File: div.ll

package info (click to toggle)
llvm-toolchain-13 1%3A13.0.1-6~deb11u1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 1,418,812 kB
  • sloc: cpp: 5,290,827; ansic: 996,570; asm: 544,593; python: 188,212; objc: 72,027; lisp: 30,291; f90: 25,395; sh: 24,900; javascript: 9,780; pascal: 9,398; perl: 7,484; ml: 5,432; awk: 3,523; makefile: 2,892; xml: 953; cs: 573; fortran: 539
file content (203 lines) | stat: -rw-r--r-- 5,554 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
; NOTE: Assertions have been autogenerated by utils/update_test_checks.py
; RUN: opt < %s -instsimplify -S | FileCheck %s

define i32 @zero_dividend(i32 %A) {
; CHECK-LABEL: @zero_dividend(
; CHECK-NEXT:    ret i32 0
;
  %B = sdiv i32 0, %A
  ret i32 %B
}

define <2 x i32> @zero_dividend_vector(<2 x i32> %A) {
; CHECK-LABEL: @zero_dividend_vector(
; CHECK-NEXT:    ret <2 x i32> zeroinitializer
;
  %B = udiv <2 x i32> zeroinitializer, %A
  ret <2 x i32> %B
}

define <2 x i32> @zero_dividend_vector_undef_elt(<2 x i32> %A) {
; CHECK-LABEL: @zero_dividend_vector_undef_elt(
; CHECK-NEXT:    ret <2 x i32> zeroinitializer
;
  %B = sdiv <2 x i32> <i32 0, i32 undef>, %A
  ret <2 x i32> %B
}

; Division-by-zero is poison. UB in any vector lane means the whole op is poison.

define <2 x i8> @sdiv_zero_elt_vec_constfold(<2 x i8> %x) {
; CHECK-LABEL: @sdiv_zero_elt_vec_constfold(
; CHECK-NEXT:    ret <2 x i8> poison
;
  %div = sdiv <2 x i8> <i8 1, i8 2>, <i8 0, i8 -42>
  ret <2 x i8> %div
}

define <2 x i8> @udiv_zero_elt_vec_constfold(<2 x i8> %x) {
; CHECK-LABEL: @udiv_zero_elt_vec_constfold(
; CHECK-NEXT:    ret <2 x i8> poison
;
  %div = udiv <2 x i8> <i8 1, i8 2>, <i8 42, i8 0>
  ret <2 x i8> %div
}

define <2 x i8> @sdiv_zero_elt_vec(<2 x i8> %x) {
; CHECK-LABEL: @sdiv_zero_elt_vec(
; CHECK-NEXT:    ret <2 x i8> poison
;
  %div = sdiv <2 x i8> %x, <i8 -42, i8 0>
  ret <2 x i8> %div
}

define <2 x i8> @udiv_zero_elt_vec(<2 x i8> %x) {
; CHECK-LABEL: @udiv_zero_elt_vec(
; CHECK-NEXT:    ret <2 x i8> poison
;
  %div = udiv <2 x i8> %x, <i8 0, i8 42>
  ret <2 x i8> %div
}

define <2 x i8> @sdiv_undef_elt_vec(<2 x i8> %x) {
; CHECK-LABEL: @sdiv_undef_elt_vec(
; CHECK-NEXT:    ret <2 x i8> poison
;
  %div = sdiv <2 x i8> %x, <i8 -42, i8 undef>
  ret <2 x i8> %div
}

define <2 x i8> @udiv_undef_elt_vec(<2 x i8> %x) {
; CHECK-LABEL: @udiv_undef_elt_vec(
; CHECK-NEXT:    ret <2 x i8> poison
;
  %div = udiv <2 x i8> %x, <i8 undef, i8 42>
  ret <2 x i8> %div
}

; Division-by-zero is undef. UB in any vector lane means the whole op is undef.
; Thus, we can simplify this: if any element of 'y' is 0, we can do anything.
; Therefore, assume that all elements of 'y' must be 1.

