| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 
 | /*
 * Copyright (c) 2014 Advanced Micro Devices, Inc.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */
#include <clc/clc.h>
#include "math.h"
#include "../clcmacro.h"
/*
 * ====================================================
 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
 *
 * Developed at SunPro, a Sun Microsystems, Inc. business.
 * Permission to use, copy, modify, and distribute this
 * software is freely granted, provided that this notice
 * is preserved.
 * ====================================================
*/
#define erx   8.4506291151e-01f        /* 0x3f58560b */
// Coefficients for approximation to  erf on [00.84375]
#define efx   1.2837916613e-01f        /* 0x3e0375d4 */
#define efx8  1.0270333290e+00f        /* 0x3f8375d4 */
#define pp0   1.2837916613e-01f        /* 0x3e0375d4 */
#define pp1  -3.2504209876e-01f        /* 0xbea66beb */
#define pp2  -2.8481749818e-02f        /* 0xbce9528f */
#define pp3  -5.7702702470e-03f        /* 0xbbbd1489 */
#define pp4  -2.3763017452e-05f        /* 0xb7c756b1 */
#define qq1   3.9791721106e-01f        /* 0x3ecbbbce */
#define qq2   6.5022252500e-02f        /* 0x3d852a63 */
#define qq3   5.0813062117e-03f        /* 0x3ba68116 */
#define qq4   1.3249473704e-04f        /* 0x390aee49 */
#define qq5  -3.9602282413e-06f        /* 0xb684e21a */
// Coefficients for approximation to  erf  in [0.843751.25]
#define pa0  -2.3621185683e-03f        /* 0xbb1acdc6 */
#define pa1   4.1485610604e-01f        /* 0x3ed46805 */
#define pa2  -3.7220788002e-01f        /* 0xbebe9208 */
#define pa3   3.1834661961e-01f        /* 0x3ea2fe54 */
#define pa4  -1.1089469492e-01f        /* 0xbde31cc2 */
#define pa5   3.5478305072e-02f        /* 0x3d1151b3 */
#define pa6  -2.1663755178e-03f        /* 0xbb0df9c0 */
#define qa1   1.0642088205e-01f        /* 0x3dd9f331 */
#define qa2   5.4039794207e-01f        /* 0x3f0a5785 */
#define qa3   7.1828655899e-02f        /* 0x3d931ae7 */
#define qa4   1.2617121637e-01f        /* 0x3e013307 */
#define qa5   1.3637083583e-02f        /* 0x3c5f6e13 */
#define qa6   1.1984500103e-02f        /* 0x3c445aa3 */
// Coefficients for approximation to  erfc in [1.251/0.35]
#define ra0  -9.8649440333e-03f        /* 0xbc21a093 */
#define ra1  -6.9385856390e-01f        /* 0xbf31a0b7 */
#define ra2  -1.0558626175e+01f        /* 0xc128f022 */
#define ra3  -6.2375331879e+01f        /* 0xc2798057 */
#define ra4  -1.6239666748e+02f        /* 0xc322658c */
#define ra5  -1.8460508728e+02f        /* 0xc3389ae7 */
#define ra6  -8.1287437439e+01f        /* 0xc2a2932b */
#define ra7  -9.8143291473e+00f        /* 0xc11d077e */
#define sa1   1.9651271820e+01f        /* 0x419d35ce */
#define sa2   1.3765776062e+02f        /* 0x4309a863 */
#define sa3   4.3456588745e+02f        /* 0x43d9486f */
#define sa4   6.4538726807e+02f        /* 0x442158c9 */
#define sa5   4.2900814819e+02f        /* 0x43d6810b */
#define sa6   1.0863500214e+02f        /* 0x42d9451f */
#define sa7   6.5702495575e+00f        /* 0x40d23f7c */
#define sa8  -6.0424413532e-02f        /* 0xbd777f97 */
// Coefficients for approximation to  erfc in [1/.3528]
#define rb0  -9.8649431020e-03f        /* 0xbc21a092 */
#define rb1  -7.9928326607e-01f        /* 0xbf4c9dd4 */
#define rb2  -1.7757955551e+01f        /* 0xc18e104b */
#define rb3  -1.6063638306e+02f        /* 0xc320a2ea */
#define rb4  -6.3756646729e+02f        /* 0xc41f6441 */
#define rb5  -1.0250950928e+03f        /* 0xc480230b */
#define rb6  -4.8351919556e+02f        /* 0xc3f1c275 */
