| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 
 | /*
 * Copyright (c) 2014,2015 Advanced Micro Devices, Inc.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */
#include <clc/clc.h>
#include "math.h"
#include "ep_log.h"
#include "../clcmacro.h"
_CLC_OVERLOAD _CLC_DEF float asinh(float x) {
    uint ux = as_uint(x);
    uint ax = ux & EXSIGNBIT_SP32;
    uint xsgn = ax ^ ux;
    // |x| <= 2
    float t = x * x;
    float a = mad(t,
                  mad(t,
		      mad(t,
		          mad(t, -1.177198915954942694e-4f, -4.162727710583425360e-2f),
		          -5.063201055468483248e-1f),
		      -1.480204186473758321f),
	          -1.152965835871758072f);
    float b = mad(t,
	          mad(t,
		      mad(t,
			  mad(t, 6.284381367285534560e-2f, 1.260024978680227945f),
			  6.582362487198468066f),
		      11.99423176003939087f),
		  6.917795026025976739f);
    float q = MATH_DIVIDE(a, b);
    float z1 = mad(x*t, q, x);
    // |x| > 2
    // Arguments greater than 1/sqrt(epsilon) in magnitude are
    // approximated by asinh(x) = ln(2) + ln(abs(x)), with sign of x
    // Arguments such that 4.0 <= abs(x) <= 1/sqrt(epsilon) are
    // approximated by asinhf(x) = ln(abs(x) + sqrt(x*x+1))
    // with the sign of x (see Abramowitz and Stegun 4.6.20)
    float absx = as_float(ax);
    int hi = ax > 0x46000000U;
    float y = MATH_SQRT(absx * absx + 1.0f) + absx;
    y = hi ? absx : y;
    float r = log(y) + (hi ? 0x1.62e430p-1f : 0.0f);
    float z2 = as_float(xsgn | as_uint(r));
    float z = ax <= 0x40000000 ? z1 : z2;
    z = ax < 0x39800000U | ax >= PINFBITPATT_SP32 ? x : z;
    return z;
}
_CLC_UNARY_VECTORIZE(_CLC_OVERLOAD _CLC_DEF, float, asinh, float)
#ifdef cl_khr_fp64
#pragma OPENCL EXTENSION cl_khr_fp64 : enable
#define NA0 -0.12845379283524906084997e0
#define NA1 -0.21060688498409799700819e0
#define NA2 -0.10188951822578188309186e0
#define NA3 -0.13891765817243625541799e-1
#define NA4 -0.10324604871728082428024e-3
#define DA0  0.77072275701149440164511e0
#define DA1  0.16104665505597338100747e1
#define DA2  0.11296034614816689554875e1
#define DA3  0.30079351943799465092429e0
#define DA4  0.235224464765951442265117e-1
#define NB0 -0.12186605129448852495563e0
#define NB1 -0.19777978436593069928318e0
#define NB2 -0.94379072395062374824320e-1
#define NB3 -0.12620141363821680162036e-1
#define NB4 -0.903396794842691998748349e-4
#define DB0  0.73119630776696495279434e0
#define DB1  0.15157170446881616648338e1
#define DB2  0.10524909506981282725413e1
#define DB3  0.27663713103600182193817e0
#define DB4  0.21263492900663656707646e-1
#define NC0 -0.81210026327726247622500e-1
#define NC1 -0.12327355080668808750232e0
#define NC2 -0.53704925162784720405664e-1
#define NC3 -0.63106739048128554465450e-2
#define NC4 -0.35326896180771371053534e-4
#define DC0  0.48726015805581794231182e0
#define DC1  0.95890837357081041150936e0
#define DC2  0.62322223426940387752480e0
