| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 
 | //===- FunctionSpecialization.cpp - Function Specialization ---------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This specialises functions with constant parameters (e.g. functions,
// globals). Constant parameters like function pointers and constant globals
// are propagated to the callee by specializing the function.
//
// Current limitations:
// - It does not handle specialization of recursive functions,
// - It does not yet handle integer ranges.
// - Only 1 argument per function is specialised,
// - The cost-model could be further looked into,
// - We are not yet caching analysis results.
//
// Ideas:
// - With a function specialization attribute for arguments, we could have
//   a direct way to steer function specialization, avoiding the cost-model,
//   and thus control compile-times / code-size.
//
//===----------------------------------------------------------------------===//
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/CodeMetrics.h"
#include "llvm/Analysis/DomTreeUpdater.h"
#include "llvm/Analysis/InlineCost.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/Transforms/Scalar/SCCP.h"
#include "llvm/Transforms/Utils/Cloning.h"
#include "llvm/Transforms/Utils/SizeOpts.h"
#include <cmath>
using namespace llvm;
#define DEBUG_TYPE "function-specialization"
STATISTIC(NumFuncSpecialized, "Number of functions specialized");
static cl::opt<bool> ForceFunctionSpecialization(
    "force-function-specialization", cl::init(false), cl::Hidden,
    cl::desc("Force function specialization for every call site with a "
             "constant argument"));
static cl::opt<unsigned> FuncSpecializationMaxIters(
    "func-specialization-max-iters", cl::Hidden,
    cl::desc("The maximum number of iterations function specialization is run"),
    cl::init(1));
static cl::opt<unsigned> MaxConstantsThreshold(
    "func-specialization-max-constants", cl::Hidden,
    cl::desc("The maximum number of clones allowed for a single function "
             "specialization"),
    cl::init(3));
static cl::opt<unsigned>
    AvgLoopIterationCount("func-specialization-avg-iters-cost", cl::Hidden,
                          cl::desc("Average loop iteration count cost"),
                          cl::init(10));
static cl::opt<bool> EnableSpecializationForLiteralConstant(
    "function-specialization-for-literal-constant", cl::init(false), cl::Hidden,
    cl::desc("Make function specialization available for literal constant."));
// Helper to check if \p LV is either overdefined or a constant int.
static bool isOverdefined(const ValueLatticeElement &LV) {
  return !LV.isUnknownOrUndef() && !LV.isConstant();
}
class FunctionSpecializer {
  /// The IPSCCP Solver.
  SCCPSolver &Solver;
  /// Analyses used to help determine if a function should be specialized.
  std::function<AssumptionCache &(Function &)> GetAC;
  std::function<TargetTransformInfo &(Function &)> GetTTI;
  std::function<TargetLibraryInfo &(Function &)> GetTLI;
  SmallPtrSet<Function *, 2> SpecializedFuncs;
public:
  FunctionSpecializer(SCCPSolver &Solver,
                      std::function<AssumptionCache &(Function &)> GetAC,
                      std::function<TargetTransformInfo &(Function &)> GetTTI,
                      std::function<TargetLibraryInfo &(Function &)> GetTLI)
      : Solver(Solver), GetAC(GetAC), GetTTI(GetTTI), GetTLI(GetTLI) {}
  /// Attempt to specialize functions in the module to enable constant
  /// propagation across function boundaries.
  ///
  /// \returns true if at least one function is specialized.
  bool
  specializeFunctions(SmallVectorImpl<Function *> &FuncDecls,
                      SmallVectorImpl<Function *> &CurrentSpecializations) {
    // Attempt to specialize the argument-tracked functions.
    bool Changed = false;
    for (auto *F : FuncDecls) {
      if (specializeFunction(F, CurrentSpecializations)) {
        Changed = true;
        LLVM_DEBUG(dbgs() << "FnSpecialization: Can specialize this func.\n");
      } else {
        LLVM_DEBUG(
            dbgs() << "FnSpecialization: Cannot specialize this func.\n");
      }
    }
    for (auto *SpecializedFunc : CurrentSpecializations) {
      SpecializedFuncs.insert(SpecializedFunc);
      // TODO: If we want to support specializing specialized functions,
      // initialize here the state of the newly created functions, marking
      // them argument-tracked and executable.