#define sb1   3.0338060379e+01f        /* 0x41f2b459 */
#define sb2   3.2579251099e+02f        /* 0x43a2e571 */
#define sb3   1.5367296143e+03f        /* 0x44c01759 */
#define sb4   3.1998581543e+03f        /* 0x4547fdbb */
#define sb5   2.5530502930e+03f        /* 0x451f90ce */
#define sb6   4.7452853394e+02f        /* 0x43ed43a7 */
#define sb7  -2.2440952301e+01f        /* 0xc1b38712 */
_CLC_OVERLOAD _CLC_DEF float erf(float x) {
    int hx = as_uint(x);
    int ix = hx & 0x7fffffff;
    float absx = as_float(ix);
    float x2 = absx * absx;
    float t = 1.0f / x2;
    float tt = absx - 1.0f;
    t = absx < 1.25f ? tt : t;
    t = absx < 0.84375f ? x2 : t;
    float u, v, tu, tv;
    // |x| < 6
    u = mad(t, mad(t, mad(t, mad(t, mad(t, mad(t, rb6, rb5), rb4), rb3), rb2), rb1), rb0);
    v = mad(t, mad(t, mad(t, mad(t, mad(t, mad(t, sb7, sb6), sb5), sb4), sb3), sb2), sb1);
    tu = mad(t, mad(t, mad(t, mad(t, mad(t, mad(t, mad(t, ra7, ra6), ra5), ra4), ra3), ra2), ra1), ra0);
    tv = mad(t, mad(t, mad(t, mad(t, mad(t, mad(t, mad(t, sa8, sa7), sa6), sa5), sa4), sa3), sa2), sa1);
    u = absx < 0x1.6db6dcp+1f ? tu : u;
    v = absx < 0x1.6db6dcp+1f ? tv : v;
    tu = mad(t, mad(t, mad(t, mad(t, mad(t, mad(t, pa6, pa5), pa4), pa3), pa2), pa1), pa0);
    tv = mad(t, mad(t, mad(t, mad(t, mad(t, qa6, qa5), qa4), qa3), qa2), qa1);
    u = absx < 1.25f ? tu : u;
    v = absx < 1.25f ? tv : v;
    tu = mad(t, mad(t, mad(t, mad(t, pp4, pp3), pp2), pp1), pp0);
    tv = mad(t, mad(t, mad(t, mad(t, qq5, qq4), qq3), qq2), qq1);
    u = absx < 0.84375f ? tu : u;
    v = absx < 0.84375f ? tv : v;
    v = mad(t, v, 1.0f);
    float q = MATH_DIVIDE(u, v);
    float ret = 1.0f;
    // |x| < 6
    float z = as_float(ix & 0xfffff000);
    float r = exp(mad(-z, z, -0.5625f)) * exp(mad(z-absx, z+absx, q));
    r = 1.0f - MATH_DIVIDE(r,  absx);
    ret = absx < 6.0f ? r : ret;
    r = erx + q;
    ret = absx < 1.25f ? r : ret;
    ret = as_float((hx & 0x80000000) | as_int(ret));
    r = mad(x, q, x);
    ret = absx < 0.84375f ? r : ret;
    // Prevent underflow
    r = 0.125f * mad(8.0f, x, efx8 * x);
    ret = absx < 0x1.0p-28f ? r : ret;
    ret = isnan(x) ? x : ret;
    return ret;
}
_CLC_UNARY_VECTORIZE(_CLC_OVERLOAD _CLC_DEF, float, erf, float);
#ifdef cl_khr_fp64
#pragma OPENCL EXTENSION cl_khr_fp64 : enable
/*
 * ====================================================
 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
 *
 * Developed at SunPro, a Sun Microsystems, Inc. business.
 * Permission to use, copy, modify, and distribute this
 * software is freely granted, provided that this notice
 * is preserved.
 * ====================================================
 */
/* double erf(double x)
 * double erfc(double x)
 *                             x
 *                      2      |\
 *     erf(x)  =  ---------  | exp(-t*t)dt
 *                    sqrt(pi) \|
 *                             0
 *
 *     erfc(x) =  1-erf(x)
 *  Note that
 *                erf(-x) = -erf(x)
 *                erfc(-x) = 2 - erfc(x)
 *
 * Method:
 *        1. For |x| in [0, 0.84375]
 *            erf(x)  = x + x*R(x^2)
 *          erfc(x) = 1 - erf(x)           if x in [-.84375,0.25]
 *                  = 0.5 + ((0.5-x)-x*R)  if x in [0.25,0.84375]
 *           where R = P/Q where P is an odd poly of degree 8 and
 *           Q is an odd poly of degree 10.
 *                                                 -57.90
 *                        | R - (erf(x)-x)/x | <= 2
 *
 *
 *           Remark. The formula is derived by noting
 *          erf(x) = (2/sqrt(pi))*(x - x^3/3 + x^5/10 - x^7/42 + ....)
