1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518
|
//===-- ConstraintElimination.cpp - Eliminate conds using constraints. ----===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Eliminate conditions based on constraints collected from dominating
// conditions.
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Scalar/ConstraintElimination.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/ScopeExit.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/ConstraintSystem.h"
#include "llvm/Analysis/GlobalsModRef.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/DebugCounter.h"
#include "llvm/Transforms/Scalar.h"
#include <string>
using namespace llvm;
using namespace PatternMatch;
#define DEBUG_TYPE "constraint-elimination"
STATISTIC(NumCondsRemoved, "Number of instructions removed");
DEBUG_COUNTER(EliminatedCounter, "conds-eliminated",
"Controls which conditions are eliminated");
static int64_t MaxConstraintValue = std::numeric_limits<int64_t>::max();
// Decomposes \p V into a vector of pairs of the form { c, X } where c * X. The
// sum of the pairs equals \p V. The first pair is the constant-factor and X
// must be nullptr. If the expression cannot be decomposed, returns an empty
// vector.
static SmallVector<std::pair<int64_t, Value *>, 4> decompose(Value *V) {
if (auto *CI = dyn_cast<ConstantInt>(V)) {
if (CI->isNegative() || CI->uge(MaxConstraintValue))
return {};
return {{CI->getSExtValue(), nullptr}};
}
auto *GEP = dyn_cast<GetElementPtrInst>(V);
if (GEP && GEP->getNumOperands() == 2 && GEP->isInBounds()) {
Value *Op0, *Op1;
ConstantInt *CI;
// If the index is zero-extended, it is guaranteed to be positive.
if (match(GEP->getOperand(GEP->getNumOperands() - 1),
m_ZExt(m_Value(Op0)))) {
if (match(Op0, m_NUWShl(m_Value(Op1), m_ConstantInt(CI))))
return {{0, nullptr},
{1, GEP->getPointerOperand()},
{std::pow(int64_t(2), CI->getSExtValue()), Op1}};
if (match(Op0, m_NSWAdd(m_Value(Op1), m_ConstantInt(CI))))
return {{CI->getSExtValue(), nullptr},
{1, GEP->getPointerOperand()},
{1, Op1}};
return {{0, nullptr}, {1, GEP->getPointerOperand()}, {1, Op0}};
}
if (match(GEP->getOperand(GEP->getNumOperands() - 1), m_ConstantInt(CI)) &&
!CI->isNegative())
return {{CI->getSExtValue(), nullptr}, {1, GEP->getPointerOperand()}};
SmallVector<std::pair<int64_t, Value *>, 4> Result;
if (match(GEP->getOperand(GEP->getNumOperands() - 1),
m_NUWShl(m_Value(Op0), m_ConstantInt(CI))))
Result = {{0, nullptr},
{1, GEP->getPointerOperand()},
{std::pow(int64_t(2), CI->getSExtValue()), Op0}};
else if (match(GEP->getOperand(GEP->getNumOperands() - 1),
m_NSWAdd(m_Value(Op0), m_ConstantInt(CI))))
Result = {{CI->getSExtValue(), nullptr},
{1, GEP->getPointerOperand()},
{1, Op0}};
else {
Op0 = GEP->getOperand(GEP->getNumOperands() - 1);
Result = {{0, nullptr}, {1, GEP->getPointerOperand()}, {1, Op0}};
}
return Result;
}
Value *Op0;
if (match(V, m_ZExt(m_Value(Op0))))
V = Op0;
Value *Op1;
ConstantInt *CI;
if (match(V, m_NUWAdd(m_Value(Op0), m_ConstantInt(CI))))
return {{CI->getSExtValue(), nullptr}, {1, Op0}};
if (match(V, m_NUWAdd(m_Value(Op0), m_Value(Op1))))
return {{0, nullptr}, {1, Op0}, {1, Op1}};
if (match(V, m_NUWSub(m_Value(Op0), m_ConstantInt(CI))))
return {{-1 * CI->getSExtValue(), nullptr}, {1, Op0}};
if (match(V, m_NUWSub(m_Value(Op0), m_Value(Op1))))
return {{0, nullptr}, {1, Op0}, {1, Op1}};
return {{0, nullptr}, {1, V}};
}
struct ConstraintTy {
SmallVector<int64_t, 8> Coefficients;
ConstraintTy(SmallVector<int64_t, 8> Coefficients)
: Coefficients(Coefficients) {}
unsigned size() const { return Coefficients.size(); }
};
/// Turn a condition \p CmpI into a vector of constraints, using indices from \p
/// Value2Index. Additional indices for newly discovered values are added to \p
/// NewIndices.
