1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
|
// -*- C++ -*-
//===-- adjacent_difference.pass.cpp --------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
// UNSUPPORTED: c++03, c++11, c++14
#include "support/pstl_test_config.h"
#include <iterator>
#include <execution>
#include <numeric>
#include "support/utils.h"
using namespace TestUtils;
template <typename T>
struct wrapper
{
T t;
constexpr explicit wrapper(T t_) : t(t_) {}
template <typename T2>
constexpr wrapper(const wrapper<T2>& a)
{
t = a.t;
}
template <typename T2>
constexpr void
operator=(const wrapper<T2>& a)
{
t = a.t;
}
constexpr wrapper<T>
operator-(const wrapper<T>& a) const
{
return wrapper<T>(t - a.t);
}
};
template <typename T>
bool
compare(const T& a, const T& b)
{
return a == b;
}
template <typename T>
bool
compare(const wrapper<T>& a, const wrapper<T>& b)
{
return a.t == b.t;
}
template <typename Iterator1, typename Iterator2, typename T, typename Function>
typename std::enable_if<!std::is_floating_point<T>::value, bool>::type
compute_and_check(Iterator1 first, Iterator1 last, Iterator2 d_first, T, Function f)
{
using T2 = typename std::iterator_traits<Iterator2>::value_type;
if (first == last)
return true;
{
T2 temp(*first);
if (!compare(temp, *d_first))
return false;
}
Iterator1 second = std::next(first);
++d_first;
for (; second != last; ++first, ++second, ++d_first)
{
T2 temp(f(*second, *first));
if (!compare(temp, *d_first))
return false;
}
return true;
}
// we don't want to check equality here
// because we can't be sure it will be strictly equal for floating point types
template <typename Iterator1, typename Iterator2, typename T, typename Function>
typename std::enable_if<std::is_floating_point<T>::value, bool>::type compute_and_check(Iterator1, Iterator1, Iterator2,
T, Function)
{
return true;
}
struct test_one_policy
{
#if defined(_PSTL_ICC_17_VC141_TEST_SIMD_LAMBDA_DEBUG_32_BROKEN) || \
defined(_PSTL_ICC_16_VC14_TEST_SIMD_LAMBDA_DEBUG_32_BROKEN) // dummy specialization by policy type, in case of broken configuration
template <typename Iterator1, typename Iterator2, typename T, typename Function>
typename std::enable_if<is_same_iterator_category<Iterator1, std::random_access_iterator_tag>::value, void>::type
operator()(pstl::execution::unsequenced_policy, Iterator1 data_b, Iterator1 data_e, Iterator2 actual_b,
Iterator2 actual_e, T trash, Function f)
{
}
template <typename Iterator1, typename Iterator2, typename T, typename Function>
typename std::enable_if<is_same_iterator_category<Iterator1, std::random_access_iterator_tag>::value, void>::type
operator()(pstl::execution::parallel_unsequenced_policy, Iterator1 data_b, Iterator1 data_e, Iterator2 actual_b,
Iterator2 actual_e, T trash, Function f)
{
}
#endif
template <typename ExecutionPolicy, typename Iterator1, typename Iterator2, typename T, typename Function>
void
operator()(ExecutionPolicy&& exec, Iterator1 data_b, Iterator1 data_e, Iterator2 actual_b, Iterator2 actual_e,
T trash, Function f)
{
using namespace std;
using T2 = typename std::iterator_traits<Iterator1>::value_type;
fill(actual_b, actual_e, trash);
Iterator2 actual_return = adjacent_difference(exec, data_b, data_e, actual_b);
EXPECT_TRUE(compute_and_check(data_b, data_e, actual_b, T2(0), std::minus<T2>()),
"wrong effect of adjacent_difference");
EXPECT_TRUE(actual_return == actual_e, "wrong result of adjacent_difference");
fill(actual_b, actual_e, trash);
actual_return = adjacent_difference(exec, data_b, data_e, actual_b, f);
EXPECT_TRUE(compute_and_check(data_b, data_e, actual_b, T2(0), f),
"wrong effect of adjacent_difference with functor");
EXPECT_TRUE(actual_return == actual_e, "wrong result of adjacent_difference with functor");
}
};
template <typename T1, typename T2, typename Pred>
void
test(Pred pred)
{
const std::size_t max_len = 100000;
static constexpr T2 value = T2(77);
static constexpr T1 trash = T1(31);
Sequence<T1> actual(max_len, [](std::size_t i) { return T1(i); });
Sequence<T2> data(max_len, [](std::size_t i) { return i % 3 == 2 ? T2(i * i) : value; });
for (std::size_t len = 0; len < max_len; len = len <= 16 ? len + 1 : std::size_t(3.1415 * len))
{
invoke_on_all_policies(test_one_policy(), data.begin(), data.begin() + len, actual.begin(),
actual.begin() + len, trash, pred);
invoke_on_all_policies(test_one_policy(), data.cbegin(), data.cbegin() + len, actual.begin(),
actual.begin() + len, trash, pred);
}
}
int
main()
{
test<uint8_t, uint32_t>([](uint32_t a, uint32_t b) { return a - b; });
test<int32_t, int64_t>([](int64_t a, int64_t b) { return a / (b + 1); });
test<int64_t, float32_t>([](float32_t a, float32_t b) { return (a + b) / 2; });
test<wrapper<int32_t>, wrapper<int64_t>>(
[](const wrapper<int64_t>& a, const wrapper<int64_t>& b) { return a - b; });
std::cout << done() << std::endl;
return 0;
}
|