1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
|
// -*- C++ -*-
//===-- nth_element.pass.cpp ----------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
// UNSUPPORTED: c++03, c++11, c++14
#include "support/pstl_test_config.h"
#include <iostream>
#include <execution>
#include <algorithm>
#include "support/utils.h"
using namespace TestUtils;
// User defined type with minimal requirements
template <typename T>
struct DataType
{
explicit DataType(int32_t k) : my_val(k) {}
DataType(DataType&& input)
{
my_val = std::move(input.my_val);
input.my_val = T(0);
}
DataType&
operator=(DataType&& input)
{
my_val = std::move(input.my_val);
input.my_val = T(0);
return *this;
}
T
get_val() const
{
return my_val;
}
friend std::ostream&
operator<<(std::ostream& stream, const DataType<T>& input)
{
return stream << input.my_val;
}
private:
T my_val;
};
template <typename T>
bool
is_equal(const DataType<T>& x, const DataType<T>& y)
{
return x.get_val() == y.get_val();
}
template <typename T>
bool
is_equal(const T& x, const T& y)
{
return x == y;
}
struct test_one_policy
{
#if defined(_PSTL_ICC_17_VC141_TEST_SIMD_LAMBDA_DEBUG_32_BROKEN) || \
defined(_PSTL_ICC_16_VC14_TEST_SIMD_LAMBDA_DEBUG_32_BROKEN) // dummy specialization by policy type, in case of broken configuration
template <typename Iterator1, typename Size, typename Generator1, typename Generator2, typename Compare>
typename std::enable_if<is_same_iterator_category<Iterator1, std::random_access_iterator_tag>::value, void>::type
operator()(pstl::execution::unsequenced_policy, Iterator1 first1, Iterator1 last1, Iterator1 first2,
Iterator1 last2, Size n, Size m, Generator1 generator1, Generator2 generator2, Compare comp)
{
}
template <typename Iterator1, typename Size, typename Generator1, typename Generator2, typename Compare>
typename std::enable_if<is_same_iterator_category<Iterator1, std::random_access_iterator_tag>::value, void>::type
operator()(pstl::execution::parallel_unsequenced_policy, Iterator1 first1, Iterator1 last1, Iterator1 first2,
Iterator1 last2, Size n, Size m, Generator1 generator1, Generator2 generator2, Compare comp)
{
}
#endif
// nth_element works only with random access iterators
template <typename Policy, typename Iterator1, typename Size, typename Generator1, typename Generator2,
typename Compare>
typename std::enable_if<is_same_iterator_category<Iterator1, std::random_access_iterator_tag>::value, void>::type
operator()(Policy&& exec, Iterator1 first1, Iterator1 last1, Iterator1 first2, Iterator1 last2, Size n, Size m,
Generator1 generator1, Generator2 generator2, Compare comp)
{
using T = typename std::iterator_traits<Iterator1>::value_type;
const Iterator1 mid1 = std::next(first1, m);
const Iterator1 mid2 = std::next(first2, m);
fill_data(first1, mid1, generator1);
fill_data(mid1, last1, generator2);
fill_data(first2, mid2, generator1);
fill_data(mid2, last2, generator2);
std::nth_element(first1, mid1, last1, comp);
std::nth_element(exec, first2, mid2, last2, comp);
if (m > 0 && m < n)
{
EXPECT_TRUE(is_equal(*mid1, *mid2), "wrong result from nth_element with predicate");
}
EXPECT_TRUE(std::find_first_of(first2, mid2, mid2, last2, [comp](T& x, T& y) { return comp(y, x); }) == mid2,
"wrong effect from nth_element with predicate");
}
template <typename Policy, typename Iterator1, typename Size, typename Generator1, typename Generator2,
typename Compare>
typename std::enable_if<!is_same_iterator_category<Iterator1, std::random_access_iterator_tag>::value, void>::type
operator()(Policy&&, Iterator1, Iterator1, Iterator1, Iterator1, Size, Size, Generator1, Generator2, Compare)
{
}
};
template <typename T, typename Generator1, typename Generator2, typename Compare>
void
test_by_type(Generator1 generator1, Generator2 generator2, Compare comp)
{
using namespace std;
size_t max_size = 10000;
Sequence<T> in1(max_size, [](size_t v) { return T(v); });
Sequence<T> exp(max_size, [](size_t v) { return T(v); });
size_t m;
for (size_t n = 0; n <= max_size; n = n <= 16 ? n + 1 : size_t(3.1415 * n))
{
m = 0;
invoke_on_all_policies(test_one_policy(), exp.begin(), exp.begin() + n, in1.begin(), in1.begin() + n, n, m,
generator1, generator2, comp);
m = n / 7;
invoke_on_all_policies(test_one_policy(), exp.begin(), exp.begin() + n, in1.begin(), in1.begin() + n, n, m,
generator1, generator2, comp);
m = 3 * n / 5;
invoke_on_all_policies(test_one_policy(), exp.begin(), exp.begin() + n, in1.begin(), in1.begin() + n, n, m,
generator1, generator2, comp);
}
invoke_on_all_policies(test_one_policy(), exp.begin(), exp.begin() + max_size, in1.begin(), in1.begin() + max_size,
max_size, max_size, generator1, generator2, comp);
}
template <typename T>
struct test_non_const
{
template <typename Policy, typename Iterator>
void
operator()(Policy&& exec, Iterator iter)
{
invoke_if(exec, [&]() { nth_element(exec, iter, iter, iter, non_const(std::less<T>())); });
}
};
int
main()
{
test_by_type<int32_t>([](int32_t i) { return 10 * i; }, [](int32_t i) { return i + 1; }, std::less<int32_t>());
test_by_type<int32_t>([](int32_t) { return 0; }, [](int32_t) { return 0; }, std::less<int32_t>());
test_by_type<float64_t>([](int32_t i) { return -2 * i; }, [](int32_t i) { return -(2 * i + 1); },
[](const float64_t x, const float64_t y) { return x > y; });
test_by_type<DataType<float32_t>>(
[](int32_t i) { return DataType<float32_t>(2 * i + 1); }, [](int32_t i) { return DataType<float32_t>(2 * i); },
[](const DataType<float32_t>& x, const DataType<float32_t>& y) { return x.get_val() < y.get_val(); });
test_algo_basic_single<int32_t>(run_for_rnd<test_non_const<int32_t>>());
std::cout << done() << std::endl;
return 0;
}
|