#define DC3  0.15028684818508081155141e0
#define DC4  0.10302171620320141529445e-1
#define ND0 -0.4638179204422665073e-1
#define ND1 -0.7162729496035415183e-1
#define ND2 -0.3247795155696775148e-1
#define ND3 -0.4225785421291932164e-2
#define ND4 -0.3808984717603160127e-4
#define ND5  0.8023464184964125826e-6
#define DD0  0.2782907534642231184e0
#define DD1  0.5549945896829343308e0
#define DD2  0.3700732511330698879e0
#define DD3  0.9395783438240780722e-1
#define DD4  0.7200057974217143034e-2
#define NE0 -0.121224194072430701e-4
#define NE1 -0.273145455834305218e-3
#define NE2 -0.152866982560895737e-2
#define NE3 -0.292231744584913045e-2
#define NE4 -0.174670900236060220e-2
#define NE5 -0.891754209521081538e-12
#define DE0  0.499426632161317606e-4
#define DE1  0.139591210395547054e-2
#define DE2  0.107665231109108629e-1
#define DE3  0.325809818749873406e-1
#define DE4  0.415222526655158363e-1
#define DE5  0.186315628774716763e-1
#define NF0  -0.195436610112717345e-4
#define NF1  -0.233315515113382977e-3
#define NF2  -0.645380957611087587e-3
#define NF3  -0.478948863920281252e-3
#define NF4  -0.805234112224091742e-12
#define NF5   0.246428598194879283e-13
#define DF0   0.822166621698664729e-4
#define DF1   0.135346265620413852e-2
#define DF2   0.602739242861830658e-2
#define DF3   0.972227795510722956e-2
#define DF4   0.510878800983771167e-2
#define NG0  -0.209689451648100728e-6
#define NG1  -0.219252358028695992e-5
#define NG2  -0.551641756327550939e-5
#define NG3  -0.382300259826830258e-5
#define NG4  -0.421182121910667329e-17
#define NG5   0.492236019998237684e-19
#define DG0   0.889178444424237735e-6
#define DG1   0.131152171690011152e-4
#define DG2   0.537955850185616847e-4
#define DG3   0.814966175170941864e-4
#define DG4   0.407786943832260752e-4
#define NH0  -0.178284193496441400e-6
#define NH1  -0.928734186616614974e-6
#define NH2  -0.923318925566302615e-6
#define NH3  -0.776417026702577552e-19
#define NH4   0.290845644810826014e-21
#define DH0   0.786694697277890964e-6
#define DH1   0.685435665630965488e-5
#define DH2   0.153780175436788329e-4
#define DH3   0.984873520613417917e-5
#define NI0  -0.538003743384069117e-10
#define NI1  -0.273698654196756169e-9
#define NI2  -0.268129826956403568e-9
#define NI3  -0.804163374628432850e-29
#define DI0   0.238083376363471960e-9
#define DI1   0.203579344621125934e-8
#define DI2   0.450836980450693209e-8
#define DI3   0.286005148753497156e-8
_CLC_OVERLOAD _CLC_DEF double asinh(double x) {
    const double rteps = 0x1.6a09e667f3bcdp-27;
    const double recrteps = 0x1.6a09e667f3bcdp+26;
    // log2_lead and log2_tail sum to an extra-precise version of log(2)
    const double log2_lead = 0x1.62e42ep-1;
    const double log2_tail = 0x1.efa39ef35793cp-25;
    ulong ux = as_ulong(x);
    ulong ax = ux & ~SIGNBIT_DP64;
    double absx = as_double(ax);
    double t = x * x;
    double pn, tn, pd, td;