      // Replace the function arguments for the specialized functions.
      for (Argument &Arg : SpecializedFunc->args())
        if (!Arg.use_empty() && tryToReplaceWithConstant(&Arg))
          LLVM_DEBUG(dbgs() << "FnSpecialization: Replaced constant argument: "
                            << Arg.getName() << "\n");
    }
    NumFuncSpecialized += NbFunctionsSpecialized;
    return Changed;
  }
  bool tryToReplaceWithConstant(Value *V) {
    if (!V->getType()->isSingleValueType() || isa<CallBase>(V) ||
        V->user_empty())
      return false;
    const ValueLatticeElement &IV = Solver.getLatticeValueFor(V);
    if (isOverdefined(IV))
      return false;
    auto *Const = IV.isConstant() ? Solver.getConstant(IV)
                                  : UndefValue::get(V->getType());
    V->replaceAllUsesWith(Const);
    // TODO: Update the solver here if we want to specialize specialized
    // functions.
    return true;
  }
private:
  // The number of functions specialised, used for collecting statistics and
  // also in the cost model.
  unsigned NbFunctionsSpecialized = 0;
  /// This function decides whether to specialize function \p F based on the
  /// known constant values its arguments can take on. Specialization is
  /// performed on the first interesting argument. Specializations based on
  /// additional arguments will be evaluated on following iterations of the
  /// main IPSCCP solve loop. \returns true if the function is specialized and
  /// false otherwise.
  bool specializeFunction(Function *F,
                          SmallVectorImpl<Function *> &Specializations) {
    // Do not specialize the cloned function again.
    if (SpecializedFuncs.contains(F)) {
      return false;
    }
    // If we're optimizing the function for size, we shouldn't specialize it.
    if (F->hasOptSize() ||
        shouldOptimizeForSize(F, nullptr, nullptr, PGSOQueryType::IRPass))
      return false;
    // Exit if the function is not executable. There's no point in specializing
    // a dead function.
    if (!Solver.isBlockExecutable(&F->getEntryBlock()))
      return false;
    LLVM_DEBUG(dbgs() << "FnSpecialization: Try function: " << F->getName()
                      << "\n");
    // Determine if we should specialize the function based on the values the
    // argument can take on. If specialization is not profitable, we continue
    // on to the next argument.
    for (Argument &A : F->args()) {
      LLVM_DEBUG(dbgs() << "FnSpecialization: Analysing arg: " << A.getName()
                        << "\n");
      // True if this will be a partial specialization. We will need to keep
      // the original function around in addition to the added specializations.
      bool IsPartial = true;
      // Determine if this argument is interesting. If we know the argument can
      // take on any constant values, they are collected in Constants. If the
      // argument can only ever equal a constant value in Constants, the
      // function will be completely specialized, and the IsPartial flag will
      // be set to false by isArgumentInteresting (that function only adds
      // values to the Constants list that are deemed profitable).
      SmallVector<Constant *, 4> Constants;
      if (!isArgumentInteresting(&A, Constants, IsPartial)) {
        LLVM_DEBUG(dbgs() << "FnSpecialization: Argument is not interesting\n");
        continue;
      }
      assert(!Constants.empty() && "No constants on which to specialize");
      LLVM_DEBUG(dbgs() << "FnSpecialization: Argument is interesting!\n"
                        << "FnSpecialization: Specializing '" << F->getName()
                        << "' on argument: " << A << "\n"
                        << "FnSpecialization: Constants are:\n\n";
                 for (unsigned I = 0; I < Constants.size(); ++I) dbgs()
                 << *Constants[I] << "\n";
                 dbgs() << "FnSpecialization: End of constants\n\n");
      // Create a version of the function in which the argument is marked
      // constant with the given value.
      for (auto *C : Constants) {
        // Clone the function. We leave the ValueToValueMap empty to allow
        // IPSCCP to propagate the constant arguments.
        ValueToValueMapTy EmptyMap;
        Function *Clone = CloneFunction(F, EmptyMap);
        Argument *ClonedArg = Clone->arg_begin() + A.getArgNo();
        // Rewrite calls to the function so that they call the clone instead.
        rewriteCallSites(F, Clone, *ClonedArg, C);
        // Initialize the lattice state of the arguments of the function clone,
        // marking the argument on which we specialized the function constant
        // with the given value.