static SmallVector<ConstraintTy, 4>
getConstraint(CmpInst::Predicate Pred, Value *Op0, Value *Op1,
const DenseMap<Value *, unsigned> &Value2Index,
DenseMap<Value *, unsigned> &NewIndices) {
int64_t Offset1 = 0;
int64_t Offset2 = 0;
// First try to look up \p V in Value2Index and NewIndices. Otherwise add a
// new entry to NewIndices.
auto GetOrAddIndex = [&Value2Index, &NewIndices](Value *V) -> unsigned {
auto V2I = Value2Index.find(V);
if (V2I != Value2Index.end())
return V2I->second;
auto NewI = NewIndices.find(V);
if (NewI != NewIndices.end())
return NewI->second;
auto Insert =
NewIndices.insert({V, Value2Index.size() + NewIndices.size() + 1});
return Insert.first->second;
};
if (Pred == CmpInst::ICMP_UGT || Pred == CmpInst::ICMP_UGE)
return getConstraint(CmpInst::getSwappedPredicate(Pred), Op1, Op0,
Value2Index, NewIndices);
if (Pred == CmpInst::ICMP_EQ) {
auto A =
getConstraint(CmpInst::ICMP_UGE, Op0, Op1, Value2Index, NewIndices);
auto B =
getConstraint(CmpInst::ICMP_ULE, Op0, Op1, Value2Index, NewIndices);
append_range(A, B);
return A;
}
if (Pred == CmpInst::ICMP_NE && match(Op1, m_Zero())) {
return getConstraint(CmpInst::ICMP_UGT, Op0, Op1, Value2Index, NewIndices);
}
// Only ULE and ULT predicates are supported at the moment.
if (Pred != CmpInst::ICMP_ULE && Pred != CmpInst::ICMP_ULT)
return {};
auto ADec = decompose(Op0->stripPointerCastsSameRepresentation());
auto BDec = decompose(Op1->stripPointerCastsSameRepresentation());
// Skip if decomposing either of the values failed.
if (ADec.empty() || BDec.empty())
return {};
// Skip trivial constraints without any variables.
if (ADec.size() == 1 && BDec.size() == 1)
return {};
Offset1 = ADec[0].first;
Offset2 = BDec[0].first;
Offset1 *= -1;
// Create iterator ranges that skip the constant-factor.
auto VariablesA = llvm::drop_begin(ADec);
auto VariablesB = llvm::drop_begin(BDec);
// Make sure all variables have entries in Value2Index or NewIndices.
for (const auto &KV :
concat<std::pair<int64_t, Value *>>(VariablesA, VariablesB))
GetOrAddIndex(KV.second);
// Build result constraint, by first adding all coefficients from A and then
// subtracting all coefficients from B.
SmallVector<int64_t, 8> R(Value2Index.size() + NewIndices.size() + 1, 0);
for (const auto &KV : VariablesA)
R[GetOrAddIndex(KV.second)] += KV.first;
for (const auto &KV : VariablesB)
R[GetOrAddIndex(KV.second)] -= KV.first;
R[0] = Offset1 + Offset2 + (Pred == CmpInst::ICMP_ULT ? -1 : 0);
return {R};
}
static SmallVector<ConstraintTy, 4>
getConstraint(CmpInst *Cmp, const DenseMap<Value *, unsigned> &Value2Index,
DenseMap<Value *, unsigned> &NewIndices) {
return getConstraint(Cmp->getPredicate(), Cmp->getOperand(0),
Cmp->getOperand(1), Value2Index, NewIndices);
}
namespace {
/// Represents either a condition that holds on entry to a block or a basic
/// block, with their respective Dominator DFS in and out numbers.
struct ConstraintOrBlock {
unsigned NumIn;
unsigned NumOut;
bool IsBlock;
bool Not;
union {
BasicBlock *BB;
CmpInst *Condition;
};
ConstraintOrBlock(DomTreeNode *DTN)
: NumIn(DTN->getDFSNumIn()), NumOut(DTN->getDFSNumOut()), IsBlock(true),
BB(DTN->getBlock()) {}
ConstraintOrBlock(DomTreeNode *DTN, CmpInst *Condition, bool Not)
: NumIn(DTN->getDFSNumIn()), NumOut(DTN->getDFSNumOut()), IsBlock(false),
Not(Not), Condition(Condition) {}
};
struct StackEntry {
unsigned NumIn;
unsigned NumOut;
CmpInst *Condition;
bool IsNot;
StackEntry(unsigned NumIn, unsigned NumOut, CmpInst *Condition, bool IsNot)
: NumIn(NumIn), NumOut(NumOut), Condition(Condition), IsNot(IsNot) {}
};
} // namespace
#ifndef NDEBUG
static void dumpWithNames(ConstraintTy &C,
DenseMap<Value *, unsigned> &Value2Index) {
SmallVector<std::string> Names(Value2Index.size(), "");
for (auto &KV : Value2Index) {
Names[KV.second - 1] = std::string("%") + KV.first->getName().str();
}
ConstraintSystem CS;
CS.addVariableRowFill(C.Coefficients);
CS.dump(Names);
}
#endif
static bool eliminateConstraints(Function &F, DominatorTree &DT) {
bool Changed = false;
DT.updateDFSNumbers();
ConstraintSystem CS;
SmallVector<ConstraintOrBlock, 64> WorkList;
// First, collect conditions implied by branches and blocks with their
// Dominator DFS in and out numbers.
