getParent());
I8Ptr = Builder.CreateBitCast(AllocaAddr, Builder.getInt8PtrTy());
Stride = Builder.getInt64(64);
};
if (Bitcast->getType()->isX86_AMXTy()) {
// %2 = bitcast <256 x i32> %src to x86_amx
// -->
// %addr = alloca <256 x i32>, align 64
// store <256 x i32> %src, <256 x i32>* %addr, align 64
// %addr2 = bitcast <256 x i32>* to i8*
// %2 = call x86_amx @llvm.x86.tileloadd64.internal(i16 %row, i16 %col,
// i8* %addr2,
// i64 64)
Use &U = *(Bitcast->use_begin());
unsigned OpNo = U.getOperandNo();
auto *II = dyn_cast<IntrinsicInst>(U.getUser());
if (!II)
return false; // May be bitcast from x86amx to <256 x i32>.
Prepare();
Builder.CreateStore(Src, AllocaAddr);
// TODO we can pick an constant operand for the shape.
Value *Row = nullptr, *Col = nullptr;
std::tie(Row, Col) = getShape(II, OpNo);
std::array<Value *, 4> Args = {Row, Col, I8Ptr, Stride};
Value *NewInst = Builder.CreateIntrinsic(
Intrinsic::x86_tileloadd64_internal, None, Args);
Bitcast->replaceAllUsesWith(NewInst);
} else {
// %2 = bitcast x86_amx %src to <256 x i32>
// -->
// %addr = alloca <256 x i32>, align 64
// %addr2 = bitcast <256 x i32>* to i8*
// call void @llvm.x86.tilestored64.internal(i16 %row, i16 %col,
// i8* %addr2, i64 %stride)
// %2 = load <256 x i32>, <256 x i32>* %addr, align 64
auto *II = dyn_cast<IntrinsicInst>(Src);
if (!II)
return false; // May be bitcast from <256 x i32> to x86amx.
Prepare();
Value *Row = II->getOperand(0);
Value *Col = II->getOperand(1);
std::array<Value *, 5> Args = {Row, Col, I8Ptr, Stride, Src};
Builder.CreateIntrinsic(Intrinsic::x86_tilestored64_internal, None, Args);
Value *NewInst = Builder.CreateLoad(Bitcast->getType(), AllocaAddr);
Bitcast->replaceAllUsesWith(NewInst);
}
return true;
}
bool X86LowerAMXType::visit() {
SmallVector<Instruction *, 8> DeadInsts;
Col2Row.clear();
for (BasicBlock *BB : post_order(&Func)) {
for (BasicBlock::reverse_iterator II = BB->rbegin(), IE = BB->rend();
II != IE;) {
Instruction &Inst = *II++;
auto *Bitcast = dyn_cast<BitCastInst>(&Inst);
if (!Bitcast)
continue;
Value *Src = Bitcast->getOperand(0);
if (Bitcast->getType()->isX86_AMXTy()) {
if (Bitcast->user_empty()) {
DeadInsts.push_back(Bitcast);
continue;
}
LoadInst *LD = dyn_cast<LoadInst>(Src);
if (!LD) {
if (transformBitcast(Bitcast))
DeadInsts.push_back(Bitcast);
continue;
}
// If load has mutli-user, duplicate a vector load.
// %src = load <256 x i32>, <256 x i32>* %addr, align 64
// %2 = bitcast <256 x i32> %src to x86_amx
// %add = add <256 x i32> %src, <256 x i32> %src2
// -->
// %src = load <256 x i32>, <256 x i32>* %addr, align 64
// %2 = call x86_amx @llvm.x86.tileloadd64.internal(i16 %row, i16 %col,
// i8* %addr, i64 %stride64)
// %add = add <256 x i32> %src, <256 x i32> %src2
// If load has one user, the load will be eliminated in DAG ISel.