        Solver.markArgInFuncSpecialization(F, ClonedArg, C);
        // Mark all the specialized functions
        Specializations.push_back(Clone);
        NbFunctionsSpecialized++;
      }
      // TODO: if we want to support specialize specialized functions, and if
      // the function has been completely specialized, the original function is
      // no longer needed, so we would need to mark it unreachable here.
      // FIXME: Only one argument per function.
      return true;
    }
    return false;
  }
  /// Compute the cost of specializing function \p F.
  InstructionCost getSpecializationCost(Function *F) {
    // Compute the code metrics for the function.
    SmallPtrSet<const Value *, 32> EphValues;
    CodeMetrics::collectEphemeralValues(F, &(GetAC)(*F), EphValues);
    CodeMetrics Metrics;
    for (BasicBlock &BB : *F)
      Metrics.analyzeBasicBlock(&BB, (GetTTI)(*F), EphValues);
    // If the code metrics reveal that we shouldn't duplicate the function, we
    // shouldn't specialize it. Set the specialization cost to Invalid.
    if (Metrics.notDuplicatable) {
      InstructionCost C{};
      C.setInvalid();
      return C;
    }
    // Otherwise, set the specialization cost to be the cost of all the
    // instructions in the function and penalty for specializing more functions.
    unsigned Penalty = NbFunctionsSpecialized + 1;
    return Metrics.NumInsts * InlineConstants::InstrCost * Penalty;
  }
  InstructionCost getUserBonus(User *U, llvm::TargetTransformInfo &TTI,
                               LoopInfo &LI) {
    auto *I = dyn_cast_or_null<Instruction>(U);
    // If not an instruction we do not know how to evaluate.
    // Keep minimum possible cost for now so that it doesnt affect
    // specialization.
    if (!I)
      return std::numeric_limits<unsigned>::min();
    auto Cost = TTI.getUserCost(U, TargetTransformInfo::TCK_SizeAndLatency);
    // Traverse recursively if there are more uses.
    // TODO: Any other instructions to be added here?
    if (I->mayReadFromMemory() || I->isCast())
      for (auto *User : I->users())
        Cost += getUserBonus(User, TTI, LI);
    // Increase the cost if it is inside the loop.
    auto LoopDepth = LI.getLoopDepth(I->getParent());
    Cost *= std::pow((double)AvgLoopIterationCount, LoopDepth);
    return Cost;
  }
  /// Compute a bonus for replacing argument \p A with constant \p C.
  InstructionCost getSpecializationBonus(Argument *A, Constant *C) {
    Function *F = A->getParent();
    DominatorTree DT(*F);
    LoopInfo LI(DT);
    auto &TTI = (GetTTI)(*F);
    LLVM_DEBUG(dbgs() << "FnSpecialization: Analysing bonus for: " << *A
                      << "\n");
    InstructionCost TotalCost = 0;
    for (auto *U : A->users()) {
      TotalCost += getUserBonus(U, TTI, LI);
      LLVM_DEBUG(dbgs() << "FnSpecialization: User cost ";
                 TotalCost.print(dbgs()); dbgs() << " for: " << *U << "\n");
    }
    // The below heuristic is only concerned with exposing inlining
    // opportunities via indirect call promotion. If the argument is not a
    // function pointer, give up.
    if (!isa<PointerType>(A->getType()) ||
        !isa<FunctionType>(A->getType()->getPointerElementType()))
      return TotalCost;
    // Since the argument is a function pointer, its incoming constant values
    // should be functions or constant expressions. The code below attempts to
    // look through cast expressions to find the function that will be called.
    Value *CalledValue = C;
    while (isa<ConstantExpr>(CalledValue) &&
           cast<ConstantExpr>(CalledValue)->isCast())
      CalledValue = cast<User>(CalledValue)->getOperand(0);
    Function *CalledFunction = dyn_cast<Function>(CalledValue);
    if (!CalledFunction)
      return TotalCost;
    // Get TTI for the called function (used for the inline cost).
    auto &CalleeTTI = (GetTTI)(*CalledFunction);
    // Look at all the call sites whose called value is the argument.