for (BasicBlock &BB : F) {
if (!DT.getNode(&BB))
continue;
WorkList.emplace_back(DT.getNode(&BB));
auto *Br = dyn_cast<BranchInst>(BB.getTerminator());
if (!Br || !Br->isConditional())
continue;
// Returns true if we can add a known condition from BB to its successor
// block Succ. Each predecessor of Succ can either be BB or be dominated by
// Succ (e.g. the case when adding a condition from a pre-header to a loop
// header).
auto CanAdd = [&BB, &DT](BasicBlock *Succ) {
return all_of(predecessors(Succ), [&BB, &DT, Succ](BasicBlock *Pred) {
return Pred == &BB || DT.dominates(Succ, Pred);
});
};
// If the condition is an OR of 2 compares and the false successor only has
// the current block as predecessor, queue both negated conditions for the
// false successor.
Value *Op0, *Op1;
if (match(Br->getCondition(), m_LogicalOr(m_Value(Op0), m_Value(Op1))) &&
match(Op0, m_Cmp()) && match(Op1, m_Cmp())) {
BasicBlock *FalseSuccessor = Br->getSuccessor(1);
if (CanAdd(FalseSuccessor)) {
WorkList.emplace_back(DT.getNode(FalseSuccessor), cast<CmpInst>(Op0),
true);
WorkList.emplace_back(DT.getNode(FalseSuccessor), cast<CmpInst>(Op1),
true);
}
continue;
}
// If the condition is an AND of 2 compares and the true successor only has
// the current block as predecessor, queue both conditions for the true
// successor.
if (match(Br->getCondition(), m_LogicalAnd(m_Value(Op0), m_Value(Op1))) &&
match(Op0, m_Cmp()) && match(Op1, m_Cmp())) {
BasicBlock *TrueSuccessor = Br->getSuccessor(0);
if (CanAdd(TrueSuccessor)) {
WorkList.emplace_back(DT.getNode(TrueSuccessor), cast<CmpInst>(Op0),
false);
WorkList.emplace_back(DT.getNode(TrueSuccessor), cast<CmpInst>(Op1),
false);
}
continue;
}
auto *CmpI = dyn_cast<CmpInst>(Br->getCondition());
if (!CmpI)
continue;
if (CanAdd(Br->getSuccessor(0)))
WorkList.emplace_back(DT.getNode(Br->getSuccessor(0)), CmpI, false);
if (CanAdd(Br->getSuccessor(1)))
WorkList.emplace_back(DT.getNode(Br->getSuccessor(1)), CmpI, true);
}
// Next, sort worklist by dominance, so that dominating blocks and conditions
// come before blocks and conditions dominated by them. If a block and a
// condition have the same numbers, the condition comes before the block, as
// it holds on entry to the block.
sort(WorkList, [](const ConstraintOrBlock &A, const ConstraintOrBlock &B) {
return std::tie(A.NumIn, A.IsBlock) < std::tie(B.NumIn, B.IsBlock);
});
// Finally, process ordered worklist and eliminate implied conditions.
SmallVector<StackEntry, 16> DFSInStack;
DenseMap<Value *, unsigned> Value2Index;
for (ConstraintOrBlock &CB : WorkList) {
// First, pop entries from the stack that are out-of-scope for CB. Remove
// the corresponding entry from the constraint system.
while (!DFSInStack.empty()) {
auto &E = DFSInStack.back();
LLVM_DEBUG(dbgs() << "Top of stack : " << E.NumIn << " " << E.NumOut
<< "\n");
LLVM_DEBUG(dbgs() << "CB: " << CB.NumIn << " " << CB.NumOut << "\n");
assert(E.NumIn <= CB.NumIn);
if (CB.NumOut <= E.NumOut)
break;
LLVM_DEBUG(dbgs() << "Removing " << *E.Condition << " " << E.IsNot
<< "\n");
DFSInStack.pop_back();
CS.popLastConstraint();
}
LLVM_DEBUG({
dbgs() << "Processing ";
if (CB.IsBlock)
dbgs() << *CB.BB;
else
dbgs() << *CB.Condition;
dbgs() << "\n";
});
// For a block, check if any CmpInsts become known based on the current set
// of constraints.