 *           and that
 *          2/sqrt(pi) = 1.128379167095512573896158903121545171688
 *           is close to one. The interval is chosen because the fix
 *           point of erf(x) is near 0.6174 (i.e., erf(x)=x when x is
 *           near 0.6174), and by some experiment, 0.84375 is chosen to
 *            guarantee the error is less than one ulp for erf.
 *
 *      2. For |x| in [0.84375,1.25], let s = |x| - 1, and
 *         c = 0.84506291151 rounded to single (24 bits)
 *                 erf(x)  = sign(x) * (c  + P1(s)/Q1(s))
 *                 erfc(x) = (1-c)  - P1(s)/Q1(s) if x > 0
 *                          1+(c+P1(s)/Q1(s))    if x < 0
 *                 |P1/Q1 - (erf(|x|)-c)| <= 2**-59.06
 *           Remark: here we use the taylor series expansion at x=1.
 *                erf(1+s) = erf(1) + s*Poly(s)
 *                         = 0.845.. + P1(s)/Q1(s)
 *           That is, we use rational approximation to approximate
 *                        erf(1+s) - (c = (single)0.84506291151)
 *           Note that |P1/Q1|< 0.078 for x in [0.84375,1.25]
 *           where
 *                P1(s) = degree 6 poly in s
 *                Q1(s) = degree 6 poly in s
 *
 *      3. For x in [1.25,1/0.35(~2.857143)],
 *                 erfc(x) = (1/x)*exp(-x*x-0.5625+R1/S1)
 *                 erf(x)  = 1 - erfc(x)
 *           where
 *                R1(z) = degree 7 poly in z, (z=1/x^2)
 *                S1(z) = degree 8 poly in z
 *
 *      4. For x in [1/0.35,28]
 *                 erfc(x) = (1/x)*exp(-x*x-0.5625+R2/S2) if x > 0
 *                        = 2.0 - (1/x)*exp(-x*x-0.5625+R2/S2) if -6<x<0
 *                        = 2.0 - tiny                (if x <= -6)
 *                 erf(x)  = sign(x)*(1.0 - erfc(x)) if x < 6, else
 *                 erf(x)  = sign(x)*(1.0 - tiny)
 *           where
 *                R2(z) = degree 6 poly in z, (z=1/x^2)
 *                S2(z) = degree 7 poly in z
 *
 *      Note1:
 *           To compute exp(-x*x-0.5625+R/S), let s be a single
 *           precision number and s := x; then
 *                -x*x = -s*s + (s-x)*(s+x)
 *                exp(-x*x-0.5626+R/S) =
 *                        exp(-s*s-0.5625)*exp((s-x)*(s+x)+R/S);
 *      Note2:
 *           Here 4 and 5 make use of the asymptotic series
 *                          exp(-x*x)
 *                erfc(x) ~ ---------- * ( 1 + Poly(1/x^2) )
 *                          x*sqrt(pi)
 *           We use rational approximation to approximate
 *              g(s)=f(1/x^2) = log(erfc(x)*x) - x*x + 0.5625
 *           Here is the error bound for R1/S1 and R2/S2
 *              |R1/S1 - f(x)|  < 2**(-62.57)
 *              |R2/S2 - f(x)|  < 2**(-61.52)
 *
 *      5. For inf > x >= 28
 *                 erf(x)  = sign(x) *(1 - tiny)  (raise inexact)
 *                 erfc(x) = tiny*tiny (raise underflow) if x > 0
 *                        = 2 - tiny if x<0
 *
 *      7. Special case:
 *                 erf(0)  = 0, erf(inf)  = 1, erf(-inf) = -1,
 *                 erfc(0) = 1, erfc(inf) = 0, erfc(-inf) = 2,
 *                   erfc/erf(NaN) is NaN
 */
#define AU0 -9.86494292470009928597e-03
#define AU1 -7.99283237680523006574e-01
#define AU2 -1.77579549177547519889e+01
#define AU3 -1.60636384855821916062e+02
#define AU4 -6.37566443368389627722e+02
#define AU5 -1.02509513161107724954e+03
#define AU6 -4.83519191608651397019e+02
#define AV1  3.03380607434824582924e+01
#define AV2  3.25792512996573918826e+02
#define AV3  1.53672958608443695994e+03
#define AV4  3.19985821950859553908e+03
#define AV5  2.55305040643316442583e+03