// %src = load <256 x i32>, <256 x i32>* %addr, align 64
// %2 = bitcast <256 x i32> %src to x86_amx
// -->
// %2 = call x86_amx @llvm.x86.tileloadd64.internal(i16 %row, i16 %col,
// i8* %addr, i64 %stride64)
combineLoadBitcast(LD, Bitcast);
DeadInsts.push_back(Bitcast);
if (LD->hasOneUse())
DeadInsts.push_back(LD);
} else if (Src->getType()->isX86_AMXTy()) {
if (Bitcast->user_empty()) {
DeadInsts.push_back(Bitcast);
continue;
}
StoreInst *ST = nullptr;
for (auto UI = Bitcast->use_begin(), UE = Bitcast->use_end();
UI != UE;) {
Value *I = (UI++)->getUser();
ST = dyn_cast<StoreInst>(I);
if (ST)
break;
}
if (!ST) {
if (transformBitcast(Bitcast))
DeadInsts.push_back(Bitcast);
continue;
}
// If bitcast (%13) has one use, combine bitcast and store to amx store.
// %src = call x86_amx @llvm.x86.tileloadd64.internal(%row, %col, %addr,
// %stride);
// %13 = bitcast x86_amx %src to <256 x i32>
// store <256 x i32> %13, <256 x i32>* %addr, align 64
// -->
// call void @llvm.x86.tilestored64.internal(%row, %col, %addr,
// %stride64, %13)
//
// If bitcast (%13) has multi-use, transform as below.
// %13 = bitcast x86_amx %src to <256 x i32>
// store <256 x i32> %13, <256 x i32>* %addr, align 64
// %add = <256 x i32> %13, <256 x i32> %src2
// -->
// %13 = bitcast x86_amx %src to <256 x i32>
// call void @llvm.x86.tilestored64.internal(%row, %col, %addr,
// %stride64, %13)
// %14 = load <256 x i32>, %addr
// %add = <256 x i32> %14, <256 x i32> %src2
//
combineBitcastStore(Bitcast, ST);
// Delete user first.
DeadInsts.push_back(ST);
DeadInsts.push_back(Bitcast);
}
}
}
bool C = !DeadInsts.empty();
for (auto *Inst : DeadInsts)
Inst->eraseFromParent();
return C;
}
} // anonymous namespace
static Value *getAllocaPos(BasicBlock *BB) {
Module *M = BB->getModule();
Function *F = BB->getParent();
IRBuilder<> Builder(&F->getEntryBlock().front());
const DataLayout &DL = M->getDataLayout();
unsigned AllocaAS = DL.getAllocaAddrSpace();
Type *V256I32Ty = VectorType::get(Builder.getInt32Ty(), 256, false);
AllocaInst *AllocaRes =
new AllocaInst(V256I32Ty, AllocaAS, "", &F->getEntryBlock().front());
BasicBlock::iterator Iter = AllocaRes->getIterator();
++Iter;
Builder.SetInsertPoint(&*Iter);
Value *I8Ptr = Builder.CreateBitCast(AllocaRes, Builder.getInt8PtrTy());
return I8Ptr;
}
static Instruction *createTileStore(Instruction *TileDef, Value *Ptr) {
assert(TileDef->getType()->isX86_AMXTy() && "Not define tile!");
auto *II = cast<IntrinsicInst>(TileDef);
assert(II && "Not tile intrinsic!");
Value *Row = II->getOperand(0);
Value *Col = II->getOperand(1);
BasicBlock *BB = TileDef->getParent();
BasicBlock::iterator Iter = TileDef->getIterator();
IRBuilder<> Builder(BB, ++Iter);
Value *Stride = Builder.getInt64(64);
std::array<Value *, 5> Args = {Row, Col, Ptr, Stride, TileDef};
Instruction *TileStore =
Builder.CreateIntrinsic(Intrinsic::x86_tilestored64_internal, None, Args);
return TileStore;
}
static void replaceWithTileLoad(Use &U, Value *Ptr, bool IsPHI = false) {
Value *V = U.get();
assert(V->getType()->isX86_AMXTy() && "Not define tile!");
// Get tile shape.