if (CB.IsBlock) {
for (Instruction &I : *CB.BB) {
auto *Cmp = dyn_cast<CmpInst>(&I);
if (!Cmp)
continue;
DenseMap<Value *, unsigned> NewIndices;
auto R = getConstraint(Cmp, Value2Index, NewIndices);
if (R.size() != 1)
continue;
// Check if all coefficients of new indices are 0 after building the
// constraint. Skip if any of the new indices has a non-null
// coefficient.
bool HasNewIndex = false;
for (unsigned I = 0; I < NewIndices.size(); ++I) {
int64_t Last = R[0].Coefficients.pop_back_val();
if (Last != 0) {
HasNewIndex = true;
break;
}
}
if (HasNewIndex || R[0].size() == 1)
continue;
if (CS.isConditionImplied(R[0].Coefficients)) {
if (!DebugCounter::shouldExecute(EliminatedCounter))
continue;
LLVM_DEBUG(dbgs() << "Condition " << *Cmp
<< " implied by dominating constraints\n");
LLVM_DEBUG({
for (auto &E : reverse(DFSInStack))
dbgs() << " C " << *E.Condition << " " << E.IsNot << "\n";
});
Cmp->replaceAllUsesWith(
ConstantInt::getTrue(F.getParent()->getContext()));
NumCondsRemoved++;
Changed = true;
}
if (CS.isConditionImplied(
ConstraintSystem::negate(R[0].Coefficients))) {
if (!DebugCounter::shouldExecute(EliminatedCounter))
continue;
LLVM_DEBUG(dbgs() << "Condition !" << *Cmp
<< " implied by dominating constraints\n");
LLVM_DEBUG({
for (auto &E : reverse(DFSInStack))
dbgs() << " C " << *E.Condition << " " << E.IsNot << "\n";
});
Cmp->replaceAllUsesWith(
ConstantInt::getFalse(F.getParent()->getContext()));
NumCondsRemoved++;
Changed = true;
}
}
continue;
}
// Set up a function to restore the predicate at the end of the scope if it
// has been negated. Negate the predicate in-place, if required.
auto *CI = dyn_cast<CmpInst>(CB.Condition);
auto PredicateRestorer = make_scope_exit([CI, &CB]() {
if (CB.Not && CI)
CI->setPredicate(CI->getInversePredicate());
});
if (CB.Not) {
if (CI) {
CI->setPredicate(CI->getInversePredicate());
} else {
LLVM_DEBUG(dbgs() << "Can only negate compares so far.\n");
continue;
}
}
// Otherwise, add the condition to the system and stack, if we can transform
// it into a constraint.
DenseMap<Value *, unsigned> NewIndices;
auto R = getConstraint(CB.Condition, Value2Index, NewIndices);
if (R.empty())
continue;
for (auto &KV : NewIndices)
Value2Index.insert(KV);
LLVM_DEBUG(dbgs() << "Adding " << *CB.Condition << " " << CB.Not << "\n");
bool Added = false;
for (auto &C : R) {
auto Coeffs = C.Coefficients;
LLVM_DEBUG({
dbgs() << " constraint: ";
dumpWithNames(C, Value2Index);
});
Added |= CS.addVariableRowFill(Coeffs);
// If R has been added to the system, queue it for removal once it goes
// out-of-scope.
if (Added)
DFSInStack.emplace_back(CB.NumIn, CB.NumOut, CB.Condition, CB.Not);
}
}
assert(CS.size() == DFSInStack.size() &&
"updates to CS and DFSInStack are out of sync");
return Changed;
}
PreservedAnalyses ConstraintEliminationPass::run(Function &F,
FunctionAnalysisManager &AM) {
auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
if (!eliminateConstraints(F, DT))
return PreservedAnalyses::all();
PreservedAnalyses PA;
PA.preserve<DominatorTreeAnalysis>();
PA.preserveSet<CFGAnalyses>();
return PA;
}
namespace {
class ConstraintElimination : public FunctionPass {
public:
static char ID;
ConstraintElimination() : FunctionPass(ID) {
initializeConstraintEliminationPass(*PassRegistry::getPassRegistry());
}
bool runOnFunction(Function &F) override {
auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
return eliminateConstraints(F, DT);
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.setPreservesCFG();
AU.addRequired<DominatorTreeWrapperPass>();
AU.addPreserved<GlobalsAAWrapperPass>();
AU.addPreserved<DominatorTreeWrapperPass>();
}
};
} // end anonymous namespace
char ConstraintElimination::ID = 0;
INITIALIZE_PASS_BEGIN(ConstraintElimination, "constraint-elimination",
"Constraint Elimination", false, false)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass)
INITIALIZE_PASS_END(ConstraintElimination, "constraint-elimination",
"Constraint Elimination", false, false)
FunctionPass *llvm::createConstraintEliminationPass() {
return new ConstraintElimination();
}
|