#define AV6  4.74528541206955367215e+02
#define AV7 -2.24409524465858183362e+01
#define BU0 -9.86494403484714822705e-03
#define BU1 -6.93858572707181764372e-01
#define BU2 -1.05586262253232909814e+01
#define BU3 -6.23753324503260060396e+01
#define BU4 -1.62396669462573470355e+02
#define BU5 -1.84605092906711035994e+02
#define BU6 -8.12874355063065934246e+01
#define BU7 -9.81432934416914548592e+00
#define BV1  1.96512716674392571292e+01
#define BV2  1.37657754143519042600e+02
#define BV3  4.34565877475229228821e+02
#define BV4  6.45387271733267880336e+02
#define BV5  4.29008140027567833386e+02
#define BV6  1.08635005541779435134e+02
#define BV7  6.57024977031928170135e+00
#define BV8 -6.04244152148580987438e-02
#define CU0 -2.36211856075265944077e-03
#define CU1  4.14856118683748331666e-01
#define CU2 -3.72207876035701323847e-01
#define CU3  3.18346619901161753674e-01
#define CU4 -1.10894694282396677476e-01
#define CU5  3.54783043256182359371e-02
#define CU6 -2.16637559486879084300e-03
#define CV1  1.06420880400844228286e-01
#define CV2  5.40397917702171048937e-01
#define CV3  7.18286544141962662868e-02
#define CV4  1.26171219808761642112e-01
#define CV5  1.36370839120290507362e-02
#define CV6  1.19844998467991074170e-02
#define DU0  1.28379167095512558561e-01
#define DU1 -3.25042107247001499370e-01
#define DU2 -2.84817495755985104766e-02
#define DU3 -5.77027029648944159157e-03
#define DU4 -2.37630166566501626084e-05
#define DV1  3.97917223959155352819e-01
#define DV2  6.50222499887672944485e-02
#define DV3  5.08130628187576562776e-03
#define DV4  1.32494738004321644526e-04
#define DV5 -3.96022827877536812320e-06
_CLC_OVERLOAD _CLC_DEF double erf(double y) {
    double x = fabs(y);
    double x2 = x * x;
    double xm1 = x - 1.0;
    // Poly variable
    double t = 1.0 / x2;
    t = x < 1.25 ? xm1 : t;
    t = x < 0.84375 ? x2 : t;
    double u, ut, v, vt;
    // Evaluate rational poly
    // XXX We need to see of we can grab 16 coefficents from a table
    // faster than evaluating 3 of the poly pairs
    // if (x < 6.0)
    u = fma(t, fma(t, fma(t, fma(t, fma(t, fma(t, AU6, AU5), AU4), AU3), AU2), AU1), AU0);
    v = fma(t, fma(t, fma(t, fma(t, fma(t, fma(t, AV7, AV6), AV5), AV4), AV3), AV2), AV1);
    ut = fma(t, fma(t, fma(t, fma(t, fma(t, fma(t, fma(t, BU7, BU6), BU5), BU4), BU3), BU2), BU1), BU0);
    vt = fma(t, fma(t, fma(t, fma(t, fma(t, fma(t, fma(t, BV8, BV7), BV6), BV5), BV4), BV3), BV2), BV1);
    u = x < 0x1.6db6ep+1 ? ut : u;
    v = x < 0x1.6db6ep+1 ? vt : v;
    ut = fma(t, fma(t, fma(t, fma(t, fma(t, fma(t, CU6, CU5), CU4), CU3), CU2), CU1), CU0);
    vt = fma(t, fma(t, fma(t, fma(t, fma(t, CV6, CV5), CV4), CV3), CV2), CV1);
    u = x < 1.25 ? ut : u;
    v = x < 1.25 ? vt : v;
    ut = fma(t, fma(t, fma(t, fma(t, DU4, DU3), DU2), DU1), DU0);
    vt = fma(t, fma(t, fma(t, fma(t, DV5, DV4), DV3), DV2), DV1);
    u = x < 0.84375 ? ut : u;
    v = x < 0.84375 ? vt : v;
    v = fma(t, v, 1.0);
    // Compute rational approximation
    double q = u / v;
    // Compute results
    double z = as_double(as_long(x) & 0xffffffff00000000L);
    double r = exp(-z * z - 0.5625) * exp((z - x) * (z + x) + q);
    r = 1.0 - r / x;
    double ret = x < 6.0 ? r : 1.0;
    r = 8.45062911510467529297e-01 + q;
    ret = x < 1.25 ? r : ret;
    q = x < 0x1.0p-28 ? 1.28379167095512586316e-01 : q;
    r = fma(x, q, x);
    ret = x < 0.84375 ? r : ret;
    ret = isnan(x) ? x : ret;
    return y < 0.0 ? -ret : ret;
}
_CLC_UNARY_VECTORIZE(_CLC_OVERLOAD _CLC_DEF, double, erf, double);
#endif
 |