    // Specializing the function on the argument would allow these indirect
    // calls to be promoted to direct calls. If the indirect call promotion
    // would likely enable the called function to be inlined, specializing is a
    // good idea.
    int Bonus = 0;
    for (User *U : A->users()) {
      if (!isa<CallInst>(U) && !isa<InvokeInst>(U))
        continue;
      auto *CS = cast<CallBase>(U);
      if (CS->getCalledOperand() != A)
        continue;
      // Get the cost of inlining the called function at this call site. Note
      // that this is only an estimate. The called function may eventually
      // change in a way that leads to it not being inlined here, even though
      // inlining looks profitable now. For example, one of its called
      // functions may be inlined into it, making the called function too large
      // to be inlined into this call site.
      //
      // We apply a boost for performing indirect call promotion by increasing
      // the default threshold by the threshold for indirect calls.
      auto Params = getInlineParams();
      Params.DefaultThreshold += InlineConstants::IndirectCallThreshold;
      InlineCost IC =
          getInlineCost(*CS, CalledFunction, Params, CalleeTTI, GetAC, GetTLI);
      // We clamp the bonus for this call to be between zero and the default
      // threshold.
      if (IC.isAlways())
        Bonus += Params.DefaultThreshold;
      else if (IC.isVariable() && IC.getCostDelta() > 0)
        Bonus += IC.getCostDelta();
    }
    return TotalCost + Bonus;
  }
  /// Determine if we should specialize a function based on the incoming values
  /// of the given argument.
  ///
  /// This function implements the goal-directed heuristic. It determines if
  /// specializing the function based on the incoming values of argument \p A
  /// would result in any significant optimization opportunities. If
  /// optimization opportunities exist, the constant values of \p A on which to
  /// specialize the function are collected in \p Constants. If the values in
  /// \p Constants represent the complete set of values that \p A can take on,
  /// the function will be completely specialized, and the \p IsPartial flag is
  /// set to false.
  ///
  /// \returns true if the function should be specialized on the given
  /// argument.
  bool isArgumentInteresting(Argument *A,
                             SmallVectorImpl<Constant *> &Constants,
                             bool &IsPartial) {
    Function *F = A->getParent();
    // For now, don't attempt to specialize functions based on the values of
    // composite types.
    if (!A->getType()->isSingleValueType() || A->user_empty())
      return false;
    // If the argument isn't overdefined, there's nothing to do. It should
    // already be constant.
    if (!Solver.getLatticeValueFor(A).isOverdefined()) {
      LLVM_DEBUG(dbgs() << "FnSpecialization: nothing to do, arg is already "
                        << "constant?\n");
      return false;
    }
    // Collect the constant values that the argument can take on. If the
    // argument can't take on any constant values, we aren't going to
    // specialize the function. While it's possible to specialize the function
    // based on non-constant arguments, there's likely not much benefit to
    // constant propagation in doing so.
    //
    // TODO 1: currently it won't specialize if there are over the threshold of
    // calls using the same argument, e.g foo(a) x 4 and foo(b) x 1, but it
    // might be beneficial to take the occurrences into account in the cost
    // model, so we would need to find the unique constants.
    //
    // TODO 2: this currently does not support constants, i.e. integer ranges.
    //
    SmallVector<Constant *, 4> PossibleConstants;
    bool AllConstant = getPossibleConstants(A, PossibleConstants);
    if (PossibleConstants.empty()) {
      LLVM_DEBUG(dbgs() << "FnSpecialization: no possible constants found\n");
      return false;
    }
    if (PossibleConstants.size() > MaxConstantsThreshold) {
      LLVM_DEBUG(dbgs() << "FnSpecialization: number of constants found exceed "
                        << "the maximum number of constants threshold.\n");
      return false;
    }
    // Determine if it would be profitable to create a specialization of the
    // function where the argument takes on the given constant value. If so,
    // add the constant to Constants.