IntrinsicInst *II = nullptr;
if (IsPHI) {
Value *PhiOp = dyn_cast<PHINode>(V)->getIncomingValue(0);
II = cast<IntrinsicInst>(PhiOp);
} else {
II = cast<IntrinsicInst>(V);
}
Value *Row = II->getOperand(0);
Value *Col = II->getOperand(1);
Instruction *UserI = dyn_cast<Instruction>(U.getUser());
IRBuilder<> Builder(UserI);
Value *Stride = Builder.getInt64(64);
std::array<Value *, 4> Args = {Row, Col, Ptr, Stride};
Value *TileLoad =
Builder.CreateIntrinsic(Intrinsic::x86_tileloadd64_internal, None, Args);
UserI->replaceUsesOfWith(V, TileLoad);
}
static bool isIncomingOfPHI(Instruction *I) {
for (Use &U : I->uses()) {
User *V = U.getUser();
if (isa<PHINode>(V))
return true;
}
return false;
}
// Let all AMX tile data become volatile data, shorten the life range
// of each tile register before fast register allocation.
namespace {
class X86VolatileTileData {
Function &F;
public:
X86VolatileTileData(Function &Func) : F(Func) {}
Value *updatePhiIncomings(BasicBlock *BB,
SmallVector<Instruction *, 2> &Incomings);
void replacePhiDefWithLoad(Instruction *PHI, Value *StorePtr);
bool volatileTileData();
void volatileTilePHI(PHINode *Inst);
void volatileTileNonPHI(Instruction *I);
};
Value *X86VolatileTileData::updatePhiIncomings(
BasicBlock *BB, SmallVector<Instruction *, 2> &Incomings) {
Value *I8Ptr = getAllocaPos(BB);
for (auto *I : Incomings) {
User *Store = createTileStore(I, I8Ptr);
// All its uses (except phi) should load from stored mem.
for (Use &U : I->uses()) {
User *V = U.getUser();
if (isa<PHINode>(V) || V == Store)
continue;
replaceWithTileLoad(U, I8Ptr);
}
}
return I8Ptr;
}
void X86VolatileTileData::replacePhiDefWithLoad(Instruction *PHI,
Value *StorePtr) {
for (Use &U : PHI->uses())
replaceWithTileLoad(U, StorePtr, true);
PHI->eraseFromParent();
}
// Smilar with volatileTileNonPHI, this function only handle PHI Nodes
// and their related AMX intrinsics.
// 1) PHI Def should change to tileload.
// 2) PHI Incoming Values should tilestored in just after their def.
// 3) The mem of these tileload and tilestores should be same.
// e.g.
// ------------------------------------------------------
// bb_dom:
// ...
// br i1 %bool.cond, label %if.else, label %if.then
//
// if.then:
// def %t0 = ...
// ...
// use %t0
// ...
// br label %if.end
//
// if.else:
// def %t1 = ...
// br label %if.end
//
// if.end:
// %td = phi x86_amx [ %t1, %if.else ], [ %t0, %if.then ]
// ...
// use %td
// ------------------------------------------------------
// -->
// ------------------------------------------------------
// bb_entry:
// %mem = alloca <256 x i32>, align 1024 *
// ...
// bb_dom:
// ...
// br i1 %bool.cond, label %if.else, label %if.then
//
// if.then:
// def %t0 = ...
// call void @llvm.x86.tilestored64.internal(mem, %t0) *
// ...
// %t0` = call x86_amx @llvm.x86.tileloadd64.internal(mem)*
// use %t0` *
// ...
// br label %if.end
//
// if.else:
// def %t1 = ...
// call void @llvm.x86.tilestored64.internal(mem, %t1) *
// br label %if.end
//
// if.end:
// ...
// %td = call x86_amx @llvm.x86.tileloadd64.internal(mem) *
// use %td
// ------------------------------------------------------
void X86VolatileTileData::volatileTilePHI(PHINode *PHI) {
BasicBlock *BB = PHI->getParent();
SmallVector<Instruction *, 2> Incomings;
for (unsigned I = 0, E = PHI->getNumIncomingValues(); I != E; ++I) {
Value *Op = PHI->getIncomingValue(I);
Instruction *Inst = dyn_cast<Instruction>(Op);
assert(Inst && "We shouldn't fold AMX instrution!");
Incomings.push_back(Inst);
}
Value *StorePtr = updatePhiIncomings(BB, Incomings);
replacePhiDefWithLoad(PHI, StorePtr);
}
// Store the defined tile and load it before use.
// All its users are not PHI.
// e.g.
// ------------------------------------------------------
// def %td = ...
// ...
// "use %td"
// ------------------------------------------------------
// -->
// ------------------------------------------------------
// def %td = ...