    // XXX we are betting here that we can evaluate 8 pairs of
    // polys faster than we can grab 12 coefficients from a table
    // This also uses fewer registers
    // |x| >= 8
    pn = fma(t, fma(t, fma(t, NI3, NI2), NI1), NI0);
    pd = fma(t, fma(t, fma(t, DI3, DI2), DI1), DI0);
    tn = fma(t, fma(t, fma(t, fma(t, NH4, NH3), NH2), NH1), NH0);
    td = fma(t, fma(t, fma(t, DH3, DH2), DH1), DH0);
    pn = absx < 8.0 ? tn : pn;
    pd = absx < 8.0 ? td : pd;
    tn = fma(t, fma(t, fma(t, fma(t, fma(t, NG5, NG4), NG3), NG2), NG1), NG0);
    td = fma(t, fma(t, fma(t, fma(t, DG4, DG3), DG2), DG1), DG0);
    pn = absx < 4.0 ? tn : pn;
    pd = absx < 4.0 ? td : pd;
    tn = fma(t, fma(t, fma(t, fma(t, fma(t, NF5, NF4), NF3), NF2), NF1), NF0);
    td = fma(t, fma(t, fma(t, fma(t, DF4, DF3), DF2), DF1), DF0);
    pn = absx < 2.0 ? tn : pn;
    pd = absx < 2.0 ? td : pd;
    tn = fma(t, fma(t, fma(t, fma(t, fma(t, NE5, NE4), NE3), NE2), NE1), NE0);
    td = fma(t, fma(t, fma(t, fma(t, fma(t, DE5, DE4), DE3), DE2), DE1), DE0);
    pn = absx < 1.5 ? tn : pn;
    pd = absx < 1.5 ? td : pd;
    tn = fma(t, fma(t, fma(t, fma(t, fma(t, ND5, ND4), ND3), ND2), ND1), ND0);
    td = fma(t, fma(t, fma(t, fma(t, DD4, DD3), DD2), DD1), DD0);
    pn = absx <= 1.0 ? tn : pn;
    pd = absx <= 1.0 ? td : pd;
    tn = fma(t, fma(t, fma(t, fma(t, NC4, NC3), NC2), NC1), NC0);
    td = fma(t, fma(t, fma(t, fma(t, DC4, DC3), DC2), DC1), DC0);
    pn = absx < 0.75 ? tn : pn;
    pd = absx < 0.75 ? td : pd;
    tn = fma(t, fma(t, fma(t, fma(t, NB4, NB3), NB2), NB1), NB0);
    td = fma(t, fma(t, fma(t, fma(t, DB4, DB3), DB2), DB1), DB0);
    pn = absx < 0.5 ? tn : pn;
    pd = absx < 0.5 ? td : pd;
    tn = fma(t, fma(t, fma(t, fma(t, NA4, NA3), NA2), NA1), NA0);
    td = fma(t, fma(t, fma(t, fma(t, DA4, DA3), DA2), DA1), DA0);
    pn = absx < 0.25 ? tn : pn;
    pd = absx < 0.25 ? td : pd;
    double pq = MATH_DIVIDE(pn, pd);
    // |x| <= 1
    double result1 = fma(absx*t, pq, absx);
    // Other ranges
    int xout = absx <= 32.0 | absx > recrteps;
    double y = absx + sqrt(fma(absx, absx, 1.0));
    y = xout ? absx : y;
    double r1, r2;
    int xexp;
    __clc_ep_log(y, &xexp, &r1, &r2);
    double dxexp = (double)(xexp + xout);
    r1 = fma(dxexp, log2_lead, r1);
    r2 = fma(dxexp, log2_tail, r2);
    // 1 < x <= 32
    double v2 = (pq + 0.25) / t;
    double r = v2 + r1;
    double s = ((r1 - r) + v2) + r2;
    double v1 = r + s;
    v2 = (r - v1) + s;
    double result2 = v1 + v2;
    // x > 32
    double result3 = r1 + r2;
    double ret = absx > 1.0 ? result2 : result1;
    ret = absx > 32.0 ? result3 : ret;
    ret = x < 0.0 ? -ret : ret;
    // NaN, +-Inf, or x small enough that asinh(x) = x
    ret = ax >= PINFBITPATT_DP64 | absx < rteps ? x : ret;
    return ret;
}
_CLC_UNARY_VECTORIZE(_CLC_OVERLOAD _CLC_DEF, double, asinh, double)
#endif
 |