    auto FnSpecCost = getSpecializationCost(F);
    if (!FnSpecCost.isValid()) {
      LLVM_DEBUG(dbgs() << "FnSpecialization: Invalid specialisation cost.\n");
      return false;
    }
    LLVM_DEBUG(dbgs() << "FnSpecialization: func specialisation cost: ";
               FnSpecCost.print(dbgs()); dbgs() << "\n");
    for (auto *C : PossibleConstants) {
      LLVM_DEBUG(dbgs() << "FnSpecialization: Constant: " << *C << "\n");
      if (ForceFunctionSpecialization) {
        LLVM_DEBUG(dbgs() << "FnSpecialization: Forced!\n");
        Constants.push_back(C);
        continue;
      }
      if (getSpecializationBonus(A, C) > FnSpecCost) {
        LLVM_DEBUG(dbgs() << "FnSpecialization: profitable!\n");
        Constants.push_back(C);
      } else {
        LLVM_DEBUG(dbgs() << "FnSpecialization: not profitable\n");
      }
    }
    // None of the constant values the argument can take on were deemed good
    // candidates on which to specialize the function.
    if (Constants.empty())
      return false;
    // This will be a partial specialization if some of the constants were
    // rejected due to their profitability.
    IsPartial = !AllConstant || PossibleConstants.size() != Constants.size();
    return true;
  }
  /// Collect in \p Constants all the constant values that argument \p A can
  /// take on.
  ///
  /// \returns true if all of the values the argument can take on are constant
  /// (e.g., the argument's parent function cannot be called with an
  /// overdefined value).
  bool getPossibleConstants(Argument *A,
                            SmallVectorImpl<Constant *> &Constants) {
    Function *F = A->getParent();
    bool AllConstant = true;
    // Iterate over all the call sites of the argument's parent function.
    for (User *U : F->users()) {
      if (!isa<CallInst>(U) && !isa<InvokeInst>(U))
        continue;
      auto &CS = *cast<CallBase>(U);
      // If the parent of the call site will never be executed, we don't need
      // to worry about the passed value.
      if (!Solver.isBlockExecutable(CS.getParent()))
        continue;
      auto *V = CS.getArgOperand(A->getArgNo());
      // TrackValueOfGlobalVariable only tracks scalar global variables.
      if (auto *GV = dyn_cast<GlobalVariable>(V)) {
        if (!GV->getValueType()->isSingleValueType()) {
          return false;
        }
      }
      if (isa<Constant>(V) && (Solver.getLatticeValueFor(V).isConstant() ||
                               EnableSpecializationForLiteralConstant))
        Constants.push_back(cast<Constant>(V));
      else
        AllConstant = false;
    }
    // If the argument can only take on constant values, AllConstant will be
    // true.
    return AllConstant;
  }
  /// Rewrite calls to function \p F to call function \p Clone instead.
  ///
  /// This function modifies calls to function \p F whose argument at index \p
  /// ArgNo is equal to constant \p C. The calls are rewritten to call function
  /// \p Clone instead.
  void rewriteCallSites(Function *F, Function *Clone, Argument &Arg,
                        Constant *C) {
    unsigned ArgNo = Arg.getArgNo();
    SmallVector<CallBase *, 4> CallSitesToRewrite;
    for (auto *U : F->users()) {
      if (!isa<CallInst>(U) && !isa<InvokeInst>(U))
        continue;
      auto &CS = *cast<CallBase>(U);
      if (!CS.getCalledFunction() || CS.getCalledFunction() != F)
        continue;
      CallSitesToRewrite.push_back(&CS);
    }
    for (auto *CS : CallSitesToRewrite) {
      if ((CS->getFunction() == Clone && CS->getArgOperand(ArgNo) == &Arg) ||
          CS->getArgOperand(ArgNo) == C) {
        CS->setCalledFunction(Clone);
        Solver.markOverdefined(CS);
      }
    }
  }
};
/// Function to clean up the left over intrinsics from SCCP util.