define <2 x i1> @sdiv_bool_vec(<2 x i1> %x, <2 x i1> %y) {
; CHECK-LABEL: @sdiv_bool_vec(
; CHECK-NEXT:    ret <2 x i1> [[X:%.*]]
;
  %div = sdiv <2 x i1> %x, %y
  ret <2 x i1> %div
}

define <2 x i1> @udiv_bool_vec(<2 x i1> %x, <2 x i1> %y) {
; CHECK-LABEL: @udiv_bool_vec(
; CHECK-NEXT:    ret <2 x i1> [[X:%.*]]
;
  %div = udiv <2 x i1> %x, %y
  ret <2 x i1> %div
}

define i32 @zext_bool_udiv_divisor(i1 %x, i32 %y) {
; CHECK-LABEL: @zext_bool_udiv_divisor(
; CHECK-NEXT:    ret i32 [[Y:%.*]]
;
  %ext = zext i1 %x to i32
  %r = udiv i32 %y, %ext
  ret i32 %r
}

define <2 x i32> @zext_bool_sdiv_divisor_vec(<2 x i1> %x, <2 x i32> %y) {
; CHECK-LABEL: @zext_bool_sdiv_divisor_vec(
; CHECK-NEXT:    ret <2 x i32> [[Y:%.*]]
;
  %ext = zext <2 x i1> %x to <2 x i32>
  %r = sdiv <2 x i32> %y, %ext
  ret <2 x i32> %r
}

define i32 @udiv_dividend_known_smaller_than_constant_divisor(i32 %x) {
; CHECK-LABEL: @udiv_dividend_known_smaller_than_constant_divisor(
; CHECK-NEXT:    ret i32 0
;
  %and = and i32 %x, 250
  %div = udiv i32 %and, 251
  ret i32 %div
}

define i32 @not_udiv_dividend_known_smaller_than_constant_divisor(i32 %x) {
; CHECK-LABEL: @not_udiv_dividend_known_smaller_than_constant_divisor(
; CHECK-NEXT:    [[AND:%.*]] = and i32 [[X:%.*]], 251
; CHECK-NEXT:    [[DIV:%.*]] = udiv i32 [[AND]], 251
; CHECK-NEXT:    ret i32 [[DIV]]
;
  %and = and i32 %x, 251
  %div = udiv i32 %and, 251
  ret i32 %div
}

define i32 @udiv_constant_dividend_known_smaller_than_divisor(i32 %x) {
; CHECK-LABEL: @udiv_constant_dividend_known_smaller_than_divisor(
; CHECK-NEXT:    ret i32 0
;
  %or = or i32 %x, 251
  %div = udiv i32 250, %or
  ret i32 %div
}

define i32 @not_udiv_constant_dividend_known_smaller_than_divisor(i32 %x) {
; CHECK-LABEL: @not_udiv_constant_dividend_known_smaller_than_divisor(
; CHECK-NEXT:    [[OR:%.*]] = or i32 [[X:%.*]], 251
; CHECK-NEXT:    [[DIV:%.*]] = udiv i32 251, [[OR]]
; CHECK-NEXT:    ret i32 [[DIV]]
;
  %or = or i32 %x, 251
  %div = udiv i32 251, %or
  ret i32 %div
}

; This would require computing known bits on both x and y. Is it worth doing?

define i32 @udiv_dividend_known_smaller_than_divisor(i32 %x, i32 %y) {
; CHECK-LABEL: @udiv_dividend_known_smaller_than_divisor(
; CHECK-NEXT:    [[AND:%.*]] = and i32 [[X:%.*]], 250
; CHECK-NEXT:    [[OR:%.*]] = or i32 [[Y:%.*]], 251
; CHECK-NEXT:    [[DIV:%.*]] = udiv i32 [[AND]], [[OR]]
; CHECK-NEXT:    ret i32 [[DIV]]
;
  %and = and i32 %x, 250
  %or = or i32 %y, 251
  %div = udiv i32 %and, %or
  ret i32 %div
}

define i32 @not_udiv_dividend_known_smaller_than_divisor(i32 %x, i32 %y) {
; CHECK-LABEL: @not_udiv_dividend_known_smaller_than_divisor(
; CHECK-NEXT:    [[AND:%.*]] = and i32 [[X:%.*]], 251
; CHECK-NEXT:    [[OR:%.*]] = or i32 [[Y:%.*]], 251
; CHECK-NEXT:    [[DIV:%.*]] = udiv i32 [[AND]], [[OR]]
; CHECK-NEXT:    ret i32 [[DIV]]
;
  %and = and i32 %x, 251
  %or = or i32 %y, 251
  %div = udiv i32 %and, %or
  ret i32 %div
}

declare i32 @external()

define i32 @div1() {
; CHECK-LABEL: @div1(
; CHECK-NEXT:    [[CALL:%.*]] = call i32 @external(), [[RNG0:!range !.*]]
; CHECK-NEXT:    ret i32 0
;
  %call = call i32 @external(), !range !0
  %urem = udiv i32 %call, 3
  ret i32 %urem
}

define i8 @sdiv_minusone_divisor() {
; CHECK-LABEL: @sdiv_minusone_divisor
; CHECK-NEXT:   ret i8 poison
  %v = sdiv i8 -128, -1
  ret i8 %v
}

!0 = !{i32 0, i32 3}