// call void @llvm.x86.tilestored64.internal(mem, %td)
// ...
// %td2 = call x86_amx @llvm.x86.tileloadd64.internal(mem)
// "use %td2"
// ------------------------------------------------------
void X86VolatileTileData::volatileTileNonPHI(Instruction *I) {
BasicBlock *BB = I->getParent();
Value *I8Ptr = getAllocaPos(BB);
User *Store = createTileStore(I, I8Ptr);
// All its uses should load from stored mem.
for (Use &U : I->uses()) {
User *V = U.getUser();
assert(!isa<PHINode>(V) && "PHI Nodes should be excluded!");
if (V != Store)
replaceWithTileLoad(U, I8Ptr);
}
}
// Volatile Tile Model:
// 1) All the uses of tile data comes from tileload in time.
// 2) All the defs of tile data tilestore into mem immediately.
// For example:
// --------------------------------------------------------------------------
// %t1 = call x86_amx @llvm.x86.tileloadd64.internal(m, k, ...) key
// %t2 = call x86_amx @llvm.x86.tileloadd64.internal(k, n, ...)
// %t3 = call x86_amx @llvm.x86.tileloadd64.internal(m, n, ...) amx
// %td = tail call x86_amx @llvm.x86.tdpbssd.internal(m, n, k, t1, t2, t3)
// call void @llvm.x86.tilestored64.internal(... td) area
// --------------------------------------------------------------------------
// 3) No terminator, call or other amx instructions in the key amx area.
bool X86VolatileTileData::volatileTileData() {
bool Changed = false;
for (BasicBlock &BB : F) {
SmallVector<Instruction *, 2> PHIInsts;
SmallVector<Instruction *, 8> AMXDefInsts;
for (Instruction &I : BB) {
if (!I.getType()->isX86_AMXTy())
continue;
if (isa<PHINode>(&I))
PHIInsts.push_back(&I);
else
AMXDefInsts.push_back(&I);
}
// First we "volatile" the non-phi related amx intrinsics.
for (Instruction *I : AMXDefInsts) {
if (isIncomingOfPHI(I))
continue;
volatileTileNonPHI(I);
Changed = true;
}
for (Instruction *I : PHIInsts) {
volatileTilePHI(dyn_cast<PHINode>(I));
Changed = true;
}
}
return Changed;
}
} // anonymous namespace
namespace {
class X86LowerAMXTypeLegacyPass : public FunctionPass {
public:
static char ID;
X86LowerAMXTypeLegacyPass() : FunctionPass(ID) {
initializeX86LowerAMXTypeLegacyPassPass(*PassRegistry::getPassRegistry());
}
bool runOnFunction(Function &F) override {
TargetMachine *TM = &getAnalysis<TargetPassConfig>().getTM<TargetMachine>();
X86LowerAMXType LAT(F, TM);
bool C = LAT.visit();
// Prepare for fast register allocation at O0.
// Todo: May better check the volatile model of AMX code, not just
// by checking Attribute::OptimizeNone and CodeGenOpt::None.
if (TM->getOptLevel() == CodeGenOpt::None) {
// If Front End not use O0 but the Mid/Back end use O0, (e.g.
// "Clang -O2 -S -emit-llvm t.c" + "llc t.ll") we should make
// sure the amx data is volatile, that is nessary for AMX fast
// register allocation.
if (!F.hasFnAttribute(Attribute::OptimizeNone)) {
X86VolatileTileData VTD(F);
C = VTD.volatileTileData() || C;
}
}
return C;
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.setPreservesCFG();
AU.addRequired<TargetPassConfig>();
}
};
} // anonymous namespace
static const char PassName[] = "Lower AMX type for load/store";
char X86LowerAMXTypeLegacyPass::ID = 0;
INITIALIZE_PASS_BEGIN(X86LowerAMXTypeLegacyPass, DEBUG_TYPE, PassName, false,
false)
INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
INITIALIZE_PASS_END(X86LowerAMXTypeLegacyPass, DEBUG_TYPE, PassName, false,
false)
FunctionPass *llvm::createX86LowerAMXTypePass() {
return new X86LowerAMXTypeLegacyPass();
}
|