static void cleanup(Module &M) {
  for (Function &F : M) {
    for (BasicBlock &BB : F) {
      for (BasicBlock::iterator BI = BB.begin(), E = BB.end(); BI != E;) {
        Instruction *Inst = &*BI++;
        if (auto *II = dyn_cast<IntrinsicInst>(Inst)) {
          if (II->getIntrinsicID() == Intrinsic::ssa_copy) {
            Value *Op = II->getOperand(0);
            Inst->replaceAllUsesWith(Op);
            Inst->eraseFromParent();
          }
        }
      }
    }
  }
}
bool llvm::runFunctionSpecialization(
    Module &M, const DataLayout &DL,
    std::function<TargetLibraryInfo &(Function &)> GetTLI,
    std::function<TargetTransformInfo &(Function &)> GetTTI,
    std::function<AssumptionCache &(Function &)> GetAC,
    function_ref<AnalysisResultsForFn(Function &)> GetAnalysis) {
  SCCPSolver Solver(DL, GetTLI, M.getContext());
  FunctionSpecializer FS(Solver, GetAC, GetTTI, GetTLI);
  bool Changed = false;
  // Loop over all functions, marking arguments to those with their addresses
  // taken or that are external as overdefined.
  for (Function &F : M) {
    if (F.isDeclaration())
      continue;
    if (F.hasFnAttribute(Attribute::NoDuplicate))
      continue;
    LLVM_DEBUG(dbgs() << "\nFnSpecialization: Analysing decl: " << F.getName()
                      << "\n");
    Solver.addAnalysis(F, GetAnalysis(F));
    // Determine if we can track the function's arguments. If so, add the
    // function to the solver's set of argument-tracked functions.
    if (canTrackArgumentsInterprocedurally(&F)) {
      LLVM_DEBUG(dbgs() << "FnSpecialization: Can track arguments\n");
      Solver.addArgumentTrackedFunction(&F);
      continue;
    } else {
      LLVM_DEBUG(dbgs() << "FnSpecialization: Can't track arguments!\n"
                        << "FnSpecialization: Doesn't have local linkage, or "
                        << "has its address taken\n");
    }
    // Assume the function is called.
    Solver.markBlockExecutable(&F.front());
    // Assume nothing about the incoming arguments.
    for (Argument &AI : F.args())
      Solver.markOverdefined(&AI);
  }
  // Determine if we can track any of the module's global variables. If so, add
  // the global variables we can track to the solver's set of tracked global
  // variables.
  for (GlobalVariable &G : M.globals()) {
    G.removeDeadConstantUsers();
    if (canTrackGlobalVariableInterprocedurally(&G))
      Solver.trackValueOfGlobalVariable(&G);
  }
  // Solve for constants.
  auto RunSCCPSolver = [&](auto &WorkList) {
    bool ResolvedUndefs = true;
    while (ResolvedUndefs) {
      LLVM_DEBUG(dbgs() << "FnSpecialization: Running solver\n");
      Solver.solve();
      LLVM_DEBUG(dbgs() << "FnSpecialization: Resolving undefs\n");
      ResolvedUndefs = false;
      for (Function *F : WorkList)
        if (Solver.resolvedUndefsIn(*F))
          ResolvedUndefs = true;
    }
    for (auto *F : WorkList) {
      for (BasicBlock &BB : *F) {
        if (!Solver.isBlockExecutable(&BB))
          continue;
        for (auto &I : make_early_inc_range(BB))
          FS.tryToReplaceWithConstant(&I);
      }
    }
  };
  auto &TrackedFuncs = Solver.getArgumentTrackedFunctions();
  SmallVector<Function *, 16> FuncDecls(TrackedFuncs.begin(),
                                        TrackedFuncs.end());
#ifndef NDEBUG
  LLVM_DEBUG(dbgs() << "FnSpecialization: Worklist fn decls:\n");
  for (auto *F : FuncDecls)
    LLVM_DEBUG(dbgs() << "FnSpecialization: *) " << F->getName() << "\n");
#endif
  // Initially resolve the constants in all the argument tracked functions.
  RunSCCPSolver(FuncDecls);
  SmallVector<Function *, 2> CurrentSpecializations;
  unsigned I = 0;
  while (FuncSpecializationMaxIters != I++ &&
         FS.specializeFunctions(FuncDecls, CurrentSpecializations)) {
    // TODO: run the solver here for the specialized functions only if we want
    // to specialize recursively.
    CurrentSpecializations.clear();
    Changed = true;
  }
  // Clean up the IR by removing ssa_copy intrinsics.
  cleanup(M);
  return Changed;
}
 |